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Abstract

There is a fundamental duality in as to how protons and neutrons are treated
as formimg the nucleus. A nucleus can be described well in an SU(2)I model
(where (p-n) are indistinguishable) and in another independent picture where
the pair (p-n) is treated as made up of distinguishable proton and netron
fermions. Both of these apparently provide successful equivalent descriptions
of the nucleus. How this is possible is the focus of this paper. Starting with the
Standard Model and the SU(3)-flavour quark models, we look at the microssopic
basis for this duality. Chirality and anomaly cancellation and its matching, play
a basic role in our work.
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In nuclear physics there is a classic problem, which has been swept under
the carpet. It has to do with the fact that nuclear structure can be studied con-
sistently within two different models. Model 1: herein proton and neutron are
taken as indistingushable particles with Generalized Pauli Exclusion Principle
(GPEP) invoked to take this property into account. This is the model based
on SU(2)I isospin group and which is the most successful Independent Paricle
Model (IPM) of the nucleus today. And Model 2: this is another independent
model where proton and neutron are treated as distinguishable particles with
their separate Fermi seas to describe the same nucleus. The first model is more
popular today. However, in fact, right up to the ∼ 1960′s most of the nuclear
physics calculations treated protons and neutrons as distinguishable fermions,
for e.g. see Blatt and Weisskopf [1].

Thus there is actually a duality of models here. Therefor a nucleus can
be described well in an SU(2)I model (where (p-n) are indistinguishable) and
in another independent picture where the pair (p-n) is treated as made up of
distinguishable fermions. Lawson [2] has shown, in a complete section entitled
”Isospin and non-isospin methods of calculation”, that these two independent
methods yield essentially identical results in the nucleus.

We wish to study the rationale for this duality in this paper.
The relationship between the two formalisms here is discussed at many places

[1,2,3,4]. These studies demonstrate that apparently it is merely a formal re-
quirement to move from one formalism to another. So taking the Pauli Exclusion
Principle for the proton and neutron separately in Model 2 or by requiring anti-
symmetry under the exchange of two nucleons in isospin formalism as in Model
1 is essentially identical. It has been shown that no matter whether we had
(p − p) or (p − p) or (n − p) pairs from Method 1, we are able to build an
antisymmetric wave function from the Model 2 wave functions [1,3,4].

Thus these two indpencdent and different models are providing equally suc-
cessful and simultaneous description of the nucleus. So these two models appear
to provide equivalent descriptions of the nucleus. Thus the nuclear physicists
thank the Nature for being so generous and go ahead and make use of this free-
don to do a specific calculation as to whichever model provides them maximum
information with minimum labour [2]. But there is nothing for free!

Actually there is a subtle and important difference in the two models. As
discssed above, every Model 2 (of distinguishable proton and neutron) function
can be generalized to be written in the proper isospin formalism of Model 1.
But the converse does not always hold. Take the case of a simple isospin wave
function of the single nucleon in the Model 1 formalism,

ψ(~r, χ, η) = φ (~r, χ)
1√
2
{ν(η) + π(η)} (1)

This function corresponds to a nucleon in the ordinary states φ(~r, χ) (nota-
tion as in [1])]. However, this nucleon has equal probability of being a proton
or a neutron at any particular time. Note that the total nucleon number is still
one. However this state does not correspond to any physically known states of
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a proton or a neutron. Thus the isospin formalism provides us with spurious
states which do not correspond to any physical reality whatsoever.

Thus phenomenolgically successful nuclear Model 1 based on the SU(2)I
isopin group, still does not display the full freedom that this group demands
from it. As spinor χ = a| ↑> +b| ↓> is physical in SU(2)spin space, then why
is isospinor ψ = a|p > +b|n > unphysical in SU(2)isospin space? We wish to
study this issue too in this paper.

The quark model group structure is SU(6)FS⊗SU(3)C ⊃ SU(3)F⊗SU(2)S⊗
SU(3)C . Here in SU(3)F the quark charges are given as Q = T3 + Y

2 where Y =

B + S. As S=0 for proton and neutron Qp = 1
2 +

1
3

2 = 2
3 and Qn = − 1

2 +
1
3

2 = − 1
3 .

These are completely independent of colour. The only way that colour comes
into the above picture is by ensuring a colour antisymmetric wave function in
the above semi-simple group of SU(3)C . Also note that here the baryon number
of 1/3 comes from within as the second diagonal generator λ8 of SU(3)F . So
the baryon number is internally generated in SU(3)F

In contrast, for the first generation of quarks and leptons, in the Standard
Model (SM) with group structure SU(3)C ⊗ SU(2)L ⊗ U(1)YW

, the electric
charges are defined either as Q = TW3 + YW [5] or as Q = TW3 + YW

2 [6]. The
hypercharges are put in by hand to provide proper charges for all the matter
particles. Again there is no colour present in the electric charge in the SM.
However the baryon number 1/3 is colour dependent as arising externally from
the group SU(3)C . This is the standard unquantized charge (i.e. arbitrarily put
in by hand) which is most commonly used in the SM at presnt[5,6]. The same
charges are also used in studies of QCD for arbitrary number of colours [7].

To distinguish the fact that the same group structure and the same matter
structure as the above SM, has proper charge quantization built into it, we
refer to this new structure as the Quantized Charge Standard Model (QCSM).
This distinction, as we see below, shall be found to be necessary to avoid undue
confusion and also as the QCSM is actually providig physics well ouside the
purview of the SM.

In QCSM, it has been shown convingly [8,9], that for the group SU(N)C ⊗
SU(2)L ⊗ U(1)YW

with NC = 3, the first generation quarks have proper quan-
tized charges,

Q(u) =
1

2
(1 +

1

Nc
), Q(d) =

1

2
(−1 +

1

Nc
) (2)

Most significant fact in QCSM is that in spite of the fact that photon does
not recognize colour, the electric charge itself has colour sitting inside it! This
crucial difference, as to colour in the charges, is the most significant differece
with respect the above SM charges. It has been shown [8,9] that this colour
dependence is essential to study QCD for arbitrary number of colours. Thus
the SM charges fail [7], whereas the QCSM charges succeed [8]. Thus the QCSM
is actually an extension of the SM, going beyond its confines and providing new
physics beyond the reach of the SM.

However first we are interested in noting the basic differences in how quark
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charges are represented in the flavour SU(3)F model and the QCSM. The
charges of quarks are completely different as to their intrinsic structure in these
two models. One model does not know of any colour (in the charges) while
the other one is well-coloured! Also baryon number in the flavour model arises
internally from the simple group stucture itself, while in the QCSM it arises due
to the colour structure of the semi-simple group for this model.

Given these irreconciliable differences, how can these two models describe
the same entities consistently? Below we show that the standard quark model
forms the basis for Model 1 (above). And thus the other model should be (and
is) the one which justifes the Model 2 (above).

Note that the SU(3)F model successfully describes the baryons as an octet.
The nucleon forms the lowest mass isospin doublet. These then provide the
proper representation of nucleon as to what constitutes the nucleus. Including
the isospin in the Generaized Pauli Exclusion Principle along with analysis
within the Brueckner-Hartree-Fock view, leads to the successful Independent
Particle Model (IPM) of the nucleus.

Next what does this new picture of the nucleon, as viewed within the QCSM
analysis, leads to? What information it hides which can help us understand
the hadrons better and which may lead to an understanding of the difference
between Model 1 and Model 2 (above).

When a theory is strongly coupled, there is often a complete shift in the
relevant degrees of freedom; e.g. at short distances strong nuclear force is de-
scribed by quarks and gluons, while at larger distances the proper degrees of
freedom are the hadrons. Imagine a theory is weakly coupled (so perturbation
theory works) when we are above a certain energy scale λ. Below this scale let
the theory be strongly coupled so that one cannot do perturbation anymore.

weakly coupled theory > λ > strongly coupled theory (3)

Note that we have an advantage if the weakly coupled theory has an anoma-
lous symmetry. ’t Hooft showed [10] that regardless of the strength of the
interaction, anomaly must be present on both sides of λ.

This allows us to identify the fermion sector of our effective field theory.
Canonically, at present the structure of the nucleus at low energies is nucleonic
degrees of freedom only; but deep inside, these are made up of quarks which
show up at higher energies. However, here we show, that there exists a basic
and consistent structure wherein nucleons do appear as fundamental entities.
This is indeed made possible due to the ’t Hooft anomaly matching condition.

’t Hooft anomaly matching condition [10] points out that chirality ensures
that the fermions are massless. So composites of fundamental entities in the
chiral limit may match each other through the ’t Hooft anomaly matching con-
dition. This is possible if the sum of the anomaly coefficients A(r) for the
composite fermions (below λ) is equal to that of fundamental fermions (above
λ) ∑

r

NrA(r) =
∑
r

nrA(r) (4)
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(nr are number of chiral fermions in representation r and Nr are number of
massless composite fermions in representation r)

The first generation is unique as the coloured massless u-, d- quarks form an
isospin doublet in the SM. Then the only colourless composite spin-half fermions
that we can create in the ground state, are proton (uud) and neutron (udd). Now
(p,n) do form a massless, chiral, isospin-doublet. Thus the ’t Hooft matching
condition is indeed satisfied. (However the same logic fails for 3 flavours (u,d,s)
to octet baryons (p, n,Σ+,−,0,Λ0,Ξ−,0) ).

But be warned that there has been misunderstanding regarding what we have
shown above. For eaxmple, Shifman, after obtaining the (p,n) massless, chiral,
isospin doublet states [11, p.325] states, ”This could merely be a coincidence,
though. Let us not jump to conclusions.” And then he discards the above result.
In contrast, we are accepting this result as physically relevant and carry the logic
further to its natural conclusion.

A few more remarks may be in order here. Note that taking nucleon N=(p,n)
as fundamental representation of the isospin group SU(2)I , we can consistently
build mesons as NN̄ and (non-strange) baryons as NNN̄ . All this with inte-
gral charge hadrons and without fractional charge quarks showing up anywhere.
Next when we wish to go to SU(3) then for integral charge baryons, we have to
abandon taking fundamental representation as basic for baryons (as in Sakata
model) and have to take adjoint representation as basic. This was the logic be-
hind Gell-Mann’s assertion in 1961 for the Eight-fold Way Model of baryons [12].
Remember that these adjoint represenation baryons were fundamental entities
forming a super-multiplet. However next, if we demand that the fundamental
representation of SU(3) be basic, then these should be taken as fractionally
charged quarks [12]. But now the baryons are composite objects of three ele-
mentary quarks. Thus going from 2 to 3 in SU(n) can make a lot of differenc as
to what is basic and what is not. And here it is this issue which is demanding
compliance with its non-trivial diktats [12].

As a bonus, our new perspective right away leads it to a new structure. Due
to the above reason, the first generation of quark-lepton family goes over to a
new and unique single generation of massless chiral nucleon-lepton family. It is
unique in that unlike the quark-lepton three families, there is no other baryon-
lepton family. Its representation in the QCSM group SU(N)C ⊗ SU(2)L ⊗
U(1)YW

is as follows:

NL =

(
p
n

)
L

, (1, 2, YN ) ; pR, (1, 1, Yp) ; nR, (1, 1, Yn) (5)

lL =

(
νe
e

)
L

, (1, 2, Yl) ; eR, (1, 1, Ye) (6)

Now let the QCSM symmetry be spontaneously broken (SSB) to SU(NC)⊗
U(1)em by an Englert-Brout-Higgs (EBH) field - SU(2)L group doublet in an-
other phase transition. There are five unknown hypercharges plus the above
unknown Yφ of the EBH doublet (similar to the case in ref. [8]). Let us define
the electric charge operator as
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Q = T3 + b Y (7)

where ’b’ is another undetermined parameter. This is unlike the SM where b is
arbitrarity taken as ’1’ in one case [5], and as ’1/2’ in another case [6], as we
discussed above.

In QCSM we have three massless generators W1,W2,W3 of SU(2)L and X
of U(1)Y . SSB by EBH mechanism provides mass to the W± and Z0 gauge
particles while ensuring zero mass for photons. Let T3 = − 1

2 of the EBH
field develop a nonzero vacuum expectation value < φ >0. One of the four
generators (W1W2W3, X) is thereby left unbroken, (meaning that we ensure a
massless photon as a generator of the U(1)em group), so we demand:

Q < φ >0= 0 (8)

This fixes the unknown b and we obtain,

Q = T3 + (
1

2Yφ
)Y (9)

Anomalies play a very significant role in quantum field theories [5,6]. As we
require the SM to be renormalisable, we have to ensure that all the anomalies
vanish. Thus we have three anomalies [8,9] listed as A, B and C as below

Anomaly A : TrY [SU(NC)]2 = 0 ; 2YN = Yp + Yn (10)

Anomaly B : TrY [SU(2)L]2 = 0 ; giving YN = −Yl (11)

Anomaly C : Tr[Y 3] = 0; 2Y 3
N − Y 3

p − Y 3
n + 2Y 3

l − Y 3
e = 0 (12)

We need more constraints on the hypercharges. The Yukawa mass terms
provide these:

Yp = YN + Yφ, Yn = YN − Yφ, Ye = Yl − Yφ (13)

→ Yl = −Yφ (14)

Finally, we get quantized electric charges for this unique nucleon-lepton sin-
gle generation as,

Q(p) = 1, Q(n) = 0; Q(νe) = 0, Q(e) = −1 (15)

The three anomalies, SSB through EBH mechanism, and Yukawa masses,
give consistent charge quantization. Most important to see that these nucleons
are taken as fundamental particles and not as composites of quarks. The ’t
Hooft anomaly matching had made these nucleons massless and point-like chiral
fermions as fundamental particles.
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We know that in the quark model, we have the isospin doublet ( pn ) arising in
the flavour group SU(3)F ⊃ SU(2)F above. Now the the same isopin pair arises
independemtly in this other model due to the QCSM when conjoined with the
’tHooft anomaly matching condition. This clearly should provide microscopic
description of the same ( pn ) which make up the nucleus as per Model 2 (above).

Now in the IPM of the nucleus, the SU(2)-isospin symmetry arises from
the quarks in the SU(3)F model. Note that proton and neutron are indistin-
guishable particle in this model (Model 1). Thus the proton-neutron pair wave
function is antisymmetric as follows:

Φ =
1

2
(p(1)n(2)− n(1)p(2)) (16)

Note that the position order (12) is fixed by definition while the p and n labels
are exchanged. This arises due to the fact that the fundamenatl representation
in the isopin group is a single entity called the nucleon N = ( pn )

Let a single nucleon be made up of three quarks of SU(2)F group as

q1(1) =

(
u(1)
d(1)

)
; q2(2) =

(
u(2)
d(2)

)
; q3(3) =

(
u(3)
d(3)

)
(17)

where we have put position labels on the quarks. As colour sits outside in the
group SU(3)C ⊗ SU(2)F , so for a particular doublet

q1(1) =

(
uR(1)
dR(1)

)
;

(
uB(2)
dB(2)

)
;

(
uG(3)
dG(3)

)
(18)

Now when three quarks make up proton and neutron, the quark content may
be given as follows:

N1(1) =

(
p(1′)
n(1′)

)
; p(1′) = uR(1)uB(2)dG(3); n(1′) = dR(1)dB(2)uG(3) (19)

where we have put 1′ as some common centre of the positions 1, 2, and 3 above.
As one builds proper symmetry into the flavour space, the colour antisymmetry
would ensure that in a nucleon both proton and neutron have the same base ’1′’
due to the same position labels (123) above.

Now the antisymmetric wave function of two nucleons N1 and N2 is

Φ =
1

2
(N1(1)N2(2)−N2(1)N1(2)) (20)

which then leads to the n-p pair antisymmetric wave function above in eqn. (16).
Note the significance of the labels 1, 2, 3, and 1′ in the above wave functions!

Now let us study the group structure relevant for the new doublet ( pn ) of the
QCSM for the model arising from the conjoinement of the anomaly matching
condition.

First note that in the canonical quark model the group structure is SU(6)FS⊗
SU(3)C ⊃ SU(3)F ⊗ SU(2)S ⊗ SU(3)C . Antisymmetry arises from the colour
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part and the SU(6) part gives symmetric states for baryons. What is the mean-
ing of SU(6)FS ⊃ SU(3)F ⊗ SU(2)S? We know that SU(3)F is pretty badly
broken. It works at low non-relativistic energies. From this we work up to the
bigger group SU(6)FS by including the purely ”static” SU(2)-spin group. It is
broken atleast as badly as its flavour subgroup. However it works pretty well
in resolving some basic puzzles of the SU(3)F model (such as lack of flavour
singlet representation of spin 1/2 baryons etc.).

However in the new (anomaly-matching condition) model, due to the demand
of chiralty, the quark masses are exactly zero and thus SU(2)F is an exact
symmetry. As SU(3)C is an exact symmetry anyway, thus the larger group
SU(6)CF ⊃ SU(3)C ⊗ SU(2)F is a very good symmetry. Note that this is
true at relativistic energies. This though is slightly broken due to SSB by
EBH mechanism by fixing the slightly different masses of neutron and proton
by Yukawa coupling. However it still remains a good symmetry to classify the
states even at relativistic energies. Given the fact that SU(2)S should be a good
symmetry, the new group structure would be

SU(12)CFS ⊃ SU(6)CF ⊗ SU(2)S (21)

Now the three quark antisymmetric state in this bigger group, decomposed
as above [4],

CFS ⊃ ( CF , S )⊕ ( CF , S )

220CFS → (70CF , 2S)⊕ (20CF , 4S) (22)

Clearly the doublet spin state above should be the representation which
would provide our new (p,n) doublet.

The colour and flavour content of the above SU(6)CF representation is

= ( ⊕ )⊕( ⊕ )⊕( ⊕ )⊕( ⊕ )

70CF = (1C , 2F )⊕ (8C , 4F )⊕ (8C , 2F )⊕ (10C , 2F ) (23)

We see from the first set on the right hand side that this state indeed has the
proper colour singlet and flavour doublet of the new anomaly matched (p,n).

Thus we see that the fundamental representation of our SU(6)CF group is,
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Q =

uR
uB
uG
dR
dB
dG (24)

We can put position labels, just like in eqns. (17, 18), and construct proton
and neutron from these. But now there are more than two states (actually
six) at each position of quark Q, and thus when we construct wave functions
for proton and neutron, differences shall arise. What it means is that for the
proton = [ u (1) u(2) d(3) ] including colour for the group SU(6)CF , given a
state say uR(1), then the corresponding quark for the associated neutron may
exist in any of the states uB(1) , uG(1) , dR(1) , dB(1) , dG(1). Thus for this
group structure it can not be guaranteed that both p and n exist at the same
position. This is a major difference with respect to the result in eqn. (18). And
thus ( pn ) pair is not a nucleon (i.e. existing at one specific point as in eqn.(19)).

This means that the proton and neutron of a pair are located at different
points in this new model. Therefor proton and neutron are not identical and
indistiguishable particles here. Thus a nucleus made up of these should be
treated as made up of distinguishable and different proton and neutron Fermi
seas. This is exactly what Model 2 demands. Thus this is the microscopic basis
of Model 2 (above).

Thus as both these independent pictures, describe the same reality. Then
because of the existence of each other, both these model strutures should provide
the same representations. It seems that the anomaly-matching (p,n) doublet
structure is more basic and thus it enforces its diktat on the SU(2)I model and
thus forbids the above isospinor eqn.(1). Thus the spinors that may exist in
SU(2)S space, do not have a counterpart as isospinors of SU(2)I space. This
is made possible due to the duality of model structures of the nucleus as shown
here.

Thus we see that the nucleus demands two independent and co-exsiting
models to describe it. Here we have shown that this is matched by corresponding
two independent microscopic quark based structures.
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