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Abstract

By studying the holomorphic structure of automorphic inverse property quasigroups
and loops[AIPQ and (AIPL)] and cross inverse property quasigroups and loops|CIPQ
and (CIPL)], it is established that the holomorph of a loop is a Smarandache; AIPL,
CIPL, K-loop, Bruck-loop or Kikkawa-loop if and only if its Smarandache automor-
phism group is trivial and the loop is itself is a Smarandache; AIPL, CIPL, K-loop,
Bruck-loop or Kikkawa-loop.

1 Introduction

1.1 Quasigroups And Loops

Let L be a non-empty set. Define a binary operation (-) on L : If z -y € L for all x,y € L,
(L,-) is called a groupoid. If the system of equations ;

a-x=>= and y-a==»b

have unique solutions for x and y respectively, then (L,-) is called a quasigroup. For each
x € L, the elements z* = z.J,, 2 = xJy € L such that za” = e” and 2’z = e* are called the
right, left inverses of x respectively. Now, if there exists a unique element e € L called the
identity element such that for all z € L, x -e = e-x = z, (L,-) is called a loop. To every
loop (L,-) with automorphism group AUM (L, -), there corresponds another loop. Let the
set H = (L,-) x AUM(L,-). If we define "o’ on H such that (a,z) o (8,y) = (af,z[3 - y) for
all (a,z),(B,y) € H, then H(L,-) = (H, o) is a loop as shown in Bruck [7] and is called the
Holomorph of (L, -).
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A loop(quasigroup) is a weak inverse property loop (quasigroup)[WIPL(WIPQ)| if and
only if it obeys the identity

z(yz)’ =y”  or  (zy)z =yt

A loop(quasigroup) is a cross inverse property loop(quasigroup)[CIPL(CIPQ)] if and only if
it obeys the identity

xy- -2’ =y or x-yx’ =y or o (yx) =y or My -x=y.

A loop(quasigroup) is an automorphic inverse property loop(quasigroup)[AIPL(AIPQ)] if
and only if it obeys the identity

(zy)” = aPy” or (zy)* = 2™y
Consider (G, -) and (H, o) being two distinct groupoids(quasigroups, loops). Let A, B and
C be three distinct non-equal bijective mappings, that maps G onto H. The triple a =
(A, B,(C) is called an isotopism of (G, -) onto (H, o) if and only if

rAoyB = (z-y)C V¥V z,y €q.

The set SYM (G, ) = SYM(G) of all bijections in a groupoid (G, -) forms a group called
the permutation(symmetric) group of the groupoid (G,-). If (G, ) = (H, o), then the triple
a = (A, B,C) of bijections on (G, -) is called an autotopism of the groupoid(quasigroup,
loop) (G,-). Such triples form a group AUT(G,-) called the autotopism group of (G,-).
Furthermore, if A = B = C, then A is called an automorphism of the groupoid(quasigroup,
loop) (G,-). Such bijections form a group AUM(G,-) called the automorphism group of
(G, -).

The left nucleus of L denoted by Ny(L,-) ={a € L:ax-y=a-xzy ¥ x,y € L}. The
right nucleus of L denoted by N,(L,-) ={a€ L:y-za =yx-aV x,y € L}. The middle
nucleus of L denoted by N,(L,-) = {a € L : ya-x = y-ax V z,y € L}. The nucleus
of L denoted by N(L,-) = Ni(L,-) N N,(L,-) N N,(L,-). The centrum of L denoted by
C(L,)={a€ L:ax =xzaV x € L}. The center of L denoted by Z(L,-) = N(L,-)NC(L,).

As observed by Osborn [22], a loop is a WIPL and an AIPL if and only if it is a CIPL. The
past efforts of Artzy [2, 3, 4, 5], Belousov and Tzurkan [6] and recent studies of Keedwell [17],
Keedwell and Shcherbacov [18, 19, 20] are of great significance in the study of WIPLs, AIPLs,
CIPQs and CIPLs, their generalizations(i.e m-inverse loops and quasigroups, (r,s,t)-inverse
quasigroups) and applications to cryptography. For more on loops and their properties,
readers should check [8],[10], [12], [13], [27] and [24].

Interestingly, Adeniran [1] and Robinson [25], Oyebo and Adeniran [23], Chiboka and
Solarin [11], Bruck [7], Bruck and Paige [9], Robinson [26], Huthnance [14] and Adeniran [1]
have respectively studied the holomorphs of Bol loops, central loops, conjugacy closed loops,
inverse property loops, A-loops, extra loops, weak inverse property loops, Osborn loops and
Bruck loops. Huthnance [14] showed that if (L, -) is a loop with holomorph (H, o), (L, ) is
a WIPL if and only if (H, o) is a WIPL. The holomorphs of an AIPL and a CIPL are yet to
be studied.



For the definitions of inverse property loop (IPL), Bol loop and A-loop readers can check
earlier references on loop theory.

Here ; a K-loop is an A-loop with the AIP, a Bruck loop is a Bol loop with the AIP and
a Kikkawa loop is an A-loop with the IP and AIP.

1.2 Smarandache Quasigroups And Loops

The study of Smarandache loops was initiated by W. B. Vasantha Kandasamy in 2002. In her
book [27], she defined a Smarandache loop (S-loop) as a loop with at least a subloop which
forms a subgroup under the binary operation of the loop. In [16], the present author defined
a Smarandache quasigroup (S-quasigroup) to be a quasigroup with at least a non-trivial
associative subquasigroup called a Smarandache subsemigroup (S-subsemigroup). Examples
of Smarandache quasigroups are given in Muktibodh [21]. In her book, she introduced over
75 Smarandache concepts on loops. In her first paper [28], on the study of Smarandache
notions in algebraic structures, she introduced Smarandache : left(right) alternative loops,
Bol loops, Moufang loops, and Bruck loops. But in [15], the present author introduced
Smarandache : inverse property loops (IPL), weak inverse property loops (WIPL), G-loops,
conjugacy closed loops (CC-loop), central loops, extra loops, A-loops, K-loops, Bruck loops,
Kikkawa loops, Burn loops and homogeneous loops.

A loop is called a Smarandache A-loop(SAL) if it has at least a non-trivial subloop that
is a A-loop.

A loop is called a Smarandache K-loop(SKL) if it has at least a non-trivial subloop that
is a K-loop.

A loop is called a Smarandache Bruck-loop(SBRL) if it has at least a non-trivial subloop
that is a Bruck-loop.

A loop is called a Smarandache Kikkawa-loop(SKWL) if it has at least a non-trivial
subloop that is a Kikkawa-loop.

If L is a S-groupoid with a S-subsemigroup H, then the set SSYM(L,-) = SSYM(L)
of all bijections A in L such that A : H — H forms a group called the Smarandache
permutation(symmetric) group of the S-groupoid. In fact, SSYM (L) < SYM(L).

The left Smarandache nucleus of L denoted by SN,(L,-) = Nx(L,:) N H. The right
Smarandache nucleus of L denoted by SN,(L,-) = N,(L,-) N H. The middle Smarandache
nucleus of L denoted by SN, (L, ) = N,(L,-)NH. The Smarandache nucleus of L denoted by
SN(L,-) = N(L,-)NH. The Smarandache centrum of L denoted by SC(L,-) = C(L,-)NH.
The Smarandache center of L denoted by SZ(L,-) = Z(L,-)N H.

Definition 1.1 Let (L,-) and (G,0) be two distinct groupoids that are isotopic under a
triple (U, V,W). Now, if (L,-) and (G, o) are S-groupoids with S-subsemigroups L' and G’
respectively such that A : L' — G', where A € {U,V,W}, then the isotopism (U,V,W) :
(L,-) — (G,o0) is called a Smarandache isotopism(S-isotopism).

Thus, if U =V = W, then U is called a Smarandache isomorphism, hence we write
(L’ ) i (G,o),

But if (L,-) = (G, o), then the autotopism (U, V, W) is called a Smarandache autotopism
(S-autotopism) and they form a group SAUT(L,-) which will be called the Smarandache
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autotopism group of (L,-). Observe that SAUT(L,-) < AUT(L,-). Furthermore, if U =V =
W, then U is called a Smarandache automorphism of (L, -). Such Smarandache permutations
form a group SAUM (L, ) called the Smarandache automorphism group(SAG) of (L, -).

Let L be a S-quasigroup with a S-subgroup G. Now, set Hg = (G,-) x SAUM(L,-). If
we define o’ on Hg such that (a,x) o (8,y) = (af,z0 - y) for all (a,z),(8,y) € Hg, then
Hs(L,-) = (Hg, o) is a quasigroup.

Ifin L, s* - sa € SN(L) or sa-s” € SN(L) Vs € G and o € SAUM(L, ), (Hg,0) is
called a Smarandache Nuclear-holomorph of L, if s*-sa € SC(L) or sa-s”? € SC(L)V s € G
and a € SAUM(L,-), (Hg,o) is called a Smarandache Centrum-holomorph of L hence
a Smarandache Central-holomorph if s* - sa € SZ(L) or sa-s” € SZ(L) V s € G and
a € SAUM(L, ).

The aim of the present study is to investigate the holomorphic structure of Smarandache
AIPLs and CIPLs(SCIPLs and SAIPLs) and use the results to draw conclusions for Smaran-
dache K-loops(SKLs), Smarandache Bruck-loops(SBRLs) and Smarandache Kikkawa-loops
(SKWLs). This is done as follows.

1. The holomorphic structure of AIPQs(AIPLs) and CIPQs(CIPLs) are investigated.
Necessary and sufficient conditions for the holomorph of a quasigroup(loop) to be
an AIPQ(AIPL) or CIPQ(CIPL) are established. It is shown that if the holomorph
of a quasigroup(loop) is a AIPQ(AIPL) or CIPQ(CIPL), then the holomorph is iso-
morphic to the quasigroup(loop). Hence, the holomorph of a quasigroup(loop) is an
ATPQ(AIPL) or CIPQ(CIPL) if and only if its automorphism group is trivial and the
quasigroup(loop) is a AIPQ(AIPL) or CIPQ(CIPL). Furthermore, it is discovered that
if the holomorph of a quasigroup(loop) is a CIPQ(CIPL), then the quasigroup(loop)
is a flexible unipotent CIPQ(flexible CIPL of exponent 2).

2. The holomorph of a loop is shown to be a SAIPL, SCIPL, SKL, SBRL or SKWL
respectively if and only its SAG is trivial and the loop is a SAIPL, SCIPL, SKL,
SBRL, SKWL respectively.

2 Main Results

Theorem 2.1 Let (L,-) be a quasigroup(loop) with holomorph H(L). H(L) is an
AIPQ(AIPL) if and only if

1. AUM(L) is an abelian group,
2. (7Y a,I) e AUT(L)Y o, 3 € AUM(L) and
3. L is a AIPQ(AIPL).

Proof
A quasigroup(loop) is an automorphic inverse property loop(AIPL) if and only if it obeys
the identity



Using either of the definitions of an AIPQ(AIPL), it can be shown that H(L) is
a AIPQ(AIPL) if and only if AUM(L) is an abelian group and (87'J,,aJ,, J,) €
AUT(L) ¥ o, € AUM(L). L is isomorphic to a subquasigroup(subloop) of H(L), so
L is a AIPQ(AIPL) which implies (J,, J,, J,) € AUT(L). So, (87!, a,I) € AUT(L)V «, 8 €
AUM(L).

Corollary 2.1 Let (L,-) be a quasigroup(loop) with holomorph H(L). H(L) is a
CIPQ(CIPL) if and only if

1. AUM(L) is an abelian group,
2. (7Y a,I) € AUT(L) Y o, 8 € AUM(L) and
3. L is a CIPQ(CIPL).

Proof
A quasigroup(loop) is a CIPQ(CIPL) if and only if it is a WIPQ(WIPL) and an AIPQ(AIPL).
L is a WIPQ(WIPL) if and only if H(L) is a WIPQ(WIPL).

If H(L) is a CIPQ(CIPL), then H (L) is both a WIPQ(WIPL) and a AIPQ(AIPL) which
implies 1., 2., and 3. of Theorem 2.1. Hence, L is a CIPQ(CIPL). The converse follows by
just doing the reverse.

Corollary 2.2 Let (L,-) be a quasigroup(loop) with holomorph H(L). If H(L) is an
AIPQ(AIPL) or CIPQ(CIPL), then H(L) = L.

Proof

By 2. of Theorem 2.1, (37, a,1) € AUT(L) V¥ «o,3 € AUM(L) implies 237! -ya = x -y
which means a = § = I by substituting = e and y = e. Thus, AUM(L) = {I} and so
H(L)= L.

Theorem 2.2 The holomorph of a quasigroup(loop) L is a AIPQ(AIPL) or CIPQ(CIPL)
if and only if AUM(L) ={I} and L is a AIPQ(AIPL) or CIPQ(CIPL).

Proof
This is established using Theorem 2.1, Corollary 2.1 and Corollary 2.2.

Theorem 2.3 Let (L,-) be a quasigroups(loop) with holomorph H(L). H(L) is a
CIPQ(CIPL) if and only if AUM (L) is an abelian group and any of the following is true for
all z,y € L and o, € AUM(L):

1. (zf-y)z’ = ya.
2. xf - yxf = ya.
3. (zra 1Ba-ya) -z =1y.

4. P a"1Pa- (ya-x) =y.



Proof
This is achieved by simply using the four equivalent identities that define a CIPQ(CIPL):

Corollary 2.3 Let (L,-) be a quasigroups(loop) with holomorph H(L). If H(L) is a
CIPQ(CIPL) then, the following are equivalent to each other

~

(BV,,ad,,J,) € AUT(L)Y o, 3 € AUM(L).
2. (B~ \, ady, Jy) € AUT(L) Y o, B € AUM(L).
3. (x8-y)z” = ya.

4. 1B yr = ya.

5. (o~ 'Ba-ya) - =y.

6. 2o~ Ba- (yo 1) =y.

Hence,
(8,0, 1), (e, 8,1), (8,1, ), (I,cr, B) € AUT(L) V o, p € AUM(L).

Proof
The equivalence of the six conditions follows from Theorem 2.3 and the proof of Theorem 2.1.
The last part is simple.

Corollary 2.4 Let (L, ) be a quasigroup(loop) with holomorph H(L). If H(L) is a
CIPQ(CIPL) then, L is a flexible unipotent CIPQ(flexible CIPL of exponent 2).

Proof

It is observed that J, = J\ = I. Hence, the conclusion follows.

Remark 2.1 The holomorphic structure of loops such as extra loop, Bol-loop, C-loop, C'C-
loop and A-loop have been found to be characterized by some special types of automorphisms
such as

1. Nuclear automorphism(in the case of Bol-,CC- and extra loops),

2. central automorphism(in the case of central and A-loops).

By Theorem 2.1 and Corollary 2.1, the holomorphic structure of AIPLs and CIPLs is char-
acterized by commutative automorphisms.

Theorem 2.4 The holomorph H(L) of a quasigroup(loop) L is a Smarandache
AIPQ(AIPL) or CIPQ(CIPL) if and only if SAUM(L) = {I} and L is a Smarandache
AIPQ(AIPL) or CIPQ(CIPL).



Proof

Let L be a quasigroup with holomorph H(L). If H(L) is a SAIPQ(SCIPQ), then there
exists a S-subquasigroup Hg(L) C H(L) such that Hg(L) is a AIPQ(CIPQ). Let Hg(L) =
G x SAUM (L) where G is the S-subquasigroup of L. From Theorem 2.2, it can be seen
that Hg(L) is a AIPQ(CIPQ) if and only if SAUM (L) = {I} and G is a AIPQ(CIPQ). So

the conclusion follows.

Corollary 2.5 The holomorph H(L) of a loop L is a SKL or SBRL or SKWL if and only
if SAUM(L) ={I} and L is a SKL or SBRL or SKWL.

Proof
Let L be a loop with holomorph H(L). Consider the subloop Hg(L) of H(L) such that
Hg(L) = G x SAUM (L) where G is the subloop of L.

1. Recall that by [Theorem 5.3, [9]], Hg(L) is an A-loop if and only if it is a Smarandache
Central-holomorph of L and G is an A-loop. Combing this fact with Theorem 2.4,
it can be concluded that: the holomorph H(L) of a loop L is a SKL if and only if
SAUM (L) = {I} and L is a SKL.

2. Recall that by [25] and [1], Hs(L) is a Bol loop if and only if it is a Smarandache
Nuclear-holomorph of L and G is a Bol-loop. Combing this fact with Theorem 2.4,
it can be concluded that: the holomorph H(L) of a loop L is a SBRL if and only if
SAUM(L) = {I} and L is a SBRL.

3. Following the first reason in 1., and using Theorem 2.4, it can be concluded that: the
holomorph H(L) of a loop L is a SKWL if and only if SAUM(L) = {I} and L is a
SKWL.
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