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Abstract 
 
In the current paper, the internal Schwarzschild solution is examined in the context of a 
cosmological model.  The model gives a vacuum solution where the center of gravity is 
an infinitely dense point in time rather than space.  The internal metric is dynamic and 
describes two phases.  In the first phase, space starts off infinitely sparse and then 
collapses to infinite density in a finite proper time measured by an inertial observer.  In 
the second phase, the space expands out from this infinitely dense state (the temporal 
center of gravity) back to the zero density state.  The geodesics remain well defined when 
traversing this infinitely dense state.  It is shown that the second phase corresponds to 
current observations of the expansion history of our Universe, namely that the initial 
expansion is infinitely fast, and then the expansion slows for some time followed by an 
accelerated expansion.  With a simple coordinate change we get a metric resembling the 
FRW metric for flat space with a time dependent scale factor.  It is shown that the 
singularity at 𝑟 = 0 can be interpreted as a point in time where the geodesics reverse 
sharply, causing the expansion and collapse of the Universe to cycle. 
 
 
Expansion and Collapse Along a Timelike Dimension 
 
The current Big Bang model of the Universe says that the Universe expanded from an 
infinitely dense gravitational singularity at some time in the past.  Current cosmological 
data suggests that this expansion was slowing down for some time, but is now continuing 
to expand at an accelerated rate.  The Cosmological Principle suggests that from any 
reference frame in the Universe, the mass distribution is spherically symmetric and 
isotropic.  In this paper, we will model the Universe as a spherically symmetric 
distribution of particles that are unaffected by each other’s local gravitational fields (they 
are far enough apart that their local gravitational fields are negligible) that expand from 
and recollapse to gravitational singularities located at points in time rather than space.   
 
In simple Newtonian mechanics, if we throw an apple straight up in the air with velocity 
!"
!"

, the velocity will continuously decrease until at some height !"
!"
= 0, at which point the 

apple will reverse direction and fall with increasingly negative !"
!"

 until it returns to the 
ground. One important fact about this projectile motion example is that at maximum 
height, !"

!"
= ∞, meaning that for the instant when the velocity is zero, points in space are 

infinitely far apart in time since at that moment, there is no motion through space.  The 
relevance of this will be clear when we examine the mathematics of freefall in the 
cosmological time dimension. 
 



To analyze the spherically symmetric Universe freefalling through the time dimension, 
we need the Schwarzschild solution where the radial coordinate is the timelike 
coordinate.  Fortunately, the interior (𝑟 < 1 ) solution of the Schwarzschild field 
(throughout the paper, we will work in units with Schwarzschild radius equal to 1) gives 
us precisely that.  For 𝑟 < 1, the signature of the Schwarzschild metric flips and the 
radial coordinate becomes a dimension measuring time while the t coordinate becomes a 
dimension measuring space.  So let us take the center of our galaxy as the origin of an 
inertial reference frame.  We can draw a line through the center of the reference frame 
that extends infinitely in both directions radially outward.  This line will correspond to 
fixed angular coordinates (𝜃,𝜙)  in the positive direction and (𝜃 + 𝜋,𝜙 + 𝜋)  in the 
negative direction.  There are infinitely many such lines, but since we have an isotropic, 
spherically symmetric Universe, we only need to analyze this model along one of these 
lines, and the result will be the same for any line.   
 
The radial distance in this frame is kind of a compound dimension.  It is a distance in 
space as well as a distance in time.  The farther away a galaxy is from us, the farther back 
in time the light we currently receive from it was emitted.  Fortunately the 𝑟 < 1 
spacetime of the Schwarzschild solution plotted in Kruskal-Szekeres coordinates 
provides us with a method to understand this radial direction.  Figure 1 shows the 𝑟 < 1 
solution on a Kruskal-Szekeres coordinate chart where, in this model, the hyperbolas of 
constant r represent spacelike slices of cosmological time and the rays of t represent 
radial distances from us, such that each galaxy will move inertially along a particular t 
ray, where the greater the magnitude of t, the greater the distance from us.  Since we 
chose our galaxy as the origin of the frame, our inertial worldline corresponds to the 
𝑡 = 0 line down the center of the diagram. 
 

 
Figure 1 – Freefall Through Cosmological Time1 

 

																																																								
1	Diagram	modified	from:	“Kruskal	diagram	of	Schwarzschild	chart"	by	Dr	Greg.	Licensed	under	CC	BY-SA	3.0	via	Wikimedia	
Commons	-	
http://commons.wikimedia.org/wiki/File:Kruskal_diagram_of_Schwarzschild_chart.svg#/media/File:Kruskal_diagram_of_Sch
warzschild_chart.svg	



So we will use Figure 1 to describe the freefall of the galaxies through the cosmological 
time dimension.  The worldlines will emerge from the uppermost hyperbola with some 
proper velocity in the cosmological time dimension, labeled by r, continue inertially 
along lines of constant t to the center of the diagram where the proper velocity in the 
cosmological time dimension is zero, then continue to follow lines of constant t in the 
lower section until they reach the lower hyperbola where their proper velocity through 
the cosmological time dimension will increase to the same velocity they had when they 
emerged from the upper hyperbola. 
 
To properly analyze the dynamics at play, we need to examine the Schwarzschild metric 
for 𝑟 < 1.  The complete metric is given by: 
 
   𝑑𝜏! = !

!!!
𝑑𝑟! − !!!

!
𝑑𝑡! − 𝑟!𝑑Ω! (1) 

 
Expressions for the proper time interval along lines of constant t and Ω and the proper 
distance interval along hyperbolas of constant r and Ω: 
 
  𝑑𝜏! = !

!!!
𝑑𝑟! (2) 

 
  𝑑𝑠! = !!!

!
𝑑𝑡! (3) 

 
The forms of Equations 2 and 3 we would like to examine are given by: 
 

  !"
!"
= ± !!!

!
 (4) 

 

  !"
!"
= ± !!!

!
 (5) 

 
First we should notice that neither Equation 4 nor 5 depend on the t coordinate.  This is 
good because the t coordinate marks the position of other galaxies relative to ours.  Since 
all galaxies are freefalling in time inertially, the particular position of any one galaxy 
should not matter.  The proper velocity and proper distance only depends on the 
cosmological time r.  At 𝑟 = 0, corresponding to the beginning and end points of the 
freefall, the proper velocity is infinite and the proper distance to any point is infinite.  So 
when the worldlines emerge from the upper hyperbola, they do so at the speed of light 
through the time dimension.  Thus their proper velocity through time is infinite there.  If 
something is travelling through space at the speed to light, the proper distance between 
points in space is zero.  In this case, since we have infinite proper velocity in the time 
dimension, the proper distance between points in space will be infinite, because you 
would traverse an infinite amount of time in order to move through an infinitesimal 
amount of space.  Thus, when the worldlines emerge from the singularity, they do so with 
infinite separation, as though space was infinitely expanded. 
 



When 𝑟 = 1, Equations 4 and 5 are both 0.  Here, the proper velocity through time is now 
zero.  This is like our previous example of throwing the apple in the air.  In that case, it 
was noted that at maximum height, !"

!"
= ∞ which reflected the fact that for the instant 

where the apple wasn’t moving, the time between points in space would be infinite since 
at that instant, the apple’s velocity through space was zero.  In this case, it is our proper 
velocity in time that is zero.  So at that instant, we are no longer moving through time and 
therefore all points in space are coincident.  Picture a t vs. x graph with a line of constant 
t.  All points x will be at the same time.  This is analogous to being at rest in space where 
all points of time essentially converge to a single point in space.  So this why the proper 
distance goes to zero there and why the lines of t in Figure 1 converge at that point; there 
is nothing singular there and physics does not break down, it is just an instant where our 
velocity through cosmological time goes to zero as our speed through cosmological time 
changes from negative to positive or vice versa.  
 
So we see that during the first phase of this cycle, where the worldlines begin with an 
infinite proper velocity through time and ending with zero proper velocity through time, 
it appears as though space started out infinitely expanded and then contracted completely.  
The second half of the cycle will just be the reverse of this, where space will appear to 
expand out from a point in time and expand out infinitely. 
 
Let us now examine redshifts during these two phases.  A plot of !"

!"
 vs. r during the 1st 

phase is given in Figure 2 below: 
 
 

 
Figure 2 - !"

!"
 vs. r During 1st Phase 

 
In Figure 2, the right dot represents an inertial observer at some time during the 
expansion phase.  The left dot represents the spot from which a distant signal was emitted 
which the black dot is receiving at its present time, so the left dot is in the right dot’s past.  
Since !"

!"
 represents proper velocity through time, we can use it to determine relative 

velocities and infer the trends of redshift from that.  Notice that in this case !"
!"

 of the left 

dot is greater than !"
!"

 of the right dot.  Thus, these two events have a negative relative 
velocity.  This means that the signal the right dot receives will be blueshifted when she 

	

	



receives it.  So during the 1st phase, past signals will be blueshifted in the frame of 
present inertial observers and therefore the Universe will effectively heat up as the proper 
velocity through time slows to a stop at 𝑟 = 1.  Also notice from Figure 1 that all past 
signals emitted during the expansion phase will reach the entire width of the Universe by 
the end of expansion (in Figure 1, light signals travel along 45-degree lines).  Given this, 
we can logically conclude that what we think of as the Big Bang is actually the end of the 
first phase of the Universe and the Cosmic Microwave Background is all the unabsorbed 
light emitted during this phase. 
 
A plot of !"

!"
 vs. r during the 2nd phase is given in Figure 3 below: 

 

 
Figure 3 - !"

!"
 vs. r During 2nd Phase 

 
In Figure 3, time moves forward as we move right to left along the diagram.  So the 
leftmost dot represents us at our current cosmological time in the Universe.  The other 
dots represent galaxies at various distances from us (the farther they are to the right of the 
diagram, the greater the distance from us) whose signals we are currently receiving.  
Since the signals we receive now were emitted in the past, they were emitted from 
galaxies with a lower proper velocity than we have currently.  Thus, the signals should all 
be redshifted since our proper velocity is currently greater than the velocities of the 
galaxies when they emitted the signals and the magnitude of the redshift should be 
proportional to the difference in velocity.  Now note that in the region where the other 
dots are, the difference in velocity of the two more distant emitters is less than the 
difference in velocity of the closer emitters.  This difference means that when we get the 
signals from the galaxies, the difference in redshift for the two closer galaxies will be 
greater than the difference in redshift from the two more distant galaxies, which looks 
like accelerated expansion.  But on this graph, there is actually an inflection point at 
𝑟 = 0.75.  That means that from 𝑟 = 1 to 𝑟 = 0.75, it would appear as if the Universe is 
expanding, but the expansion is slowing down.  Then from 𝑟 = 0.75 to 𝑟 = 0, the 
Universe will look like it is expanding at an accelerated rate. This change from a 
negatively accelerating expansion to a positively accelerating expansion is consistent 
with current cosmological data.  Our increasing proper velocity through cosmological 
time causes this spatial expansion as we accelerate through time just as our decreasing 
velocity through time caused a contraction of space during the 1st phase.  Note that 
Equation 5, which describes the proper distance between coordinate points at a given r, 
has the same form as the function plotted in Figures 2 and 3 such that the rate of increase 
in proper distance decreases from 𝑟 = 1  to 𝑟 = 0.75  and then increases afterwards.  

		
		

	



Thus, from this equation, we can see that the rate at which wavelengths of light are 
stretched will first decrease and then increase, just as was discussed above.  A plot of 
!
!"

!"
!"

, which is the rate of change of proper distance between coordinates (i.e. 
expansion rate), is shown in Figure 4 below, demonstrating this expansion profile. 
 

 
Figure 4 - !

!"
!"
!"

 vs. r 
 
Figure 5 shows the past light cone of an inertial observer at a given time during the 2nd 
phase: 

 
Figure 5 – Past Light Cone of Inertial Observer During the 2nd Phase2 

 
Notice that at all times during the second phase, the past light cone includes the entire 
width of the Universe.  This means that the observable Universe is the entire Universe 
and therefore the Universe has a finite mass.  From this we can conclude that the 
Schwarzschild radius of the entire Universe (𝑟!, which we have so far set to 1 in the 
current paper) is the Schwarzschild radius calculated from the mass of the observable 
Universe.  We see however from Equation 5 that the proper distance to the edge of the 
observable Universe when 𝑟 < 1 is infinite (because t ranges from negative infinity to 
infinity.  This is also evident by looking at the future light cones of observers in the 2nd 

																																																								
2	Diagram	modified	from:	“Kruskal	diagram	of	Schwarzschild	chart"	by	Dr	Greg.	Licensed	under	CC	BY-SA	3.0	via	Wikimedia	
Commons	-	
http://commons.wikimedia.org/wiki/File:Kruskal_diagram_of_Schwarzschild_chart.svg#/media/File:Kruskal_diagram_of_Sch
warzschild_chart.svg	



phase).  This is analogous to the distance to 𝑟 = 1 for the external solution described in 
[1] where, for an observer at rest in a gravitational field, it appears as though the distance 
to 𝑟 = 1 is finite even though an observer would need to traverse an infinite amount of 
time and space to reach 𝑟 = 1. 
 
We can calculate the duration of each phase of the Universe in the frame of an inertial 
observer by integrating Equation 4 from 0 to 1.  This integral yields a value of !

!
, but this 

is in units where the Schwarzschild radius is 1.  The total time for each phase is therefore: 
 
  𝜏 = !

!
𝑟! (6) 

 
Where 𝑟! is measured in light-years and 𝜏 is in years (or equivalent units where the speed 
of light is 1).  Therefore, the 1st phase of the Universe (the time before what we currently 
call the Big Bang) must have lasted for billions of years during which the Universe 
heated up.  So the total time, in natural units, for an inertial observer to get from the top 
hyperbola, down to the bottom hyperbola and back to the top is the circumference of a 
circle whose radius is the Schwarzschild radius of the observable Universe. 
 
A plot of 𝜏 vs. r for both phases is given in Figure 6 below.  It illustrates well the 
relationship to typical spatial projectile motion. 
 

 
Figure 6 - 𝜏 vs. r for One Complete Cycle 

 
As the Universe reaches the end of the 2nd phase, all worldlines will become light-like, at 
which point, it should be expected that the cycle would start anew.  In fact, it is known 
that the curvature at 𝑟 = 0 is infinite.  We can explain this by saying that the worldlines 
reverse direction at 𝑟 = 0 as if the spacetime is folded there and the worldlines go up one 
side and down the other (the infinite curvature is at the fold).  So we should expect that in 
Figure 1, a cycle of the Universe will begin with worldlines emerging from 𝑟 = 0, 
continue to 𝑟 = 1, then continue down the bottom of the diagram (region IV in Figure 1) 
back to 𝑟 = 0, then reverse and go back up, starting the next cycle.  Thus, the Universe 
should perpetually cycle like an eternal gravitational spring. 
 
What we see from this paper as well as [1] is that the Schwarzschild solution describes 
two different scenarios, neither of which is the so-called black hole.  The solution for 
𝑟 > 1 describes the gravitational field when the gravitational source is a location in space 
for all time whereas the solution for 𝑟 < 1 describes the gravitational field when the 



gravitational source is a location in time for all space, where the gravitational center is at 
𝑟 = 1 in both cases.  This is why the metric signature flips at 𝑟 = 1. 
 
 
Radial Coordinate Change and the FRW Metric 
 
We can make a coordinate change to make the metric resemble the FRW metric, which is 
the currently accepted metric for the Universe at-large.  Basically, we want a radial 
coordinate whose interval is equal to the proper time interval of the inertial observer at 

rest (𝑡 = 𝑐𝑜𝑛𝑠𝑡).  Thus, we can use Equation 4 to define T such that !"
!"
= ± !

!!!
.  (+ on 

one the top half of Figure 1, - on the bottom or vice versa) Substituting this into Equation 
1, we get the following: 
  𝑑𝜏! = 𝑑𝑇! − !!!

!
𝑑𝑡! − 𝑟!𝑑Ω! (7) 

 
In these coordinates, the proper time interval of the inertial observer at rest is just 𝑑𝑅.  
The t and Ω intervals are multiplied by time-dependent functions (the r coordinate is a 
timelike coordinate) that play the role of the scale factors in the FRW metric for flat 
space.  The T coordinate ranges from 0 at 𝑟 = 1 to ± !

!
 at 𝑟 = 0.  As we can see, the scale 

factor squared in front of the 𝑑𝑡! is just !"
!"

!
 from Equation 4, which we have found can 

be interpreted as a proper velocity through time for an inertial observer. 
 
 
Figure 7 is a graph of T vs. 𝜏 for an observer at rest, which shows the infinite curvature at 
𝑇 = ± !

!
: 

 
Figure 7 - T vs. 𝜏 

 
 
A Note on Galaxy Rotation 
 
It is well known that the measured rotational velocities of the stars in the galaxies do not 
follow the Newtonian !

!!
 law.  It has been found that the stars at the edge of the galaxy are 

revolving faster than is expected as though the gravity of the galaxy is stronger than what 
has been calculated based on the visible matter.  The leading hypothesis used to explain 
this is that there exist unknown particles that interact with ‘normal’ matter only 

T 
π
2 

0 

−
π
2 

𝜏 



gravitationally.  Direct evidence for these particles has not been found as of the writing of 
this paper.  Consider Figure 8 as a possible explanation for this phenomenon in light of 
the arguments given in this paper regarding the divergence of inertial worldlines during 
the 2nd phase: 

 
Figure 8 – Star Geodesics in a Galaxy At Different Cosmological Times 

 
If when the galaxies formed, the stars were clustered in a tight ring around the center of 
the galaxy (left side of Figure 8), they would all have comparable orbital velocities.  Then 
as cosmological time progressed, the space was stretched out, causing the geodesics 
themselves to stretch, such that the radii of their orbits become much larger, giving us the 
view of the galaxies we see today (right side of Figure 8).  In this case, their orbital 
velocities would remain unchanged because it is the underlying space that has stretched 
their radii and therefore we would find that the drop off in velocity with distance could be 
very small.  The orbital geodesics therefore tend to spiral outward over time while 
maintaining their orbital velocities.  This hypothesis clearly needs more detailed analysis 
and may be flawed in its reasoning, but it is presented here to point out a possible 
connection. 
 
 
On the Quantum Entanglement of Cycles 
 
The following is a rough hypothesis regarding quantum entanglement between cycles of 
the Universe.  The Everett interpretation of Quantum mechanics asserts that every 
possible outcome of wavefunction measurement is realized in parallel Universes.  If we 
consider a wavefunction of two entangled particles with two possible states, it has been 
found experimentally that when measuring the states of both entangled particles, one 
particle will be found in one of the states while the other will necessarily be found in the 
other state.  In other words, with the entangled particles, both possible states of the 
wavefunction will be realized when the particles are measured, even though the 
measurement outcome of a single particle will appear random.  It is perhaps the case that 
the infinite cycles of the Universe are quantumly entangled such that a given cycle 
corresponds to one set of possible outcomes of all quantum measurements of all the wave 
functions.  When combining all of the infinite cycles, we might find that all possible 
outcomes of all wavefunction measurements are realized where each set of outcomes 
corresponds to a particular cycle of the Universe.  Figure 9 depicts the cycles in a way to 
visualize this entanglement hypothesis: 
 

				 		 	 	



 
Figure 9 – Quantum Entanglement Between Cycles 

 
For each cycle, when 𝑟 = 1, the Universe is infinitely dense and infinitely hot.  It may be 
here that the cycles become entangled.  In Figure 9, the central circle represents the 𝑟 = 1 
state of the Universe.  From there, each cycle is represented by the spokes extending out 
to 𝑟 = 0 and back.  So we can imagine that all cycles are common at 𝑟 = 1, where they 
become entangled, and then each individual cycle will represent one set of possible 
outcomes of the wavefunctions.  Thus, the outcomes will appear random during any one 
particular cycle, but in fact the outcomes are determined, where a given set of outcomes 
labels a particular cycle and all possible outcomes are realized when one looks at all the 
cycles combined.   
 
Perhaps a better way to look at it is with Figure 10: 
 

 
Figure 10 – Quantum Branching 

 
At the top of Figure 10, we have the Big Bang at 𝑟 = 1, where all cycles are identical 
(infinitely dense, infinitely hot).  As we move toward 𝑟 = 0 , various quantum 
measurements are made, where the outcome of each measurement corresponds to a 
branch on the diagram.  When we get to 𝑟 = 0, all cycles will again be identical, where 
they are all infinitely sparse and infinitely cold.  As we can see, if we choose any one of 
the lines connecting to 𝑟 = 0, we can deterministically trace back a unique path to 𝑟 = 1.  
Thus, each line connecting to 𝑟 = 0 would represent one of the possible cycles.  We see 

	 	r = 1 

r = 0 

	

		

	 		 	
		 						

		 								

	

			

r = 1 

r = 0 



that Figure 10 appears non-deterministic when moving from 𝑟 = 1 to 𝑟 = 0, yet still 
allows for each cycle to represent a unique, determined set of outcomes. 
 
 
References 
 
 [1]  Laforet, C.: Integration Over Manifolds with Variable Coordinate Density.  
 


