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Line-Surface Formulation of the

Electromagnetic-Power-based Characteristic
Mode Theory for Metal-Material Combined

Objects — Part 11

Renzun Lian

Abstract—In the Part | of Line-Surface formulation of the
ElectroMagnetic-Power-based Characteristic Mode Theory for
Metal-Material combined objects (LS-MM-EMP-CMT), the
relevant fundamental principle had been established, and some
very valuable complements and improvements are done in this
Part II.

In this Part 11, the traditional surface equivalent principle for a
homogeneous material body whose boundary is only constructed
by a closed surface is generalized to the line-surface equivalent
principle of a homogeneous material body whose boundary can
include some lines and open surfaces besides a closed surface; a
new line-surface formulation of the input/output power operator
for metal-material combined objects is given, and the new
formulation is more advantageous than the formulation given in
Part I; some more detailed formulations for establishing
LS-MM-EMP-CMT are explicitly provided here, such as the
formulations corresponding to the decompositions for currents
and their domains and the formulations corresponding to variable
unification.

In addition, a new concept intrinsic resonance is introduced in
this paper, and then a new Characteristic Mode (CM) set,
intrinsic resonant CM set, is introduced into the EMP-CMT
family.

Index Terms—Characteristic mode (CM), electromagnetic
power, input power, interaction, intrinsic resonance, line-surface
equivalent principle, metal-material combined object, output
power, surface equivalent principle, the conservation law of
energy, the decompositions for currents and their domains,
variable unification.

. INTRODUCTION

HE fundamental principle of the ElectroMagnetic-Power-
based Characteristic Mode Theory (EMP-CMT) for
Metal-Material combined object (MM-EMP-CMT) was
established in [1]-[2], and the object was constructed by metal
line, metal surface, metal volume, and material body. The line
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and surface electric currents on metal line, metal surface, and
the boundary of metal volume were utilized to express the
various fields and powers related to metal part in [1]-[2], and
the total field on material body and the equivalent surface
currents on material boundary were utilized to express the
various fields and powers related to material part in [1] and [2]
respectively, so the formulations provided in [1] included line,
surface, and volume variables, but only the line and surface
currents appeared in [2]. Based on this, the [1] and [2] can be
respectively called as the Line-Surface-Volume formulation of
MM-EMP-CMT (LSV-MM-EMP-CMT) and the Line-Surface
formulation of MM-EMP-CMT (LS-MM-EMP-CMT).

For LS-MM-EMP-CMT, the fundamental principles to
decompose various currents and the domains on where currents
exist, to select basic variables and unify variables, and to
discretize input/output power operator and construct
Input/Output-power-based Characteristic Mode (InpCM/
OutCM) set had been carefully discussed in [2] (The definitions
for the terminologies “basic variables” and “to unify variables /
variable unification” can be found in [3]). However, some other
valuable topics related to LS-MM-EMP-CMT were not
carefully considered in [2], for example,

1) the formulations corresponding to variable unification
were not explicitly provided in [2];

2) the case that the metal line is completely or partially
submerged into the material body was not included in [2];

3) when the material boundary includes some lines and open
surfaces besides a closed surface, the equivalent-current-based
source-field relationships were not explicitly given in [2];

4) the arguments of the input/output power operator used in
[2] are only line and surface currents, but there are some
volume integrals in the operator. It is still a valuable topic how
to obtain an input/output power operator which only includes
line and surface currents and integrals but does not include any
volume integral (i.e, how to establish a “real”
LS-MM-EMP-CMT).

As a further supplement to the previous Part | of
LS-MM-EMP-CMT, this Part 11 mainly focuses on completing
and improving the Part | from the aspects mentioned above. At
the same time, the traditional surface equivalent principle for a
homogeneous material body whose boundary is a closed
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surface is generalized to the line-surface equivalent principle
for a homogeneous material body whose boundary can include
some lines and open surfaces besides a closed surface. In
addition, a new concept intrinsic resonance is introduced in this
paper, and then a new CM set, intrinsic resonant CM set, is
introduced into the EMP-CMT family.

This paper is organized as follows. For a general
metal-material combined object illustrated in Fig. 1, the
decompositions for currents and their domains and the
line-surface equivalent principle are provided in Sec. Il; the
selection for basic variables and the source-field relationships
are discussed in Sec. IllI; a new and “real” line-surface
formulation of input/output power operator is provided in Sec.
IV; the various power-based CM sets are constructed in Sec. V;
in Sec. VI, the intrinsic resonance and the relevant concepts are
introduced. In Sec. VII, the general formulations provided in
Secs. 11-V are specialized to the special forms corresponding to
some typical examples, and some valuable engineering
applications corresponding to these typical examples are
simply discussed. Sec. VIII concludes this paper.

In what follows, the e!* convention is used throughout, and
the metal-material combined object is simply called as
scatterer.

Il. To DECOMPOSE CURRENTS AND THEIR DOMAINS AND TO
GENERALIZE SURFACE EQUIVALENT PRINCIPLE TO
LINE-SURFACE EQUIVALENT PRINCIPLE

The scatterer focused on by this paper is constructed by the
metal line part L™, the metal surface part S™ , the metal
volume part V™ , and the material volume part V™ , and their
boundaries are respectively denoted as L™, a5s™, av™, and
ov™ | and a typical example is illustrated in Fig. 1.

When an external excitation F™ incidents on the scatterer,
the line electric current J', the surface electric current Jg, ... ,
and the surface electric current J:,, ., Will be excited on the
L™, s™  and ov™ respectively; the volume electric current
J* and the volume magnetic current M*™ will be excited on
the V™ . The summation of J:, ., and J3. . is simply
denoted as J°, i.e., J°=J5ua +Joww - These scattering
currents {J',J°} and {J**,M""} will generate scattering field
F*=, and the summation of F™ and F** is total field F*,i.e.,
F® =F" +F*  |n fact, the F** can be divided into two parts,
the Fi generated by metal-based currents {J',J°} and the
F= generated by material-based currents {J**,M""} , and
F** = F** + F<* based on superposition principle [4]. For the
convenience of this paper, the field F™ —F< on intV™ is
denoted as fi° , ie, fr(F)=F*(F)-F=(r) for any
Feintv™ , here F=E,H and correspondingly f =eh, and
the symbol “intv™ ” represents the interior of domain v™

[5].

A. Some restrictions for L™ ,
practical point of view

From a purely mathematical point of view, L™ ccIL™ , and
S™cclS™ , and V™ cclv™ , here the symbol “ cl ”
represents the closure of set [5]. However, from a practical

s™ and av™ , from a

point of view it is restricted in this paper that

Restrction for L™ : L™ = clIL™ (1.2)
Restrction for S™ :  S™ = clS™ (1.2)
Restrction forv™: V™ = clv™ (1.3)

and these restrictions can be vividly understood as that there
does not exist any “point-type hole” on L™, “point-type hole
and line-type hole” on s™ , and “point-type hole, line-type
hole, and surface-type hole” on v™ . In addition, the
restrictions (1.1) and (1.2) imply that L™ =oL"™ , and
S™ =85™ in three-dimensional Euclidean space R®. Based
on the same consideration, it is also restricted in this paper that

Restrction for V™ : clV™ \V™ =gv™ (L™ Us™ Uav™) (1.4)

and the restriction (1.4) can be vividly understood as that there
does not exist any air-filled “point-type hole, line-type hole,
and surface-type hole” on v™ ; the “line-type hole” on v™
originates from the submergence of L™ into V™ , and the
“surface-type hole” on V™ originates from the submergence
of S™ into V™ . In summary, the “holes” on V™ , which is
illustrated in Fig. 1, are metal-filled instead of being air-filled.
In addition, it is also restricted in this paper that

Restrction for L™ : L™ = (:I(Lm‘*‘\(smEI Uvme‘))

CI(Smel \V met)

(1.1)

Restrction for S™ :  S™ = (1.29
The restriction (1.1") is equivalent to saying that the intersection
between L™ and S™ Uv™ can only be some discrete points,
and cannot be any line; the restriction (1.2") is equivalent to
saying that the intersection between S™ and V™ can only be
some discrete points or lines, and cannot be any surface. The
rationality of restrictions (1.1) and (1.2") had been carefully
explained in [2], and it will not be repeated here.

/Séﬂe( U S[TEI — H — avf%vvet U (-}vonet\

Sums\t =5 met \int (S met UV mat oV met \int (V met Uv mat ) _ avomet
)

[ ) “
“e S met ﬂ int ( S met UV mat ): S;;vet E]V‘r‘net -0V met ﬂ int (V met UV mat /‘
|
|

vV mat

LV;;( m int(LrHe( UV mat ) — L‘\l\‘el
Lgvcl _ met \ mt ( mel UV mat )

A
(

Fig. 1. The metal-material combined object considered in this paper, and the
decomposition for its boundary.
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In the following Secs. 11-B and 11-C, the decompositions for
currents and their domains are done to prepare for the variable
unification in Sec. l11-A.

B. The decompositions for domains L™, s™ , and ov™ and
the decompositions for currents J' and J°

The L™, s™, and ov™ can be respectively decomposed
as follows [1]-[2]

Lmet — Lrget U Lﬂmet (2)
S met  _ S[;net U SrTet (3)
av met _ Gvomet U avﬁmel ( 4)

here the Lg* and L;* are defined as

Lgmt é Lmet \ int(Lmet Uvmal) (51)

LHEt é Lmel n int(LmﬂUVmal) (52)
and the s;® and Si* are defined as

S 2 8™\ int(S™ UV™) (6.1)

S(Tet A Smet ﬂ int(smet Uvmat) (62)
and the ov,™ and oV are defined as

VI 2 V™ \int(V™ UV ™) (7.1)

avnmet é a met ﬂ |nt( met Uvmat) (72)

The L3 and LA* can be vividly understood as the part which is
not submerged into V™ and the part which is submerged into
v™ and the Sy and S3* can be similarly explained; the
oV, and av™ can be vividly understood as the part which

contacts with air and the part which contacts with material body.

In addition, it is obvious that

"Ny =9 ®)
SN S™ = @ )
NNV = @ (10)

Based on (2)-(4) and (8)-(10), the scattering electric currents
J' and J* can be correspondingly decomposed as follows

JU(F) = Jy(P)+IN(F) . (Fel™) (12)
Jo(F) = J3(F)+J3(T) (FeS”‘e‘U(ﬂV"‘e’) (12)
here the J; and J, are defined as
Lo [T (Fe)
‘]O(r) - { 0 1 (FELHet) (131)
S A 0 , (FeLg'e‘)
In(F) = {jl(r) L (Felm) (13.2)

and the J; and J3 are defined as

v a [I5(F) L (FesgUavy™)

NOE 14.1

\]O(r) { O ’ (resr?exU6Vnme[) ( )

coona | 0O (Fes™Uav™)

HOERE 14.2

(1) {Js(f)  (Fesf™uavi™) (14.2)
C. The decomposition for ov™ and the line-surface

equivalent principle for a homogeneous material body whose
boundary includes some lines and open surfaces besides a
closed surface

As pointed out in (1), there does not exist any air-filled
“point-type hole, line-type hole, and surface-type hole” on v™ ,
so the ov™ can be decomposed into the following four parts

Boundary Point Part Ny = O (15.1)
Boundary Line Part oVt o= LY (15.2)
Boundary Open Surface Part : V5. = SO (15.3)
Boundary Closed Surface Part : 0V, o, = OV ™ \(LY'USA™) (15.4)

It is obvious that the above four parts are pairwise disjoint, and
that

(a) the boundary point part (i.e., the metal-filled “point-type
hole” on V™ ) does not exist on V™", based on the restrictions
in (1);

(b) the boundary line part (i.e., the metal-filled “line-type
hole” on V™) originates from the submergence of metal line
into material body, and it is constituted by some lines only, and
it does not include any surface and discrete point;

(c) the boundary open surface part (i.e., the metal-filled
“surface-type hole” on V™) originates from the submergence
of metal surface into material body, and it is constituted by
some open surfaces only, and it does not include any line,
closed surface, and discrete point;

(d) the boundary closed surface part originates from the
contact between material body and air, the contact between
material body and metal line (the metal line is not submerged
into material body), the contact between material body and
metal surface (the metal surface is not submerged into material
body), the contact between material body and metal body. The
boundary closed surface part does not include any line, open
surface, and discrete point. In fact, the boundary closed surface
part oV . can be further decomposed as follows

closed su

aV mat

closed surf

— avomal U avmmel (16)

here the oV is defined as (7.2), and the ov,™ is defined as
follows

mat A mat met
8V() =0 closed surf \o n

— (6V mat \(meel U Sget )) \ avmmet
— av mat \(anel U Sget U avnmet)

17
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If the union of & Dg:;w_ and oV, . isdenoted as oV g (i.e_.,
the  whole material boundary surface part s
Nt =Nomars UNameg e ), the whole material boundary

ov™ can be detailedly decomposed as follows

mat mat A\ mat
N point Mine Naur

o —_—
— @ U Lrn%et U SrTet U 6 mme‘( U a 0mat (18)
— I Z——

mat ~\/ mat
Nopen surf Velosed surf

a mat

1) the equivalent surface currents on oV e, .
avomat U avﬂmet )
The equivalent surface currents {J3 MSE

closed surf * """ closed surf
boundary closed surface part oV~ . are as follows

(i.e,, on

} on

JSE
J closed surf

) (19.1)
) (19.2)

eV, closed surf

(F) = J5°(F) +35 () . (Fedva
Mcslgsedsurf (F): MOSE(F)"'MOSE&M(F) y (Féa\/mm

oV, closed surf
in which the {J5%,M"} are defined as [3], [6]-[8]

3E )
M3 (F)

[ ()X H™(F)], . (Fedv™) (20.1)
[E® (M) x A, (F)] . (Feovy™) (20.2)

11>

r'—r

and the {JjE

Vﬁlvet ’

MSVEm} are defined as [2]

I (F) 2[R, (F)xH (M), (Feavi™) (21.1)
M (F) 2 [E*(F)xf, 0 (F)]. . (Feav™) (21.2)

r'-r

here " eintv™ , and 1" approaches to 7 as illustrated in the
subscripts in (20)-(21); A, is the direction vector pointing to
intv™ . It should be emphasized that the equivalent surface
currents defined in [6] equal to the {-J5¥,-M;*}, because the
direction vector used in [6] is —i instead of n

—mat —mat *

2) the equivalent surface currents on oV
si*)

The equivalent surface currents on boundary open surface
part Si can be defined as follows [2]

(ie., on

(resp)  (221)

(resr) (222

herer,,r eintv™ , and ¥. and 7 respectively approach to r
from the plus and minus sides of S7* [2]. The {J%,M*}| and
{J5,M*} can be more detailedly illustrated as the Fig. 2.

Because of superposition principle [4], the fields generated
by both {J¥,M¥} and {J**,M*| are identical to the fields
generated by {JF+JF, MF+M*} , and then the
{JF+J%, M +M*} is treated as a whole in this paper. In
addition, considering of that both the domain of {J*,M:*} and
the domain of {J**,M*} are s/ and that i (F)=-n,(F) for
any 7S, the surface equivalent currents on the boundary
open surface part S7* can be defined as follows

ng _ Smet mint(smel Uvmal)

Fig. 2. The sectional view of the part 57 , and the equivalent surface currents
(I M} and {J%,M*} .

j()SpEensurf (F) é jfE(f)+jfE(f)
- - 231
_ ﬁ),(r)x[Hm(ﬁ)*Hm(r,)l L (resga) ( )
Mtprensurf (r) é MfE(f)+MfE(f)
_ - 23.2
_ [E(O((ﬁ)_Em((ﬁ)l&%fXﬁ+(r) , (fesﬁe‘) ( )

3) the equivalent line currents on &V (i.e., on i)
To efficiently introduce the equivalent line currents
{J**,M'} on the boundary line part L7, we firstly consider
the example as illustrated in Fig. 3 (a) (i.e., a metal cylinder

v is completely submerged into the material body), and

then the L* illustrated in Fig. 3 (b) is viewed as the limitation
of v when the radius of Vi approaches to zero.

The boundary of Vi, is denoted as oV, .

winier 1S denoted as

Jinger - ObViously, the ave . is a part of material boundary,

cylinder

are denoted as {J".. .M. t.If the radius of metal cylinder is

cylinder
cylinder cylinder
and the
surface scattering electric current on ov®
and the material-based equivalent surface currents on ov i
cylinder WNoylinder ) . . . .
denoted as R™ ., the following limitations exist

M Noier = L7 (24)

Syinder

RCrgellinlo'jcsylinder = j(H (25)
i qSE _ TLE

RL"“yIEIi‘:dI;rn*)OJWCTﬁ‘nder = J (26.1)

m M, = M7 (26.2)
linder — inder

and then the equivalent line currents {J**,M'¢} on the
boundary line part L§" can be defined as follows

(27.1)

F'—r ',

JE(F) 2 lim ¢ HO(r)-dl, (Fell)
c(r)

R met 50

‘cylinder

R

(@) (b)

Fig. 3. (a) A metal cylinder is completely submerged into material body; (b) a
metal line is completely submerged into material body.
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M'“(F) 2 — lim ¢ E®(F)-dl' , (Fely)
c(r)

(27.2)

here the integral path C (") is a circle constructed by the points
" which are in the set intv™ and approach to the point r .

4) Summary

In summary, the whole material boundary ov™ can be
decomposed into four parts as (15) or more detailedly
decomposed into five parts as (18), and then the equivalent
currents on &v™ can be correspondingly defined as (20), (21),
(23), and (27). For simplifying the symbolic system of the
following parts of this paper, the summation of C;/Emm and
Comnar IS denoted as CS° (because Cifﬂ and C5, .., existon
the intersection between ov™ and ov ™ UST™ ), and the
summation of C3. ., and CJ,.,, isdenotedas C* (because
CE o and CE constitute the whole of equivalent surface

. ‘open surf
currents), i.e.,

GSE

—_——
) _ Cﬁiseuim ) -
Equivalent Currentson ovV™ : | C'* ,C* ,Cf\im  Com st (28)
‘N
s
here C=J,M.
In addition, it is obvious that the traditional surface

equivalent principle [6] for the material body whose boundary
is a closed surface can be viewed as the special case of the
line-surface equivalent principle provided in this paper (when
LASe = , ie, V™ =0V g The source-field
relationships corresponding to traditional surface equivalent
principle can be found in [6] and the appendixes of [3] and [7];
the source-field relationships corresponding to line-surface
equivalent principle are explicitly given in the following Sec.
I1-B.

I1l. BASIC VARIABLES AND SOURCE-FIELD RELATIONSHIPS

As illustrated in [1]-[3] and [7]-[8], the selection for basic
variables is an indispensable preprocessing step for
constructing various power-based CM sets, and it is done in the
following Sec. IlI-A, and then the basic-variables-based
source-field relationships of a metal-material combined object
are provided in the following Sec. 111-B.

A. Basic variables

Based on the above discussions, all the currents (except the
volume scattering currents {J'*,M'"} on V™ ) of a
metal-material combined object are as follows

equivalent J on material boundary

scattering J on metal boundary JSE
3! Js s sut Jogen surt
T T e Tw mw
Electric Currents : { NEVENN AN BRI E Bl ‘];va”*‘ NE
i

equivalent M on material boundary

NiSE

i SE SE
M iosed surf M open surt

—_——
GLE NASE N SE FSE £ SE
MM ME M NS
A
-t
M&E

(29.2)

Magnetic Currents :

Due to the tangential boundary conditions of H™ and E™
on Sy Uavy™ , it has been pointed out in [2] that

JE (1), (Fesm

()= 3F(F) =17 ”4() (4 ) (30.1)
Jﬁvr;“e‘(r) ! (I’ €d n )
MOSEEFISUT r’ fes'"e‘

0 =ME(r) =1 l() (a ) (30.2)
Mavﬂ'“e‘(r) ! (I’ M )

In fact, it can be further proven that M* (r)=0=M%*(r) for
any reSi™, if the surface S7* is viewed as the limitation of a
thick metal slab.

Due to the same reasons to derive the second lines in (30.1)
and (30.2), the following relations for the currents defined in
Sec. 11-C 3) can be derived

jcSyIIEinder(F) = jgylinder(r) ' (F EaVc’ynl(ii:der) (311)
Miiner (F) = 0 (FedVi.) (31.2)
and then
JEr) = Ji(r) . (rel)) (32.1)
ME(F)= 0 (re Lf”qe‘) (32.2)

because of (25)-(26).

Based on the extinction theorem, the {J**,J*} and
{M*'€,M*} can be related to each other [3], [7], so the basic
variables of the metal-material combined object in Fig. 1 can be
selected as follows

Basic Variables : { Jg,J}, J5. 33, 35" } (33.1)
or equivalently selected as follows
Basic Variables : { J;, ., J5, I3, Mo* | (33.2)

because of the (30) and (32). It should be clearly pointed out
that the above selection for the basic variables on Si* is
equivalent to the selection in [2], though they are different in
form.

B. Source-field relationships

The f" on intv™ can be expressed in terms of the
function of {J'“,J5, 355, M;"} and the function of

{35,33, 355, MgF} as follows [3], [7]-[8]
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(1) = A7 (3.0) + A (5.0) + A (3505

US (34)
= Av(I00) +Ar(35.0) + Ar (I MF)

forany r eintv™ , here the second equality is due to (30.1) and
(32.1), and

b ()Zv Xz)

(35.1)
(35.2)

—jorly (X,) = 15(X,)
l”iinntc(xlvxz) = _ngozo(xz) + ICD(Xl)
The F™ on intv™ can be expressed in terms of the function

of {J',J5F, 355, Ms"} and the function of {J},J7,J5%, M;®} as
follows [3], [6]-[8]

'ftot(r) ]:IOI(jLElo) 4 ]_—Iol

int int

Fo (J}g,o)

int

(355,0) + F (J5°.MgF)
+ F (35,0)

int

forany reintv™ , and

(37.1)
(37.2)

gi;DIt(X.I'X.Z) = _ja)ﬂﬁm(xl) - Iqﬂ()zz)
tn?()zlr)zz) = _ngcqn(xz) + ICm()Zl>

The F= on intV™ can be expressed in terms of the function
of {J*,J5F, 355, M5} and the function of {J},J7, 355, M;®} as
follows [3], [7]-[8]

2 (F) = F™(F)-f2(r)

mat int

_ ftot(jLE’O)+ ]_-_mt ng,O) + ftol

for any reintv™ . The F@ on extV™ can be expressed as
the function of {J“¢,J5 35", M;} and the function of

{J0.95, 355, M5*} as follows [3], [6]-[8]

lfsca(r) — }-sca(jLEyo)_F ]_-sca(‘]”riElO) + Fsca(joSElM'OSE

mat ext ext

= FR(30,0) + 7 (35.0) + A (I3 MF)

ext ext

for any reextv™ , and

ER(XuX,) = lomely(X,) + Ko(X,)  (40.0)
M (R, X,) = jora(X,) - Ko(X)  (402)

here the symbol “extv™ > represents the exterior of domain
\/ mat [3]

The operators £,, K, , £,, and K, in (35), (37), and (40)
are as follows [3], [6]-[9]

(41.1)
0/

fal¥) = [ vo foterxoae
]

(41.2)

here the integral domain Q is the region where X exists, and
ko = @\[148, , and k, = o\fue, , and

1

GO/m(f’I?’) _ 4”“7_'7/‘ e*jko/m‘?—"" (42)
In addition, it is well known that [9]
Fo () = Fa (3')+ Az (3°)
= Fa 3+ 3)+ (4 ) (43)
= T (J0)+ Foet (30) + 722 (33) + 7o (97)
forany reR’\(L™Us™Uav™), and
&2(X) = —jowLy(X) (44.1)
H (X) = K5 (X) (44.2)

IV. A NEW AND “REAL” LINE-SURFACE FORMULATION OF
INPUT/OUTPUT POWER OPERATOR

In this section, the power operator of metal-material
combined objects is expressed in terms of various currents
mentioned in above sections.

For the metal-material combined object in Fig. 1, the input
power P™ (the power done by incident field on scattering
currents) and the output power P** are as follows [1]-[2]

P = P™ = (y2)(J'®J*, E™)

Lmet g met {Jay met

. L (45)
(I E) L+ 2N
here the inner product is defined as < f,g >Qéj f*.gdQ, and

the superscript “ = represents the complex congiugate, and the
operator “@ ” is defined as

Ja

,B@é>

>
(@]

(AeB,
(

and the reason to utilize symbol “@® ” instead of ““ + ” is that the
dimensions of line current J' and surface current J° are
different. The first equality in (45) is due to the conservation
law of energy [4], and the P** can also be written into a more
convenient form as follows [1]-[2]

11>
—
>
(@]}
~
+
—
s ]}
(@]
=

b
11>
—
b
@,
[l
Fe)
+
—
p-
(@]
~ =

Q
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pout — %@[Esea X(H sca)*i| . d§ + %<O_Etot' Etot>vmat

S.

+]j Za){ [%<HScalﬂol_]sca>”23 _%<€0E50a’ésca>gg:|
+E<H‘°‘,Ayl:|‘°‘>vm ~2{acE™, v >} }

is a spherical surface at infinity.
Because F™ =F™ _F< _F_ fie_F<a gn jpry™ | and
[Emcl I:Esca:' — _[E;caa[ Ersnc::l on Lmet U Smet Uavmet
(here the subscrlpts “tan” represent the tangential components
of fields), the P™ in (45) can be rewritten as follows

(47)

here the integral domain S,

sca sca
Emet + Emat > met | jgmet | gy met

{@2)(3 E2),. +@2)(HE M) L] 48)
| W2)(3 &), + @) (R ) |
In addition, based on the conclusions given in [3] and [8] and

the discussions given in the Sec. II-C of this paper, the
following relations exist

P™ = —(1/2)(' @73,

(Y2)(3™,Ex), .+ (Y2)(Ha M)

:ﬂAe:F@LE@JSE €2 + M ), }@9)

‘met met

<JIG—)Js'g:"c‘a(J5'O)>L”9‘Us"‘e‘uav'“e‘ - <J ®J 522?(\]%)>L"‘9‘U5'“‘ue\/'“‘ (521)
_ <j| ®J g;;ﬁ(jg»muwwﬂ (52.2)

and
(I=@T<a(30) = (IF@I=ga(3)) . (631)
<5LE®JSE em (33.0) . = <5LE@555 g;;f(”g)>w (53.2)
(M3 (30,0)) = (MEHER() . (633)
(M5 (33.0)) . = (MEE(3) . (534)

Inserting the (52)-(53) into (51) and utilizing the (30.1) and
(32.1), the P™ in (51) can be further simplified into the (54). In
the following Sec. V, the operator (54) is transformed into its
matrix form, and then the power-based CM sets are derived.

V. POWER-BASED CHARACTERISTIC MODE SETS

In this section, the power-based CM sets of the
metal-material combined object illustrated in Fig. 1 are
constructed.

A. From current space to expansion vector space
The currents {Jg, 34}, {J5, 33} and {J5%,M;®} can be

&, — UE, | 2
Fots Aﬂ L expanded as follows
L {‘%2@“@?5 Ex )y + 5 (M55, Hﬁfﬁ%&
Eolly — & 0 hn ) )
d T(= Saeh (= 802 (rem) 69
an
=%on
o s F aJo/ano/m - BY%n.z%n . (Fes™Uyav™) (56
W2)(7 &), .+ (W2(RE M), W)= 2, (resif Uow) (56)
_ yAgC 126 o qse gine @E 7 SE pinc SE [+ CSE R CsE _ RCF¥ . zCE = mat
v L<J T, ) M+M<Mo ,h,m>w} (50) CF(F) Za b BY .a% | (reovy™) (57)
EC A/I & 1 Amc 1 inc
*so%_gc#LEz(JLE@JSE’ >avm+2<'\"SEvhmt>vm} in which C=J,M , and
Inserting the (49)-(50) into (48) and considering of that BY = [ElY S B:VJ (58.1)
(34)-(44), the P™ in (48) can also be rewritten as (51). 3= |:aly a o T (58.2)
Based on (30.1), (32.1), (35), (40), and (44), it is obvious that BN T :
P = —(y2)(3' @ J°, & () + & (In)+ € (32) + 62 (3)) oo
~Y2)(T @0, £ (3),0)+ £ (I3 M)+ €2 (37 o>LﬂUSmUW 7
] G0 e () e ()« e (55) e (), .+ oG 2 (3) ¢ (31) ¢ (35) 4 2 (30),. o
r - (51
BT 0 3 e (B e () rem(T) g (T)) v SV (3¢ 12 (3h) ¢ 2 (35) e (31)
oo o [ Cc o
ﬁi %<5LE®jSEyf,i:f(jlﬂ'o)Jr‘ii,Tf(j;E,Mf)*‘.i:f(jrsvo)LVM +%%<M§E, I.::(J 0)+h,-nr1:(JSE MSE)*”.‘::(J 0)>avom‘ |
+7€ozij¢u _':—:%@LE@;TSE, e (3,0)+ el (JEME )+ e (37.0)) L+ %(M;E, e (39,0) + e (55, MSE ) + e (33 o)>w |
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forany Y = 33,3/, 35,35, 355, MsF . The superscript “T ” in (58.2)
represents the transpose of matrix.

B. To unify variables in expansion vector space

Based on the methods given in [3] and [7]-[8], the expansion

vector a“* can be expressed in terms of the expansion vectors

a’,a’, a’! and the expansion vector a*" can be expressed
in terms of the expansion vectors {a*,a”,a""} as follows

i _ SO o F 95) (59)
O _ FRANEE {5 (60)
here
e
gl al | g (61)
2%
o
U] _ | g (62)
ah

and some_different methods_for obtaining the transformation

PUEHEME _ [ MSEH‘°‘ME:| o e (65.1)

USRI _ [ MéEHﬁszSE] (65.2)

FMSEHS I MSEHS I,

Mo P |:¢ 0 t :| - X:m (653)

MR [ MSEH.mJn} o (65.4)
and

J El‘r?l[JSE JSE EKOIJSE

TET [ } ¥ (66.1)

:‘]SEE:::J SEEtol

PR [ J i (66.2)

OUER [ J“E‘”‘%] (66.3)

i x—iﬂ '

QUEME _ [grEE] (66.4)

The superscript “MEH"ME” on matrix @“¢H&" means that

the elements of this matrix is derived from testing the interior
total magnetic field ;‘1‘(0,64”?) by using magnetic current
basis bgMDSE , and the superscripts on the other matrices can be
similarly explained. The elements in (65)-(66) can be computed
as follows

matrices T M gng TRARMEE can be found in [3] i R = <b¢-M° : _ngc[m(bcMD )>8V (67.1)
and [7]-[8], and two of them are specifically exhibited as M B - - .
follows e’ = <b§ T xBT G (b4° )>V0
67.2
—=/[FSE 7l 7s i SE —_— —MOSE ‘]0 JSE ( )
=3 3, ol = <|o§ L =S xBE PV K (B )>
Magnetic Extinction ( 6 3) 2 Vg™
_ (@gEH:;’:MgE )fl'FMgEH;;’:JgE i, g)MgEH:::JgJ PR <55M35  —K, (*{ )> (67.3)
evumai
:{J'h,J'a,MSE}%JVSE SE |y tot — \ji SE s
TEIeclric Extinction (64) ¢§2° i = <b§M° ) *Km( ;n )> (674)
_ (E)JSEE,‘&‘JgE )71.|:$JSEE,',?:J5 DIER E)JSEE:,?{MOSE} o
and
here the subscripts “ Magnetic Extinction” and “ Electric Extinction  in
transformation matrices Tnﬁjgnefg;ji;“,f; and TR mean e <5§J§E . Jwygn(ggio )> (68.1)
that these two matrices are respectively derived from magnetic v
and electric extinction theorems [3], and the meanings of their gIERN <53’SE . jou ﬁm(*g'm )> (68.2)
superscripts are obvious, and the matrices and submatrices in ) Vi
(63)-(64) are as follows R <”;’§E o mﬂﬁm( )>Evma‘ (68.3)
P = —(2)((Js+3) @ (35 +35) &2 (30)+ €2 (32)) e empeee
71 7l s sca SE SE
_(1/2)<<‘]0 + ‘]ﬂ)®(‘]0 + ) gexl (‘J M )>Lme(USme|U0vmel
/LIA&‘; i l 71 Js sca sca s &E 7 SE sca [ 1 sca 7s ]
luogo—/ugc 2<Jﬂ ®( ﬂ+\] ) Smel(\] ) gmet(\] )>E,’\/mal+ ﬂ 2<M0 1 }{rnet(v-]o)"' et( O)>8V0mal ]
& Aﬂ [ &y 1 7! qs sca sca E 71 SE sca [ 71 YA\ i (54)
EO/JU_EC/J i gc 2< ﬂ®( ﬂ+‘] ) gmel( )+5met( )>P\/’“a‘ 2<M0 ' '}{met(‘]o)+ et( 0)>0V0"‘a‘
uhe [ 1 7! Ts , JSE oo (e SE &l 7 SE inc ( TSE 7 SE ]
Lo — LIE 2<Jﬂ ®( ﬂ+~]0 ) ’ |nl \] M >8Vma| + P 2<M0 y hinl (Jo 1M0 )>av0"'ﬂ‘ |
s Ay [ g 14 Ts | TSE |nc TSE SE 1/ e inc [ TSE 7 SE\\" )
pr | g;( RO+ IF) e (M) L (M (IS |
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JDSE £t SE

t T JSE A
int V10 —_ 0
& - <b§ ' na mat

— 7SE 1
<b§JO ) E —>mat

“MSE “MSE
xbY'E 1, (b )>
; (%))

(68.4)

SR AV S )>

v

here the symbols “P.V.” in (67.2) and (68.4) represent the
Cauchy principal value of integral.

C. The input power operator in expansion vector space (The
matrix form of input power operator)

Inserting (55)-(57) into (54), the input power P™ can be
transformed into the following matrix form

{Jo 33,355,349, M5 } Pinp a{_]'éng‘ng,J’}W,Jﬁ,MgE}

{J 35,358,383, MSE}

P (69)

here the superscript “ H > represents the transpose conjugate of

matrix, and the symbol - represents the matrix multiplication,

and

inp
33,3335 31,385

~0ll

Bl gl e()) _ {3330 Ta)e-ean (35 05%)

5

HAs [ pUE IR em(B) (@) o GV }
Ho&o — HE H
Y-V - [E{J“J‘n%Hs;ﬁ(is),s;z?(is)}T+ [EMO {r(3) } (70)
Eolty —EH | &
. 4 Ag] [ 5195° 90 9 et (05° 45 L NS R ) }
Hoo — HE, H
Y.V R [5{i§E,J'A,J'a}wszf(iﬁ?MSE)}“ N [Emsw:::(issmgs)}” }
Eoly —EHM &
and
R
EJ‘; a—Jé af‘f“)
{J'I 35,3530 35 MSEL ﬁj‘]SE QVS éjg
aovoxovn‘ﬁvu[: ) — ) — - (71)
T 15 ) 79
7% T it I
ame
The various matrices in (70) are as follows
[ PUE=% PUESE 9 0 0 O]
&)JoEzf:xJo E)JcEmcez:Jo 0 0 0 0
535 Taffem() ()} _ Om Om 0 00O (72)
®JﬂEmelJ0 (DJmEme(Jo 00000
FEER @ 0 0 0 0
| 0 0 000 0]
(0 0 QUENF g o @iEmE ]
0 0 QUENE g o @UEEM"
P{JOJQJﬂJn}H:;f(JSE,MgE) _ 00 ~ |0 } 00 7I0 ) (73)
0 0 PUENE g o e
0 0 PUENE g o PUEEME
oo o 00 0 |

0 0 0 00O
0 0 0 00O
- HIERN I ERI
St eyl _ | @ @ 00000 g
q)J = (DJ nEmads 00000
UERS  YEES 9 0 0 0
| o 0 00 0 0]
0 0 0 0 0 O]
0 0 0 00O
=N {Hmt( )Hfff( s)} B 0 0 O 0 O 0
P = 0 o o000 o
0 0 0 00O
| QMRS QNIRRT o o o 0]
[0 0 0 00 0 ]
00 0 00 0
oI5 eIt Y5 e
s mafeaEnr) (0 0@ 000 (76)
00 (I)JneszD 00 (DJ Mg
00 cDJne.'ﬂf 3%° 00 (% Ielms®
00 0 00 0o |
[0 0 0 00 0 i
00 0 00 0
= SE i 5 i SE 00 0 00 0
SME pine(J5E M§ ) _
P oo 0o 00 0 (77)
00 0 00 0
00 E)MSEhiin"“JDSE 00 q:)MSEhfn"fMSE
The submatrices in (72) are as follows
PUER [¢§JC$E;§J$J 0 (78.1)
e [ JOE;%?JOJ 11 (78.2)
(T)Jae;tm _ |: JoEfnﬁJo :|_ (783)
pUuERE [ ¢JOE;°;JO}JD (78.4)
&)JﬂEme(JO — |:¢JmEscaJo :| (785)
OhERR Vﬁ“ﬂ%} ) (78.6)
PrE=L [ ¢JHE;:JOJ - (78.7)
SRERN [ JnE:f;Jo] (78.8)
and the submatrices in (73) are as follows
DUERIE  _ |:¢;§$E§|EJDSE:| i (79.1)
DIESME [ #% E:E?MSE] § i (79.2)
s [ 3 E::?JSE} e (79.3)
puens — [ g ]% (79.4)
s o [ (79.5)
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PUEEME [%E@Wéj .
ﬂ
PIRER I [ JmEexngE]
- J'SE
0
DIERME ¢JﬂEenM0
&< B _MSE
=70 e

and the submatrices @*&% =~ hem%

(79.6)
(79.7)

(79.8)

:JsEstl :JsEscaJs .
,(Dﬁmeloland @m0 in

(74) are given in the (78.5)-(78.8), and the other submatrices in

(74) are as follows

and the elements in (79) are as follows

R = W28 Jomet (6)) (85.1)
w2t k() (85.2)
R = W6 Jems(85)) . (853)
2 - @b k() . (854)
A = W) omts(5F)) (85.5)
A= @) (), (85.6)
I~ W2)(BF Jout, (6 )>s”‘uavn'“9‘ (85.7)
2 )t k(e) o (658)

and the elements ¢JﬂEmﬂJ°, ¢;DE”9‘J°, ¢JﬂEme'J° and 425 in (80)
are given in the (84.5)-(84.8), and the other elements in (80) are
as follows

ToFERL [@Em} (80.1)
Brew o [gre], (80.2)
and the submatrices in (75) are as follows
PUSEHES [ggw] (81.1)
R I T I (81.2)
and the submatrices in (76) are as follows
S o [, (82.1)
HoemmE [JSE :"“MSE} i (82.2)
SIS [@ JJ s (82.3)
JoME [ 'me'xfwjjﬂ s (82.4)
SoenE _ [Jne::mse] . (82.5)
e ] @9
and the submatrices in (77) are as follows
DU _ [ﬂé% JSE] W (83.1)
PUENEME [géEh::fMéE LMSEX:MgE (83.2)
The elements in (78) are as follows
S (12) <5;.g jont, (;)>LO (84.1)
R P (84.2)
o - w5 - iomt(5)) @49
S )R et (BE))  (@44)
¢;{Em _ (]/2)@ o ﬁo(?é»@t (84.5)
Gl () @49
)i et () @)
R = W) jens (7)) (848)

P = 2) (6 —jens (b)) | (86)
R = @26 jems(8F)) . (862)
and the elements in (81) are as follows
- afi ), e
- 2 k(5 @12
and the elements in (82) are as follows
eI = )6 L - jemt(B)) (88.1)
BOE = @) (BF k(0
. 1 . . (88.2)
- (1/2)<bﬁv P XD P v./co(byo >
2T = 2B om0 (88.3)
¢5m5wx°M§E _ (1/2)<~;'n A K”(LMSE»LW (88.4)
#EE = @B o (65)) (88.5)
@e:&m? = (1/2)<*;a ’ _ ICD(}M“SE)>saﬂU@Vﬂ“' (88.6)
and the elements in (83) are as follows
A ) (B K (65))
I ° (89.1)
- (1/2)<b;”n — g X025+ PV G (B2 )>

vt
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ESEW'&CMgg _ (1/2)<5§M§E . — joeL, (BJMSE )> (89.2)

mat
B

Employing (63) and (64), the (69) can be rewritten as follows

inp _ 7{JéxJSvJ§EerIWerSW} Dinp 7{3&)33,\155,%,%}
pP™ = (7 B e @
{30.95.,3553 3} (90)
e o ee H _ e o e
= (g% hANENN T B . gU%o-T8 dh 94, M)
{36.35.94, 98 M%)
+Jo.Jn. 3. Mg
here
:inp
P{J.‘,,J'g,JgE,J,% J'ﬁ}
- —H o .
I 0 0 I 0 0
0T 0 _ oT 0 (91)
= _ pw _
00 T e R VR T
=355 3 38} oME =(55E 338} oHisE
Magnetic Extinction Magnetic Extinction
_0 0 | _0 0 ]
:inp
Pshss . aa.mse)
— —H — .
I 0 0 I 0 0
0T 0 _ 0T o |9
= .piw .
0 0 = (30,98 MEE |5 {30,35,35% 34,38, MSE 0 0 =(30,98, M5F |35
Electric Extinction Electric Extinction
0 0 T 0 0 [
and
a’
F% [ g%
_ ‘Iljs‘jSE‘j\ vjs N o
SN PRr R T (93)
Foh {355,303}
a’
- ajé _
EJ'S ajé
_{38,35.,38. 38 . MsE il =33
a{o 0:°n+vn-Mo } — ajm — aJO (94)
a’j% a,{J,H.Ja,MgE}
ah

The matrices T in (91)-(92) are the identity matrices with
suitable orders.

D. To construct power-based CM sets in expansion vector
space

The matrix P)” can be decomposed into its Hermitian parts
as follows
+i PR

:inp _ :inp
PBV - PBV;+

(95)

here BV ={J;,J5,355, 35,33} or {35, 35,34, 35, M=}, and [1]-[3],
[7]-[8], [10]-[11]

Din 1 Din Din H
Pva;+ = 5 |:Pva +( va) :| (96-1)
Din 1 Din Din H
Pva;f = ?J |:Pva - ( Pva ) :| (962)

Obviously, both the Py, and P, are Hermitian [12].

Based on the discussions in [10]-[11], it can be concluded
that the matrix P,, is positive definite or semi-definite. When
the matrix P, is positive definite at frequency f , the
Input-power-based Characteristic Mode (InpCM) set can be
derived from solving the following generalized characteristic
equation [13]

PR (1)-a' (1) = 2 (1) R, (F)-& () (97)
for any £=12,--=. In (97), E=2% +2% + 2% +2h 4 2%
and
(1) ]
a’(f)
' (f) = |a¥ (f) (98)
al (1)
[ (f) ]
(1)
3 (1) = Tt | & (1) (99)
a(f)

at(f)
a’(f)
ar’(f) = | & (f) (100)
a(f)
" (1))
al(f)
& (1) = Tohdow ] &k (1) (101)
' (f)

if BV ={J;,J5,3/,33, M5} . When the matrix Py?, is positive
semi-definite at frequency f, , the frequency f, can be
determined by employing the modal impedance or admittance
defined in [2] and by using frequency sweep technique depicted
in [10]-[11]; after the frequency f, is determined, the
characteristic values and vectors at f, can be obtained by using
the following limitations [10]-[11]

Z(fy) = limA.(f) (102)
a(f,) = lima’(f) (103)

fofy °
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lima(f)

fofy °

(1) - (104

here Y = 33,335,355, 3%, 35, MsE .
The characteristic currents {Jg..J}..} , {J5..J3.} . and

{J55:M;2} are as follows

0;5 7708

Be(F) = B gl | (reln) (105)
Jine(F) = B & (resgiUavgr)  (106)
Ci(r) = BY .a¥ | (reavy™) (107)
here C=J,M,and J* =J}..,and J3 =J3., and
JUF) = T (F)+ I (7) . (feLme‘) (108)
J2(F) = J5.(P)+35.(r) ,  (res™Uav™) (109)
JE(F) = () +355(r) o (Feavay) (110)
and then the characteristic fields are as follows
fione () :f.;?“(J}LE 0)+r’.A?“(J:éi 0)+;‘.;Y°(J:é§"\?§§) (111)
= A (32:0) + A (35.2,0) + A (355, Mg ) (Feintv™)
R(T) = (3.0)+ 2 (T5.0)+ A (M) 112)
= 7 (300.0) + A (35.,.0) + Ft (I35, Mg ) F einty™
- (F)_{éia((i;E,?)+};;fa(J;E 0)+ F (I M%) F eexty ™

B i } ) (114)
= Tt (o ) + Tt (T ) + ot (Js ) + ke (35) + (FeR®\aD™)

here the domain oD™ in (114) is the whole boundary of metal
part, i.e.,, oD™ =L"™US™Uov™ . Then, the characteristic
currents 5;°P,|\7|g"“ and the characteristic scattering and
incident fields are as follows

I (1) = joAgEX(r) , (Feintv™)  (115.1)
MM (F) = joAuHP () , (Feintv™)  (115.2)

and
F(r) = Fan (N)+Fa.(r) . (TeR®\oD)  (116)

and
Bl (F) = —limEZ, (7). (FeoD™) (117.2)
Fre(r) = fae(N)-F2. (), (Feintv™) (117.2)

here the Ag, and Au in (115) are defined as A¢, =2 ¢, — ¢, , and
A= 1 u,; the domain éD in (116) is the union of D™ and
ov™ e, oD=aD™ UoVv™ =™ US™Usv™ Uov™ ; the

subscript “tan ™ in (117.1) represents the tangential component
of field, and ¥ e R*\aD.

If the necessary orthogonalization is done for the degenerate
modes, the characteristic currents and the characteristic fields
satisfy the following input power orthogonality

P = (V{303 Ex)

an et Usmel Uav met

o S (118)
+(Y2) (3 EF), o + (Y2)(H M)

y mat

and the following output power orthogonality

Re (P25, - %@[EgﬂX(H;ca)*}.d§+%<aég°‘,éyt>vm (119.1)

3
S,
out 1 jsca jsca 1 —sca [=sca
Im{Pf}5,. = 2w{[4<H§ HH: >;3—Z<50E¢. JES >]

(119.2)
o S ), -G (aEr ), }}

for any ¢&,(=12.-E, here the “ &, ” is Kronecker delta
symbol; the Re{P>} and Im{P?*} are the real and imaginary
parts of P*. In addition, it is obvious that P =PI, i.e., the
modal output power equals to the modal input power, because
of the conservation law of energy [4].

The InpCM-based modal expansion formulation for
metal-material combined object can be found in [1]-[2], and it
is not repeated here. The other power-based CM sets, such as
the Active power CM (ActCM) set, the Reactive power CM
(ReactCM) set, and the Coupling power CM (CoupCM) set,
can be constructed by using the methods given in [8] and
[10]-[11], and they are not repeated here. The method to
normalize various power-based CMs derived from
LS-MM-EMP-CMT can be found in [2], and it is not repeated
here.

VI. INTRINSIC RESONANCE AND THE RELEVANT CONCEPTS

In this section, a power-based modal classification method
[13] is simply retrospected, and then a series of new concepts
intrinsic resonance, intrinsic resonance equation/condition,
intrinsic resonant mode, intrinsic resonance space, and
intrinsic resonant CM set are introduced.

A. Power-based modal classification
If any operating state of scatterer is called as an operating
mode (it is not restricted to the CM), the modes can be
classified according to their modal powers.
_ (a) According to modal active power: Because the matrix
P,r, is positive definite or semi-definite, then
Re{P™} = (a®)" P&, .3 >0 (120)

for any operating state a® . The modes corresponding to
Re{P™}>0 are called as active modes, and the modes
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corresponding to Re{P"™} =0 are called as non-active modes.
(b) According to modal radiated power [13]: It can be

proven that the modal radiated power P™ is non-negative for

any mode, here the modal radiated power P™ is as follows

prad _ %#[Esca X(Hsca)*j| i d§

S,

(121)

The modes corresponding to P™ >0 are called as radiative
modes, and the modes corresponding to P™ =0 are called as
non-radiative modes.

(c) According to modal reactive power [13]: The modal
reactive power is as follows

Im{P™} =

2@{ |:%<|:|sca’lu0|:| sca>i3 7%<50Escal Esca>i3:| (122)
b suie), -Hocen ) ]

The matrix P, is indefinite. The modes corresponding to
Im{P™} <0 are called as capacitive modes, and the modes
corresponding to Im{P™} =0 are called as resonant modes,
and the modes corresponding to Im{P™}>0 are called as
inductive modes.

B. Intrinsic resonance and the relevant concepts

Because the matrix P,", is positive definite or semi-definite,
(8)" P .a® =0 if and only if Pw, .a® =0 [12].
However, (a®)"-Pi_ -a® =0 does not imply that
Pw_-a® =0 , though PRy’ -a® =0 always implies that
(a)"-Pi_.a® =0, because the matrix Py is indefinite. It
is equivalent to saying that

sinp

= v\ 5 =
Bv;+'aBV:O = (an) ST Ly

B+ (123)
< Mode a® is non-active

and

Bin = _ = = H  Sin = _
P .a% =0 %4 (aB") P .a¥ =0 (124)

< Mode 2% is resonant

In electromagnetic engineering society, the resonance is a
very important concept, and the above (124) implies that the
condition Pi°_-a® =0 is a stronger condition than
(:EE‘V)H -Pyr_-a® =0 to guarantee resonance. Based on this,
the equation P,?_-a® =0 can be called as intrinsic resonance
equation/condition, if the equation (a* )H Pyp_-a® =0 is
viewed as resonance equation/condition.

Then, the modes satisfying intrinsic resonance equation are
called as intrinsic resonant modes. Obviously, all intrinsic
resonant modes constitute a space, and this space is just the null
space of matrix P;r_, and it can be specifically called as
intrinsic resonance space from the power-based point of view.

However, it cannot be guaranteed that the set constituted by all
resonant modes is a space.

Due to the object-oriented feature of EMP-CMT [8],
[10]-[11], this paper introduces a new CM set, intrinsic
resonant CM set, and it is defined as the basis of intrinsic
resonance space. The intrinsic resonant CM set can be
efficiently derived from solving the intrinsic resonance
equation Py -a® =0.

In addition, it is easy to prove that any intrinsic resonant
mode a2 (it is not necessarily the element of intrinsic resonant
CM set) is orthogonal to any operating state a®' of scatterer as
follows

- zm{ :%mf;:,yoﬁﬂig_%<goéfg:,ém>g} (125.1)

+

:%(atz;,w“" ) g (AOEEE),. }}
() Py -a

res

0 =

res 1 res

— 26&){ :%<|:|scahuo|:| sca>i3 7%<80Esca Esca>i€3:| (1252)

_1 T tot T tot 1 —tot =tot
+_Z<H 1A;uHres>Vma‘_z<A‘9E ’EI'ES>Vma!
Then, (a® +a%)" P (2% +a¥)=(a%)"-Pi»_-a® for
any operating state a® , if the & is an intrinsic resonant
mode.

VII.

In this section, the general formulations given in Sec. V are
specialized to the special forms corresponding to some typical
examples.

SOME TYPICAL EXAMPLES

A. Scatterer is constructed by one piece of metal line and one
piece of material body, and the line partially contacts with the
body, but any part of the line is not submerged into the body

In this subsection, the scatterer illustrated in Fig. 4 is

considered. Its metal part only includes one piece of line, and
the line partially contacts with the material body, but any part of

V mat

>

Lmelﬂ int(Lmel UV mat ) _ Lrﬂ‘el )
Lrgel = L™\ int ( Lmet UV mal)

L

[T-wuo

Fig. 4. A piece of metal line partially contacts with material body.
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the line is not submerged into the material body. It is obvious
that L7, s™,ov™ =2 , so J},J°=0, and then the basic
variables can be selected as {J;,J;°} or equivalently selected
as {J5,M;%}.

For this case, the input power operator (54) is specialized to
the following (126)

U
- e
ﬁ{ﬁng&z:gf(JgE,MgE)} N [ﬁMSEeh‘"c (35 MSE

pim
=~(W2)(3h,82 (%)) . ~W2(%.£2 (35°M57)) .
_ #Ag l sca &1 G SE qsca (Tl
Ho&o — ,ug |: 2< " 0> +/" 2<MU 'Hme'(‘]u)>w,;“‘ :|
& Au & 1/vse m 1ase oysca 71\ 126
-t su[ZE<J £ (d >~v " §<M°s o (), } (120
HAE E SE inc ( 7SE SE ﬂ& i SE inc ( TSE p\jSE
+,”050 #€|: 2<J ’em‘ J M >"VM+,U 2<M i (J M )>Wu”al:|
& Au [;UE SE inc ( JSE SE 1 jSE ,inc (FSE i SE
SD%_SE#LC 2<J e (IS5 M >W+ 2<M e (355 M )>W}
and the matrix form of (126) is as follows
inp _ f{jéijSE} inp {JD v
P a P{ X
o 35
. . (127)
(5] e
{3 M5}
here
r= H =
| 0 | 0
pinp _ T pinp T
F){‘].LI)“]'(?E} =10 ~ | -P{J'é,J'SE,MSE}’ 0 | (128)
_0 Th;llgg&:\g%xtlnctlon 0 Th;llaog;:\:Extlnctlon
r= H =
| 0 | 0
Pmp sE| 0 Eﬁglr;éilinclion _ﬁiﬂp iSE NiSE| 0 -FE’;iglr;JE-?Qinclion (129)
{3o.M5E} {30,955 ME )
0 I 0 I
and
jSE aJé
s {J} (130)
a 0
g | a@”
a - (131)
ahv
In (128)-(129),
:inp
P{j"] jDSE‘M SE}
= _plresm(l) _ plesm (3 M)
uAe; [ B8 () L Ho EHE (%) }
Ho&y — HE H
__&bu {s [,gjsm;ﬁuﬂ“ . [ﬁMsw;c; ; } (132)
Eolly —EH | &
L HAs [ SIS (ENE) | My WS AT NE) }

and
=\ SE ytotpg SE -1 = SE 1y tot 1SE
TN‘I]aOgn;’;AExnnctlon = ((DMD o ) '(DMO Fin o (133)
JSE = jsepwotgse \L = jseptorggse
TE’;/Iegtn?éxtmcuan = (q)JO E'”‘JO ) .(DJO EMMO (134)
The various matrices in (132) are as follows
[HUE=E 9 0
PR 1 o 00 (135)
0 00
[0 QuEssE  HUEmME
prestiEvMs) _ g 0 (136)
0 0 0
) 00
S e (%) _ q:)Jo Ead 0 0 (137)
0 00
0 oo
puUienE) 0 00 (138)
OMEHEN 9 o
[0 0 0
|5Jo F e (357 M6°) _ 0 I pITem (139)
0 0 0
B B 0o 0
pUS M EME) _ g 0 (140)
_0 (DMSEh'“JOSE (DMSEh'"CMOSE

The procedures to construct the power-based CM sets
corresponding to the structure in Fig. 4 are completely similar
to the procedures given in Sec. V, so they will not be repeated
here.

In fact, the structure in Fig. 4 has many applications in
electromagnetic engineering society, such as the probe-fed
Dielectric Resonator Antennas (DRAS) in which the probes
partially contact with the DRAs [14].

In addition, the structure in Fig. 4 can be further specialized
to the structures in Fig. 5, and the formulations corresponding
to the structures in Fig. 5 are identical to the ones given in this
subsection.

v/ ma v/

|

L™ int(L™ UV™ )= /L“’ﬂmt (L™ uv™)=
L = L™\ int(L™ UV ™ Ly = L™ \int(L™ UV ™

)/ | )/
/ \ /
Fig. 5. (a) A piece of metal line completely contacts with material body; (b) a

(b)
piece of metal line completely does not contact with material body.

L™ g5

A

L™ =@
s
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B. Scatterer is constructed by one piece of metal line and one
piece of material body, and the line is partially submerged into
the body

In this subsection, the scatterer illustrated in Fig. 6 is
considered. Its metal part only includes one piece of line, and
the line is partially submerged into the material body. It is
obvious that s™,6v™ =@, so J*=0, and then the basic
variables can be selected as {J;,J;5,J\} or equivalently
selected as {J;,J), M;"} .

For this case, the input power operator (54) is specialized to
the following (141)

pim
=%+ 3y &2 (1)),
_(]/2)<J'u‘+Jn g2 (I, MSE)>$KULW“
uAg; 1/ SE esca .Uol SE qgsea
ﬁ[ 203 e (1) e o (v iz (1), | 141
A 1 £ osa £ o sa
73:0;10 f,i;/ {?2<J 2 g”’*‘“”»w“‘uﬂ" * 2<MS H'"e‘( )> }
Y U NE N 07 )
& A &l/s TSEjinc (( TSE n7 SE 1/ ase Line (TSE g7 SE
Py {ii@g@ao e (JTE Mg )>“\/ e ® E<M e (35 M )>V}
and the matrix form of (141) is as follows
. {jl JSE JI} H {JI JSE j‘}
Plnp: (au 0 n) .F){m‘p>SE |} ao
3b,38E 34
142
_ (el 5 ) 42
- (@ R
here
r= H =
| 0 | 0
I?’{S?JEE,JH =0 T .EEEEJ'DSE.J},MEE}' 0 r (143)
= J'DSEVJI _)MSE = J'gEVJ'I —>MDSE
¥0 TN{Iagnelig}Exlinmion 0 Tr\jagnelig}Exlinction
r= H =
| 0 | 0
Si =31 M§E | > 3sE S =30 M§E |5 35E
ID{L?J~|WM§E}: 0 TE{IegricoEjtinct?on ' {LZPJEEJhMgE} 0 TE{IegtricDEiinct?on (144)
0 I 0 I
and
Vmaﬁ

Lmel m int(Lmel UV mat ) _ Lﬂmel
Lmet Lmel \ |nt< Lmel UV mat )

‘ — Lr(])wet U L:el

Fig. 6. A piece of metal line is partially submerged into material body.

{3953}

In (143)-(144),

and

Magnetic Extinction —

| Wi 3

Electric Extinction

0
_ E{jg,j,g}&g;gi(jg) _ s{j' e

St

S{J’DSE‘JQ}

ez ()

& Au {%[P{JgE Jh)ega( 3 )j|H
Sobly —EH &

inc
int

tot

S ((DMD HS M

(JSE‘M‘?E)

met

(o3 5

+

u

Ho FYisE iz (%)

NS gga(
4 |:P oF Haa(J

| Ho BE AT WE)

7]

) f

= -1 r=
- (CDJSEEi‘::JSE ) ,[CDJSE

tot

ot J

int

mt‘]D

H
ﬁ[P{JEE Jheele(35E, MOSE):| N |:F*)M§E<—h (35 MgE

= SE ot
(I)Mo HiR Ik

15

(145)

(146)

(147)

X ] (148)

DI ERMSE :| (149)

The various matrices in (147) are as follows

E{J'Q,J'}]}es,;ﬁ (3b)

596,30 feea (355 MSE )

Bl

E{J’SE b (3b)

—=n\iSE sca
MgE e

=)

f
S

)

T

JSE,MOSE)

P{JD b e (

DUERI

0
0 0
QINERS
0 0
0 UERIT
0 0
0 q)J NEse 35
0 0
0 0
PUERL
SIEER o
0 0
0 0
0 0
0 0
PUEHESL
0 0
0 @JSE ‘lrr‘\chSE

0 e

o o

OOOOOOOOOOOO

O O O © 6o o o o

o O O o

E)JéEjﬁfng
0
P hEsEMEE

0

o O o o
e — |

O O o o

0

J eInc M SE
ok
B ohetmi

0

(150)

(151)

(152)

(153)

(154)
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g o
= \\
\ .
L™ im(LmH uv mm)7 et /Lu ﬂIm(L ) 1%}
@=L =L Vint(L™ V™) / L= L™ \int (L™ UV ™)

@

Fig. 7. (a) a piece of metal line is completely submerged into material body; (b)
a piece of metal line completely does not contact with material body.

0 0 0 0

= SE Inc SE SE 0 0 0 0

SMEE e (35 MSE)

P =14 0 0 0 (155)
0 OUEMERE g MM

The procedures to construct the power-based CM sets
corresponding to the structure in Fig. 6 are completely similar
to the procedures given in Sec. V, so they will not be repeated
here.

In fact, the structure in Fig. 6 has many applications in
electromagnetic engineering society, such as the probe-fed
DRAs in which the probes are partially submerged into the
DRAs [14].

In addition, the structure in Fig. 6 can be further specialized
to the structures in Fig. 7. The formulations corresponding to
the structure in Fig. 7 (a) can be obtained by removing the terms
corresponding to J; from the formulations given in this
subsection; the formulations corresponding to the structure in
Fig. 7 (b) can be obtained by removing the terms corresponding
to J), from the formulations given in this subsection.

C. Scatterer is constructed by one piece of metal surface and
one piece of material body, and the surface partially contacts
with the body, but any part of the surface is not submerged into
the body

In this subsection, the scatterer illustrated in Fig. 8 is
considered. Its metal part only includes one piece of surface,
and the surface partially contacts with the material body, but
any part of the surface is not submerged into the material body.
It is obvious that L™,S7*,ov™ =@, so J',J3 =0, and then the

/ Uo=]

Smel Smei \ Int(smel UV mal)
// melm Int(Smel UV mal) _ S[Ta )

\Vi mat

Fig. 8. A piece of metal surface partially contacts with material body.

basic variables can be selected as {J;,J;°} or equivalently
selected as {J5,M"} .

For this case, the input power operator (54) is specialized to
the following (156)

.
=-W2)(3.62(5)),,.. - (W2)(%.&2 (357 M),
e[ Assea(n),. A, |
e [apre), o Y. )0
o0 L5 (5 W), - L (3 )
+%E%<J A (IENE)) L+ %(MSE i (355 M) }

Its matrix form is as follows

s §SE H = s 7SE
P — (a*{JS‘J° }) o gl

o - (157)
{35 M5%}
here
r= H =
| 0 | 0
inp _ T inp . T
P{JO =0 P{J w0 (158)
L O h)llaog n;i’:l Extinction 0 I\/‘Wlaogn;;i,::/I DE><tincli0n
r= H =
| 0 | 0
{IjansE} O TE’;{elgtrzgitmctlon . P{Zl%p,\]gE,MgE} . 0 TE’;ictrE:éxtmcuon (159)
0 I 0 I
and
{J‘s J'SE} 5,]'3
U (160)
a 0
g _ | @%
U (161)
a 0
In (158) (159) the matrlces TM]aogng:lri\iAgthﬂClloﬂ and TE’:’;gITIC éXllnClan Can
be obtained as (133) and (134), and
:inp
P{J'S J'SE MSE}
_ _plieam(i) _ presn(i )
uAg [ 5ot er(%) LMo s enE(%) ]
Ho&o — H -
& Aﬂ ﬂo ce(%) ” . [;M&E«m@?(i&)]” (162)
oy —EH & A
_ HAg [ FUSCAR(ENE) |y SN (I NS
Hobo — H -
_&hu —JéEH::f e M;,SE)}H N [gmo W35 MSE)}H
50/40 —EHM | &
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The various matrices in (162) are as follows

(@i o o
s e () _ 0 0 0 (163)
0 00
[0 Guesus  Goiesms
Igj'gee;aa(isw?) - lo 0 0 (164)
0 0 0
0 00
Ff)JSE&tf“‘;(JUS) _ E)JgEE;%:.Jg 0 0 (165)
0 00
- ‘ [0 00
R P (166)
q:)MD HES 0 0
[0 0 0
P CaENE) | g GotewaE Guterms (167)
0 0 0
- o 0 o 0
ﬁMo < Hing (JU Mg ) — 0 0 0 (168)
0 PUEMRRT MM

The procedures to construct the power-based CM sets
corresponding to the structure in Fig. 8 are completely similar
to the procedures given in Sec. V, so they will not be repeated
here.

In fact, the structure in Fig. 8 has many applications in
electromagnetic engineering society, such as the microstrip
antennas [15] and the DRAs mounted on a metal plate [14], as
illustrated in Fig. 9.

In addition, the structure in Fig. 8 can be further specialized
to the structures in Fig. 10, and the formulations corresponding

@) (b)

Fig. 9. (a) A rectangular microstrip antenna; (b) a rectangular DRA mounted on
a metal palate.

\ \

SI=S™ \int(S
| sm In[(

met | Jy/ mar) Sreo g | int(Sme' Uy )

v | ) M
S\VVP|UV\ng\x)7S“‘y=x -g “ Sm:lﬂlnt(smﬂlUVmal)7Sw‘y:l -

\ . \\ Yo

@ (b)

Fig. 10. (a) A piece of metal surface completely contacts with material body;
(b) a piece of metal surface completely does not contact with material body.

to the structures in Fig. 10 are identical to the ones given in this
subsection.

D. Scatterer is constructed by one piece of metal surface and
one piece of material body, and the surface is partially
submerged into the body

In this subsection, the scatterer illustrated in Fig. 11 is
considered. Its metal part only includes one piece of surface,
and the surface is partially submerged into the material body. It
is obvious that L™ ,ov™ =@, so J' JSEM =0, and then the
basic variables can be selected as {J JS ,J3} or equivalently
selected as {J;,J3,M;*}, here J§ = ijinsm .

For this case, the input power operator (54) is specialized to
the following (169)

Pmp
= ’(]/2)<J.us + ‘]ﬂ 8':3(‘];»5;%5?“
~W2)(3 3 e ()
_llu:loAé,ftg’ [ %<J>“SE +Jm g;z(‘];)>wmmusn”“‘ ,tlj ;<MSE H:;?( )> } (169)
e (et e, - Sese). |
oMo T ! b
+ ilAE & |: %<J o+ I8 ‘I:lc 5, MSE)>\/ s +%%<M§E h‘l""‘C(JSE MSE)>VW}
Ho&o — HE, c N
_ebu g1l - mE Lini inc
[ R YRS

and the matrix form of (169) is as follows

w5 TSE o H o
) {3335 33 135,358 3
Plnp — (a{ 0.0 ﬂ}) F’{;ansg Jn} a{ 0:J0 ﬂ}
55 75 gsel\H = s 35 NASE (170)
S PR
o Jn:Mo
here
r= H =
| 0 | 0
P™ . . =|0 T P -0 T (171)
{JS,JSE‘JFW} { } } . {J@,JSE,J,%,MDSE} ) }
RIS VES (355,35 >MgE
L 0 TMa;nellc Extinction o Tr\;agneurc] Exnnillon
r= H =
I 0 | 0
=[5 MSEl> 358 = =(38 MSEl>35E
P{T:J MSE} 0 E{IegricoEEtinct?on ' {L%EJDSEVJ%‘MSE} /10 TE{IegtricDEjiinct‘:on (172)
0 I 0 I

/ U5

Smc[ Smel \ Int(smc[ UV mal)
melﬂlnt(sme( Uvmal): Sﬂmei

V mat

Fig. 11. A piece of metal surface is partially submerged into material body.
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and
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The various matrices in (175) are as follows
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Fig. 12. (a) A piece of metal surface is completely submerged into material
body; (b) a piece of metal surface completely does not contact with material
body.
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The procedures to construct the power-based CM sets
corresponding to the structure in Fig. 11 are completely similar
to the procedures given in Sec. V, so they will not be repeated
here.

The structure in Fig. 11 can be further specialized to the
structures in Fig. 12. The formulations corresponding to the
structure in Fig. 12 (a) can be obtained by removing the terms
corresponding to J; from the formulations given in this
subsection; the formulations corresponding to the structure in
Fig. 12 (b) can be obtained by removing the terms
corresponding to J: from the formulations given in this
subsection.

E. Scatterer is constructed by one piece of metal body and one
piece of material body, and the metal body is partially
“contacted with / submerged into ” the material body

In this subsection, the scatterer illustrated in Fig. 13 is
considered. Its metal part only includes one piece of body, and
the metal body can be viewed as being partially contacted with

‘ =

oV met \int (V met UV mat ) — 6V0me(
(?que‘ =0V met ﬂ int (V met UV mat )

A~ t t
VI U oV

22

V mat

Fig. 13. A piece of metal body is partially contacted with a notched material
body.
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a notched material body, and also be viewed as being partially
“submerged into” the material body. It is obvious that
L™, s™ =g, s0 J',JE . =0, and then the basic variables can

open surf

be selected as {J;,J;°,J3} or equivalently selected as
{J5, 35, M}, here 33=5;E0m .
For this case, the input power operator (54) is specialized to

the following (184)

p™
==W2)(% + 38 &2 (92) e

~(W2)(3; + 35 & (3 M)

N UV

A [ im0, s (), | (184)
o E%@?w G0 e+ FEHEE).
oS [0l (I M) M (32 M )>w}
P P%@ I (R NE e AT (O )

Its matrix expression is identical to the (170) in form.

The procedures to construct the power-based CM sets
corresponding to the structure in Fig. 13 are completely similar
to the procedures given in Sec. V, so they will not be repeated
here.

In fact, the structure in Fig. 13 can be further specialized to
the structures in Fig. 14. The formulations corresponding to the
structure in Fig. 14 (a) can be obtained by removing the terms
corresponding to J¢ from the formulations corresponding to
the structure in Fig. 13; the formulations corresponding to the
structures in Fig. 14 (b) and (c) are identical to the formulations
corresponding to the structure in Fig. 13; the formulations
corresponding to the structure in Fig. 14 (d) can be obtained by
removing the terms corresponding to J3 from the formulations

/ /
/ /

\/mat v mat

v\ int(V met U\/m,u): oy y

) oV ™\ in[(V met | Jyy mat )= (A'VC”H
/ )
oV, Tm —av™N ml(V met | Jy/ mat )
/

v |
@ _ E\Vwﬂé(i (’,}V met m Int(v met UVW&!) “‘

Py e

/et

(c) (d)

Fig. 14. (a) A piece of metal body is completely submerged into a material
body; (b) a piece of metal body partially contacts with a notched material body;
(c) a piece of metal body partially contacts with a material body; (d) a piece of
metal body completely does not contact with a material body.

corresponding to the structure in Fig. 13.

VIII.

In this paper, a line-surface equivalent principle is
established for the material body whose boundary includes
some lines and open surfaces beside a closed surface. The
traditional surface equivalent principle for the material body
whose boundary is a closed surface can be viewed as the special
case of the line-surface equivalent principle.

The applicable range of this Part Il is larger than the previous
Part I, for example, the formulations given in this Part 1l is not
only suitable for the case that the metal lines are not submerged
into material body, but also suitable for the case that some
metal lines are completely or partially submerged into material
body. The formulations corresponding to variable unification in
expansion vector space are explicitly provided in this Part 1I,
and the styles of these formulations are consistent with the
variable unification formulations in the previously established
Surface formulations of the EMP-CMT for Material bodies
(Surf-Mat-EMP-CMP) [3], [7]-[8]. The number of arguments
in the new input/output power operator provided in this Part 11
is less than the previous Part I, because the surface equivalent
currents {J5F,M¥} and {J% M*} are separately treated in
Part I, but they are treated as a whole in this Part I1. In addition,
the input/output power operator used in Part I includes some
volume integrals besides some line and surface integrals,
whereas there does not exist any volume integral in the new
input/output power operator provided in this Part 11, so this Part
Ilis a“real” LS-MM-EMP-CMT.

Due to the object-oriented feature of EMP-CMT, a new CM
set, intrinsic resonant CM set, is introduced into the EMP-CMT
family, and a series of new concepts related to intrinsic
resonance are introduced.

The LS-MM-EMP-CMT provided in the previous Part | and
this Part 11 has many valuable applications in electromagnetic
engineering society, especially the antenna engineering
community, for example, it can be efficiently utilized to
analyze and design the antennas with a metal-material
combined structure, such as the microstrip antennas, the
probe-fed DRASs, and the aperture-fed DRAs mounted on a
metal plate, etc.

CONCLUSIONS
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