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Abstract
This is the first part of the total paper. Since the theory of partial differential equations (PDEs)
has been established nearly 300 years, there are many important problems have not been re-
solved, such as what are the general solutions of Laplace equation, acoustic wave equation,
Helmholtz equation, heat conduction equation, Schrodinger equation and other important equa-
tions? How to solve the problems of definite solutions which have universal significance for these
equations? What are the laws of general solution of the mth-order linear PDEs with n variables
(n,m ≥ 2)? Is there any general rule for the solution of a PDE in arbitrary orthogonal coordinate
systems? Can we obtain the general solution of vector PDEs? Are there very simple methods to
quickly and efficiently solve the exact solutions of nonlinear PDEs? And even general solution?
Etc. These problems are all effectively solved in this paper. Substituting the results into the
original equations, we have verified that they are all correct.

keywords: concise general solution; series general solution; exact solutions; transformational
equations; problems of definite solutions.

Abbreviations: concise general solution (CGS); series general solution (SGS); independen-
t variable transformational equations (IVTEs), dependent variable transformational equations
(DVTEs); symmetric vector partial differential equations (SVPDEs); corresponding scalar equa-
tion (CSE); independent variable transformation vector equation (IVTVE).
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1 Introduction

In the establishment period of PDE theory, because of the general solution of the one-
dimensional wave equation solved by d’Alembert, the mathematicians at that time believed that
the general solutions of PDEs existed universally. Since there was no substantive breakthrough,
with Cauchy’s advice, they had to turn their attention to a variety of problems of definite
solutions.

Using the new defines, laws and methods presented in this paper, the general solutions of
many important PDEs had been solved for the first time, such as the Laplace equation, the
wave equation, the Helmholtz equation, heat equation and so on, the exact solutions of relevant
Cauchy problems have been solved too. In some cases, the general solutions and the exact
solutions of the Cauchy problem for the Poisson equation and the Schrödingerequation have
been solved. The types and numbers of the PDEs whose general solution could be solved by the
new analytic method system are far more than the sum of the other methods can solve, and the
solving process is very clear and concise.

The new theory also further reveals two major flaws and errors in the existing theory:
1. The new theory found that the general solutions of many PDEs have two forms: concise

general solutions and series general solutions, in theory, infinite series solutions of a PDE can
be obtained by its series general solution. The general solution of the one-dimensional wave
equation introduced by mainstream textbooks and professional books is not a general solution
in fact. It is only a special case of real general solution which can deduce the Fourier series
solution. According to the obtained general solutions, we find why the state and the change of
many natural phenomena that can be described by PDEs are both infinite. In this paper we
find the relationship between the general solution and the series solution of PDEs, and point
out that the alleged general solution of 1D wave equation obtained in current textbooks and
professional books is not the general solution in fact. We find that any series solutions of PDEs
can be obtained by its series general solution theoretically and show the root cause why the
states and changes of some natural phenomena described by PDEs are all infinity.

2. In the theory of PDEs, almost all of the textbooks and professional books directly or
indirectly declare that the number of the arbitrary functions in the general solution of mth-
order PDEs is m, but no related rigorous proof up to now. In this paper we find a singularity of
general solutions of Helmholtz equation the first time, namely the number of arbitrary functions
in the general solutions is more than 2.



3

In Chapter 2 of this paper we present three types transformational equations: independen-
t variable transformational equations (IVTEs), dependent variable transformational equations
(DVTEs), independent variable transformation vector equation (IVTVE), and get a law of par-
tial differential equations solution in various orthogonal coordinate system. The general solution
of vector wave equation in Cartesian, cylindrical and spherical coordinate systems have been
solved for the first time. We point out that the general solutions or particular solutions of vari-
ous symmetric vector partial differential equations can be obtained similarly in any orthogonal
coordinate system, such as vector Helmholtz equation, the magnetic vector potential equation
and so on.

The laws of the general solution of mth-order linear partial differential equations with n vari-
ables have been studied deeply in Chapter 3 (n,m ≥ 2).We have solved some typical nonlinear
partial differential equations general solutions, particular solutions or solitary wave solutions in
Chapter 4 and other relevant chapter, such as Emden-Fowler equation, Klein-Gordon equation,
sine-Gordon equation, Burgers equation, KdV equation, etc. Based on the large number of
results obtained in this book, we find that the general solutions of some PDEs have similarities,
and find the roots of these similarities by the concepts of general equations and restricted equa-
tions.

1. General solutions and exact solutions of Cauchy problem of mathematical physics
equations

In recent decades, for solving partial differential equations (PDEs) many analytic methods
[1-3] and numerical methods [4-6] have been developed rapidly, the solitary wave solutions [7-
9] plays an important role in nonlinear PDEs (NLPDEs), the existence [10, 11], uniqueness
[12, 13], and stability [14, 15] of the PDEs solution have been well studied. The formulas of
differential equations general solution have the same important value and significance as the
algebraic equations Root Formulas, although the exact or numerical solutions of many PDEs
have been found, species of PDEs which have the general solution are extremely rare yet.

Since mathematical physics equations (MPEs) are very important in PDEs, their progress is
always been noticed especially [16, 17]. In the professional books of MPEs only one dimensional
wave equation [18, 19] and some linear PDEs (LPDEs) with two variables [20] have general so-
lution. Using the new analytic methods proposed in this chapter, the general solutions of many
important PDEs had been solved for the first time, the exact solutions of relevant problems of
definite solutions have been solved too.

1.1. New principles and methods I

We first study the laws of one multivariate function is a composite function of another. In
Rn space (n ≥ 2), assuming u(x1, · · · , xn), v(x1, · · · , xn) are both smooth functions, and u is a
composite function of v

u(x1, · · · , xn) = f(v), (f ′v 6= 0), (1)

where f is an unary smooth function, according to the laws of differential and total differential

du = f ′vdv = f ′vvx1dx1 + f ′vvx2dx2 + · · ·+ f ′vvxndxn

= ux1dx1 + ux2dx2 + · · ·+ uxndxn.

So
uxi = f ′vvxi . (2)

By (2), we obtain further

uxixi = f ′vvxixi + f ′′v v
2
xi , uxixj = f ′vvxixj + f ′′v vxivxj . (3)
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Higher order laws may be deduced analogously. We set

v(x1, · · · , xn) = k1x1 + k2x2 + · · ·+ knxn + kn+1, (4)

where ki are all arbitrary constants(i = 1, 2, · · · , n+ 1), then

vxi = ki, vxixi = vxixj = 0, (i 6= j), (i, j ∈ {1, 2, · · · , n}). (5)

By (3) and under the condition of (4), we have

uxi = kif
′
v, uxixi = k2i f

′′
v , uxixj = kikjf

′′
v (6)

Using mathematical induction we can get

u(m)
xi = kmi f

(m)
v , u(pq)xixj = kpi k

q
jf

(p+q)
v , (0 ≤ m <∞, 0 ≤ p, q <∞), (7)

u
(i1i2···in)
x1x2···xn = ki11 k

in
2 · · · k

in
n f

(m)
v , (i1 + i2 + · · ·+ in = m), (8)

where

f (m)
v ≡ dmf

dvm
, f (p+q)v ≡ dp+qf

dvp+q
, u(m)

xi ≡
∂mu

∂xmi
,

u(pq)xixj ≡
∂p+qu

∂xpi x
q
j

, u
(i1i2···in)
x1x2···xn ≡

∂mu

∂xi11 ∂x
i2
2 · · · ∂x

in
n

.

(9)

By the above laws, we present a new transformational method to solve the general solutions
or exact solutions of some PDEs.

Transformational Method 1. In the domain D, (D ⊂ Rn), any established mth-order PDE
with n space variables F (x1, · · · , xn, u, ux1 , · · · , uxn , ux1x2 , · · · ) = 0, set v = v(x1, · · · , xn) and
u = f(v) are both undetermined mth-differentiable functions (u, v ∈ Cm(D)), then substitute
u = f(v) and its partial derivatives into F = 0

1. In case of working out v(x1, · · · , xn) and f(v), then u = f(v(x1, · · · , xn)) is the solution
of F = 0,

2. In case of dividing out f(v) and its partial derivative, also working out v(x1, · · · , xn), then
u = f(v(x1, · · · , xn)) is the solution of F = 0, and f is an arbitrary unary mth-differentiable
function,

3. In case of dividing out f(v) and its partial derivative, also getting k = 0, but in fact k 6= 0,
then u = f(v(x1, · · · , xn)) is not the solution of F = 0, and f is an arbitrary unary mth-
differentiable function.

In Transformational Method 1 v = v(x1, · · ·xn) may be an unknown function completely or
has a determinate form with unknown parameters, the solution of f may be an arbitrary or a
certain unary mth-differentiable function, the solution of v and f may not be single and so on.
Here we use Transformational Method 1 to solve three important PDEs.

Example 1.1.
uxx + uyy + uzz = 0. (10)

Eq. (10) is Laplace equation in Cartesian coordinate system. According to Transformational
Method 1, set

u(x, y, z) = f(v) = f(k1x+ k2y + k3z + k4), (11)
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where v = k1x+ k2y+ k3z+ k4, k1− k4 are unascertained parameters and f is an undetermined
unary 2th-differentiable function, by (7)

uxx + uyy + uzz = (k21 + k22 + k23)f (2)v = 0.

The first case is
f (2)v = 0, (12)

according to Transformational Method 1 the solution of Eq. (10) is

u = f(v) = k1x+ k2y + k3z + k4, (13)

where k1 − k4 are all arbitrary constants. The second case is

k21 + k22 + k23 = 0⇒ k1 = ±
√
−k22 − k23, (14)

where k2 and k3 are all arbitrary constants. By Transformational Method 1 the solution of Eq.
(10) is

u = f1(x
√
−k22 − k23 + k2y + k3z + k4)

+f2(−x
√
−k22 − k23 + k2y + k3z + k4)

(15)

where k2, k3 and k4 are all arbitrary constants. Note the k2, k3 and k4 in f1(x
√
−k22 − k23 +

k2y+ k3z+ k4) may be different with them in f2(−
√
−k22 − k23 + k2y+ k3z+ k4), the k1− k4 in

Eq. (13) may be different with them in Eq. (15), and Eq. (10) is a linear equation, in order to
facilitate writing, the general solution of Laplace equation may be written as

u = f1(x
√
−k22 − k23 + k1y + k2z + k3)

+f2(−x
√
−k24 − k25 + k4y + k5z + k6) + k7x+ k8y + k9z + k10,

(16)

where f1and f2 are arbitrary unary second differentiable functions, k1 − k10 are arbitrary
parameters.

Since k1 − k10 are arbitrary constants and Eq. (10) is a linear equation, (16) can also be
written as the form of a function series

u =
∑s

i=1(f1i(x
√
−k21i − k

2
2i

+ k1iy + k2iz + k3i) + f2i(−x√
−k24i − k

2
5i

+ k4iy + k5iz + k6i) + k7ix+ k8iy + k9iz + k10i),
(17)

where f1i and f2i are arbitrary unary second differentiable functions, (1 ≤ s ≤ ∞), k1i−k10i
are arbitrary determined parameters.

We call (16) the concise general solution (CGS) which has the most simple form and
call (17) the series general solution (SGS) which could have infinite arbitrary functions in it.
Theoretically all specific series solutions of Eq. (10) can be obtained by SGS (17).

Example 1.2.

(u
(m)
x )r +a(x,y,z)(k1y+k2z+k4)mr

(k1x+k3z+k5)mr (u
(m)
y )r

− (1+a(x,y,z))(k1y+k2z+k4)mr

(k2x+k3y+k6)mr
(u

(m)
z )r = 0,

(18)

where k1 − k6 are arbitrary known constant, a(x, y, z) is an arbitrary known function with 3
variables, by Transformational Method 1, set

u(x, y, z) = f(v) = f(k1xy + k2xz + k3yz + k4x+ k5y + k6z + k7), (19)
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where v = k1xy + k2xz + k3yz + k4x+ k5y + k6z + k7, k7 is an undetermined parameter and f
is an unary mth-differentiable function to be determined, then

ux = f ′vvx = (k1y + k2z + k4)f
′
v, (20)

uy = f ′vvy = (k1x+ k3z + k5)f
′
v, (21)

uz = f ′vvz = (k2x+ k3y + k6)f
′
v. (22)

According to (20)-(22) and mathematical induction we get

u(m)
x = (k1y + k2z + k4)

mf (m)
v , (23)

u(m)
y = (k1x+ k3z + k5)

mf (m)
v , (24)

u(m)
z = (k2x+ k3y + k6)

mf (m)
v . (25)

Then

(u
(m)
x )r + a(x,y,z)(k1y+k2z+k4)mr

(k1x+k3z+k5)mr (u
(m)
y )r − (1+a(x,y,z))(k1y+k2z+k4)mr

(k2x+k3y+k6)mr (u
(m)
z )r

= (k1y + k2z + k4)
mr(f

(m)
v )r + a(x,y,z)(k1y+k2z+k4)mr

(k1x+k3z+k5)mr (k1x+ k3z + k5)
mr(f

(m)
v )r

− (1+a(x,y,z))(k1y+k2z+k4)mr

(k2x+k3y+k6)mr (k2x+ k3y + k6)
mr(f

(m)
v )r = 0

⇒ (k1y + k2z + k4)
mr(f

(m)
v )r − (k1y + k2z + k4)

mr(f
(m)
v )r = 0.

According to Transformational Method 1, the solution of Eq. (18) is

u = f(k1xy + k2xz + k3yz + k4x+ k5y + k6z + k7), (26)

where f(v) is an arbitrary unary mth-differentiable function and k7 is an arbitrary constants.If
m = 1, (26) is the general solution of Eq. (18).

Example 1.3.

a1

(
u(m)
x1

)r
+ a2

(
u(m)
x2

)r
+ . . .+ an

(
u(m)
xn

)r
+ an+1

(
u(pq)x2x3

)r
= 0, (27)

where ai, (i = 1, 2, · · ·n+ 1) are arbitrary known constants, r ≥ 1, 1 ≤ p+ q = m, the left of Eq.

(27) could be added any number and types of
(
u
(i1i2...in)
x1x2...xn

)r
,(i1 + i2 + · · · + in = m) with any

constant coefficient, since the similar calculation method, for facilitating writing there is only

the an+1

(
u
(pq)
x2x3

)r
in Eq. (27).

By Transformational Method 1, set u(x1, · · ·xn) = f(v), v(x1, · · ·xn) = k1x1 + k2x2 + · · · +
knxn+kn+1, where k1, k2, · · · kn+1 are unascertained parameters and f is an undetermined unary
mth-differentiable function, by (7)

a1

(
u
(m)
x1

)r
+a2

(
u
(m)
x2

)r
+ · · ·+ an

(
u
(m)
xn

)r
+ an+1

(
u
(pq)
x2x3

)r
= (a1k

mr
1 + a2k

mr
2 + · · ·+ ank

mr
n + an+1k

pr
2 k

qr
3 )
(
f
(m)
v

)r
= 0.

The first case is (
f (m)
v

)r
= 0, (28)

according to Transformational Method 1 the solution of Eq. (27) is

u = f (v) = cm−1v
m−1 + cm−2v

m−2 + . . .+ c1v, (29)
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where v(x1, · · ·xn) = k1x1 + k2x2 + · · ·+ knxn + kn+1, k1− kn+1 and c1− cm−1 are all arbitrary
constants.
Since v contains arbitrary constants kn+1, so there is no arbitrary constants c0 in (29).
The second case is

a1k
mr
1 + a2k

mr
2 + . . . ank

mr
n + an+1k

pr
2 k

qr
3 = 0, (30)

if m, r are both odd, then

k1 =

(
−a2k

mr
2 + a3k

mr
3 + . . .+ ank

mr
n + an+1k

pr
2 k

qr
3

a1

) 1
mr

, (31)

where k2 − kn+1 are all arbitrary constants. By Transformational Method 1 the solution of Eq.
(27) is

u =f((−a2k
mr
2 + . . .+ ank

mr
n + an+1k

pr
2 k

qr
3

a1
)

1
mr

x1 + k2x2 + . . .

+ knxn + kn+1),

(32)

where f is an arbitrary unary mth-differentiable function.
If there is at least one even number among m and r in Eq. (27), then

k1 = ±
(
−a2k

mr
2 + a3k

mr
3 + . . .+ ank

mr
n + an+1k

pr
2 k

qr
3

a1

) 1
mr

. (33)

By Transformational Method 1, except (29) and (32) another solution of Eq. (27) is

u =f(−(−a2k
mr
2 + . . .+ ank

mr
n + an+1k

pr
2 k

qr
3

a1
)

1
mr

x1 + k2x2 + . . .

+ knxn + kn+1).

(34)

In the case of r = 1, Eq. (27) becomes linear equation

a1u
(m)
x1 + a2u

(m)
x2 + . . .+ anu

(m)
xn + an+1u

(pq)
x2x3 = 0. (35)

If m is odd, by (29) and (32) the solution of Eq. (35) is

u = f

((
−a2km2 +...+ankmn +an+1k

p
2k

q
3

a1

) 1
m
x1 + k2x2 + . . .+ knxn + kn+1

)
+cm−1v

m−1 + cm−2v
m−2 + . . .+ c1v,

(36)

where v = C1x1 + C2x2 + · · · + Cnxn + Cn+1, C1 − Cn+1 are arbitrary constants. If m is even,
by (29), (32) and (34) the solution of Eq. (35) is

u = f1

((
−a2km2 +...+ankmn +an+1k

p
2k

q
3

a1

) 1
m
x1 + k2x2 + . . .+ knxn + kn+1

)
+f2

(
−
(
−a2lm2 +...+anlmn +an+1l

p
2 l

q
3

a1

) 1
m
x1 + l2x2 + . . .+ lnxn + ln+1

)
+cm−1v

m−1 + cm−2v
m−2 + . . .+ c1v

(37)

where f1 and f2 are arbitrary unary mth-differentiable functions, k2 − kn+1 and l2 − ln+1 are
arbitrary parameters. In Appendix A we proved that if k1, l1 6= 0 and k1, l1 9 0 in (37), c1v can
be described by f1 and f2. If m = 2, r = p = q = 1, Eq. (27) becomes

a1u
(2)
x1 + a2u

(2)
x2 + . . .+ anu

(2)
xn + an+1ux2x3 = 0. (38)
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According to (37) and (16), the CGS and SGS of Eq. (38) can be get respectively

u = f1

((
−a2k

2
2 + . . . ank

2
n + an+1k2k3

a1

) 1
2

x1 + k2x2 + . . .+ knxn + kn+1

)

+ f2

(
−
(
−a2l

2
2 + . . . anl

2
n + an+1l2l3

a1

) 1
2

x1 + l2x2 + . . .+ lnxn + ln+1

)
+ c1v.

(39)

u =
s∑
i=1

(f1i((−
a2k

2
i2

+ . . .+ ank
2
in

+ an+1ki2ki3
a1

)

1
2

x1 + ki2x2 + . . .+ kinxn + kin+1)

+ f2i(−(−
a2l

2
i2

+ . . .+ anl
2
in

+ an+1li2 li3
a1

)

1
2

x1 + li2x2 + . . .+ linxn + lin+1)) + c1v

(40)

Consider the following Cauchy problem of Eq. (38)

u (0, x2, . . . xn) =

s∑
i=1

ϕi
(
ki2x2 + ki3x3 + . . .+ kinxn + kin+1

)
, (41)

ux1 (0, x2, . . . xn) =

s∑
i=1

ψi
(
ki2x2 + ki3x3 + . . .+ kinxn + kin+1

)
, (42)

where 1 ≤ s ≤ ∞, x1 sometimes equal to time t. In (40), set c1 = 0, kij = lij , (i = 1, 2, · · · s, j =
2, 3, · · ·n+ 1), by further calculation which is in Appendix B, the exact solution of Eq. (38) in
the conditions of (41) and (42) is

u = 1
2

∑s
i=1(ϕi(ki1x1 + ki2x2 + . . .+ kinxn + kin+1)

+ϕi(−ki1x1 + ki2x2 + . . .+ kinxn + kin+1)

+ 1
ki1

∫ ki1x1+ki2x2+...+kinxn+kin+1

−ki1x1+ki2x2+...+kinxn+kin+1

ψ(ξi)dξi)
(43)

where

ki1 =
(
−
(
a2k

2
i2 + . . .+ ank

2
in + an+1ki2ki3

)
/a1
) 1

2 . (44)

According to the above three typical cases, we know that the solutions of some linear or
nonlinear PDEs can be obtained by using Transformational Method 1.

1.2. 1D wave equation

1D wave equation
utt − a2uxx = 0, (45)

is the first PDE studied deeply. Almost all current textbooks and professional books have
pointed out that the general solution of Eq. (45) is

u = f1 (x+ at) + f2 (x− at) . (46)

Fourier series solution of Eq. (45) is

u =

s∑
i=1

(An cos(
nπat

l
) +Bn sin(

nπat

l
)) sin(

nπx

l
). (47)



9

By (46) we cannot get (47) obviously, there is no answer why the particular solution (47) cannot
be got by the general solution (46).

Eq. (45) is a special case of Eq. (38), according to (39) and (40), its CGS and SGS can be
get respectively

u = f1 (k1x+ k1at+ k2) + f2 (k3x− k3at+ k4) + k5x+ k6t+ k7, (48)

u =
∑s

i=1 (f1i (k1ix+ k1iat+ k2i) + f2i (k3ix− k3iat+ k4i))
+k5x+ k6t+ k7,

(49)

where f1, f1i , f2 and f2i are arbitrary unary second differentiable functions, k1−k7 are arbitrary
parameters, k1i − k4i are arbitrary determined parameters, (1 ≤ s ≤ ∞). Of course, the general
solution of Eq. (45) can also be written as

u = f1 (k1x+ k1at+ k2) +

s∑
i=1

f2i (k3ix− k3iat+ k4i) + k5x+ k6t+ k7 (50)

and so on, (50) is also a SGS, but in this paper we will not discuss the general solutions in
special forms.

By the above results we can see that (46) is a special case of (48) and (49), and is not a
general solution of Eq. (45) in fact, so using (46) we cannot get the Fourier series solution.

Theoretically every specific series solution of Eq. (45) can be obtained by the SGS (49), as
a case, we will obtain the Fourier series solution (47).

Set
f1n (k1nx+ k1nat+ k2n) = Cn sin(k1nx+ k1nat+ k2n), (51)

f2n (k3nx− k3nat+ k4n) = Dn cos(k3nx− k3nat+ k4n), (52)

So

u =
∑s

i=1(f1n (k1nx+ k1nat+ k2n) + f2n (k3nx− k3nat+ k4n))
=
∑s

i=1(Cn sin(k1nx) cos(k1nat) cos k2n + cos(k1nx) sin(k1nat) cos k2n
+ cos(k1nx) cos(k1nat) sin k2n − sin(k1nx) sin(k1nat) sin k2n)
+Dn(cos(k3nx) cos(k3nat) cos k4n + sin(k3nx) sin(k3nat) cos k4n
− sin(k3nx) cos(k3nat) sin k4n + cos(k3nx) sin(k3nat) sin k4n)).

Set k1n = k3n = kn, then

u =
∑s

i=1((Cn cos k2n −Dn sin k4n) sin (knx) cos (knat)
+ (Cn cos k2n +Dn sin k4n) cos (knx) sin (knat)
+ (Cn sin k2n +Dn cos k4n) cos (knx) cos (knat)
+ (−Cn sin k2n +Dn cos k4n) sin (knx) sin (knat))

(53)

Set
Cn cos k2n +Dn sin k4n = Cn sin k2n +Dn cos k4n = 0.

We have

k4n =
(2m+ 1)π

2
− k2n .
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Set k4n = π/2− k2n , we can get Cn = −Dn. Substituting the above results into (53)

u =
∑s

i=1((Cn cos k2n −Dn sin k4n) sin(knx) cos(knat)
+(−Cn sin k2n +Dn cos k4n) sin(knx) sin(knat))
=
∑s

i=1(2Cn cos k2n sin(knx) cos(knat)− 2Cn sin k2n sin(knx) sin(knat)).

Namely

u =

s∑
i=1

2Cn(cos k2n cos(knat)− sin k2n sin(knat)) sin(knx). (54)

Since Cn, kn and k2n are all arbitrary parameters, set

kn =
nπ

l
, 2Cn cos k2n = An,−2Cn sin k2n = Bn. (55)

Then (54) may be translated into (47). (46) was first discovered by d’ Alembert, then Daniel
Bernoulli discovered an infinite series solution

u =

∞∑
i=1

an sin(
nπx

l
) cos(

nπat

l
). (56)

The relationship between (46) and (56) led to a well-known controversy in the history of
mathematics [21], many famous mathematicians have been involved in this drastic and lengthy
debate, even after discovering the Fourier series solution (47), the relationship between (46) and
(47) is still unclear, now the problem is finally solved successfully, (46) and (47) are two different
closed solutions, not the general solution, only the form of (46) is relatively close the general
solution.

1.3. 2D wave equation

The form of 2D wave equation in Cartesian coordinate system is

utt − a2uxx − a2uyy = 0. (57)

Eq. (57) is an especial case of Eq. (38), by (39) its CGS can be obtained

u = f1

(
k1x+ k2y + at

√
k21 + k22 + k3

)
+f2

(
k4x+ k5y − at

√
k24 + k25 + k6

)
+ k7x+ k8y + k9t+ k10

= g

(
k1x√
k21+k

2
2

+ k2y√
k21+k

2
2

+ at+ g0

)
+h

(
k4x√
k24+k

2
5

+ k5y√
k24+k

2
5

− at+ h0

)
+ k7x+ k8y + k9t+ k10

= g (x cos θ + y sin θ + at+ g0)
+h (x cosϕ+ y sinϕ− at+ h0) + k7x+ k8y + k9t+ k10,

(58)

where f1, f2, g and h are arbitrary unary second differentiable functions, k1−k10, θ, ϕ, g0 and h0
are arbitrary parameters. g(x cos θ + y sin θ + at + g0) is a parallel wave with the speed a, the
angle between x axis and spread direction of g is θ which is arbitrary. The SGS of Eq. (57) is

u(x, y, t) =
∑

i(gi(x cos θi + y sin θi + at+ gi0)+
hi(x cosϕi + y sinϕi − at+ hi0)) + k7x+ k8y + k9t+ k10,

(59)
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where gi and hi are arbitrary unary second differentiable functions, θi, ϕi, gi0 and hi0 are arbi-
trary determined parameters.

A research hotspot is using numerical methods to study the 2D wave equation [21]. Consider
the following initial value problem of Eq. (57)

u (x, y, 0) =
∑

i ϕi (ki1x+ ki2y + ki3) ,
ut (x, y, 0) =

∑
i ψi (ki1x+ ki2y + ki3) .

(60)

Similar to the solving method of (43), the exact solution of Eq. (57) on the conditions of (60)
can be got

u = 1
2

∑
i(ϕi(ki1x+ ki2y − at

√
k2i1 + k2i2 + ki3)

+ϕi(ki1x+ ki2y + at
√
k2i1 + k2i2 + ki3)

+ 1

a
√
k2i1

+k2i2

∫ ki1x+ki2y+at
√
k2i1

+k2i2
+ki3

ki1x+ki2y−at
√
k2i1

+k2i2
+ki3

ψ (ξi) dξi).

(61)

1.4. Acoustic wave equation

The form of acoustic wave equation is

ptt − c20 4 p = 0 (62)

where ∆ is the Laplace operator, p is the sound pressure, and c0 is the sound speed. Eq. (62)
is a special case of Eq. (38), according to (39) its CGS in Cartesian coordinate system is

p = f1

(
k1x+ k2y + k3z + c0t

√
k21 + k22 + k23 + k4

)
+f2

(
k5x+ k6y + k7z − c0t

√
k25 + k26 + k27 + k8

)
+ k9x+ k10y + k11z + k12t+ k13

= g

(
k1x√

k21+k
2
2+k

2
3

+ k2y√
k21+k

2
2+k

2
3

+ k3z√
k21+k

2
2+k

2
3

+ c0t+ k4√
k21+k

2
2+k

2
3

)
+h

(
k5x√

k25+k
2
6+k

2
7

+ k6y√
k25+k

2
6+k

2
7

+ k7z√
k25+k

2
6+k

2
7

− c0t+ k8√
k25+k

2
6+k

2
7

)
+k9x+ k10y + k11z + k12t+ k13
= g(x sin θ cosϕ+ y sin θ sinϕ+ z cos θ + c0t+ g0)
+h(x sinφ cosψ + y sinφ sinψ + z cosφ+ c0t+ h0)
+k9x+ k10y + k11z + k12t+ k13,

(63)

where f1, f2, g and h are arbitrary unary second differentiable functions, k1 − k13, θ, ϕ, φ, ψ, g0
and h0 are arbitrary parameters.

g(x sin θ cosϕ+ y sin θ sinϕ+ z cos θ+ c0t+ g0) is a parallel wave with the speed c0, θ is the
angle between z axis and spread direction of g, ϕ is the angle between x axis and the projection
in xy plane of spread direction of g. The SGS of Eq. (62) is

p =
∑

i gi(x sin θi cosϕi + y sin θi sinϕi + z cos θi + c0t+ gi0)
+
∑

i hi(x sinφi cosψi + y sinφi sinψi + z cosφi − c0t+ hi0)
+k9x+ k10y + k11z + k12t+ k13,

(64)

where gi and hi are arbitrary unary second differentiable functions, θi, ϕi, φi,ψi,gi0,hi0 are arbi-
trary determined parameters.
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Consider the following initial value problem of Eq. (62)

p (x, y, z, 0) =
∑
i

ϕi (ki1x+ ki2y + ki3z + ki4) , (65)

pt (x, y, z, 0) =
∑
i

ψi (ki1x+ ki2y + ki3z + ki4) . (66)

Similar to the solving method of (43), the exact solution of Eq. (62) on the conditions of (65)
and (66) is

p = 1
2

∑
i(ϕi(ki1x+ ki2y + ki3z + c0t

√
k2i1 + k2i2 + k2i3 + ki4)

+ϕi(ki1x+ ki2y + ki3z − c0t
√
k2i1 + k2i2 + k2i3 + ki4)

+ 1

c0
√
k2i1

+k2i2
+k2i3

∫ ki1x+ki2y+ki3z+c0t
√
k2i1

+k2i2
+k2i3

+ki4

ki1x+ki2y+ki3z−c0t
√
k2i1

+k2i2
+k2i3

+ki4

ψi(ξ)dξ)

(67)

Nonlinear acoustic wave equation is a hot area of current research [22, 23], the solving method
of nonlinear PDEs will be studied in our other papers.

1.5. Laplace equation

Laplace equation is importantly used not only in classical electrodynamics, thermodynamics
and fluid dynamics etc., but also in the modern theory of the invisible [25, 26]. In recent decades
a research hotspot is using many numerical methods for solving Laplace’s equation in various ge-
ometries and boundary conditions, such as the moment methods [27], quasi-reversibility methods
[28, 29], finite difference methods [30] and so on.

According to the previous calculation results, the CGS and SGS of uxx + uyy + uzz = 0 are
(16) and (17) respectively. Assuming Eq. (10) satisfies the following boundary conditions

u (0, y, z) =
∑s

i=1 ϕi (ki1y + ki2z + ki3)
ux (0, y, z) =

∑s
i=1 ψi (ki1y + ki2z + ki3) .

(68)

According to (43) and (44), the exact solution of Eq. (10) on the conditions of (68) is

u = 1
2

∑s
i=1(ϕi(x

√
−k2i1 − k

2
i2

+ ki1y + ki2z + ki3)

+ϕi(−x
√
−k2i1 − k

2
i2

+ ki1y + ki2z + ki3)

+ 1√
−k2i1−k

2
i2

∫ x
√
−k2i1−k

2
i2
+ki1y+ki2z+ki3

−x
√
−k2i1−k

2
i2
+ki1y+ki2z+ki3

ψ(ξi)dξi)

(69)

1.6. Basic principles and methods II

v(x1, · · ·xn) and f are both undetermined in Transformational Method 1, to solve some
PDEs we may be required to set f pending and v(x1, · · ·xn) known, so put forward Transfor-
mational Method 2.

Transformational Method 2. In the domain D, (D ⊂ Rn), any established mth-order PDE
with n space variables F (x1, · · · , xn, u, ux1 , · · · , uxn , ux1x2 , · · · ) = 0, set v = v(x1, · · · , xn) known
and u = f(v) undetermined (u, v ∈ Cm(D)), then substitute u = f(v) and its partial derivatives
into F = 0
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1. In case of working out f , then u = f(v) is the solution of F = 0,

2. In case of dividing out f and its partial derivative, also getting 0 = 0, then u = f(v) is
the solution of F = 0, and f is an arbitrary unary mth-differentiable function,

3. In case of dividing out f and its partial derivative, also getting k = 0, but in fact k 6= 0, then
u = f(v) is not the solution of F = 0, and f is an arbitrary unary mth-differentiable function.

We will research the application of Transformational Method 2 later in this book. Through
the comparison, we can find that the traveling wave method and the solitary wave method are
the concrete applications of Transformation Method 1, 2.

Now we study another important compound law of multivariate functions. In Rn space
(n ≥ 2), assuming u, v and g are smooth functions, set

u(x1, · · · , xn) = g(x1, · · · , xn)f(v), (f ′v 6= 0), (70)

where v = v(x1, · · ·xn), f is an unary smooth function, then

du =ux1dx1 + ux2dx2 + . . .+ uxndxn = fdg + gdf = fdg + gf
′
vdv

=
(
fgx1 + gf

′
vvx1

)
dx1 +

(
fgx2 + gf

′
vvx2

)
dx2 + . . .+

(
fgxn + gf

′
vvxn

)
dxn.

So
uxi = fgxi + gf

′
vvxi . (71)

By (71) we could obtain

uxixi = fgxixi + 2gxif
′
vvxi + gf

′′
v v

2
xi + gf

′
vvxixi , (72)

uxixj = fgxixj + gxif
′
vvxj + gxjf

′
vvxi + gf

′′
v vxivxj + gf

′
vvxixj . (73)

Higher order law may be deduced analogously.
According to the above laws we present Transformational Method 3.

Transformational Method 3. In the domain D, (D ⊂ Rn), any established mth-order PDE
with n space variables F (x1, · · · , xn, u, ux1 , · · · , uxn , ux1x2 , · · · ) = 0, setting f(v),g(x1, · · ·xn)
and v(x1, · · · , xn) are all undetermined function, g, v ∈ Cm(D), then substitute u = gf(v) and
its partial derivatives into F = 0

1. In case of working out f, g and v, then u = gf(v) is the solution of F = 0,

2. In case of dividing out f and its partial derivative, also working out g and v, then u = gf(v)
is the solution of F = 0, and f is an arbitrary unary mth-differentiable function,

3. In case of getting k = 0, but in fact k 6= 0, then u = gf(v) is not the solution of F = 0.

In Transformational Method 3 v(x1, · · ·xn) and g(x1, · · ·xn) may be unknown completely or
have definite forms with unknown parameters, the solution of f, v and g may not be single. To
solve some PDEs we may be required to set f(v), v(x1, · · ·xn) pending and g(x1, · · ·xn) known,
so put forward Transformational Method 4.

Transformational Method 4. In the domain D, (D ⊂ Rn), any established mth-order PDE
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with n space variables F (x1, · · · , xn, u, ux1 , · · · , uxn , ux1x2 , · · · ) = 0, setting g(x1, · · ·xn) is known
and f(v), v(x1, · · ·xn) are undetermined, g, v ∈ Cm(D), then substitute u = gf(v) and its partial
derivatives into F = 0

1. In case of working out f and v, then u = gf(v) is the solution of F = 0,

2. In case of dividing out f and its partial derivative, also working out v(x1, · · ·xn), then
u = gf(v) is the solution of F = 0, and f is an arbitrary unary mth-differentiable function,

3. In case of getting k = 0, but in fact k 6= 0, then u = gf(v) is not the solution of F = 0.

To solve some PDEs we may be required to set g(x1, · · ·xn), f(v) undetermined and v(x1, · · ·xn)
known and so on. The forms of these laws are similar to Transformational Method 3-4, we will
not present here.

1.7. Poisson equation

Consider the following Poisson equation

4u = c (x, y, z) . (74)

Supposing
c (x, y, z) = r (v) , v (x, y, z) = k1x+ k2y + k3z + k4, (75)

c(x, y, z) is known in practical problems, so v(x, y, z) = k1x + k2y + k3z + k4 is known too.
According to Transformational Method 2, set u = f(v), f is an undetermined unary function,
by (7), then

4u = c (x, y, z)

=⇒
(
k21 + k22 + k23

)
f
′′
v = r (v)

=⇒ u (x, y, z) = f (v) =

∫∫
r (v) dvdv

k21 + k22 + k23
+ C1v + C2,

where C1 and C2 are arbitrary constants. So particular solution of Eq. (74) is

u (x, y, z) =

∫∫
r (v) dvdv

k21 + k22 + k23
+ C1v + C2. (76)

According to the general solution of Laplace equation, the CGS of Eq. (74) may be get

u (x, y, z) = f1

(
x
√
−l21 − l22 + l1y + l2z + l3

)
+ f2

(
−x
√
−l24 − l25 + l4y + l5z + l6

)
+

∫∫
r (v) dvdv

k21 + k22 + k23
+ l7x+ l8y + l9z + l10,

(77)

where f1 and f2 are arbitrary unary second differentiable functions, since l1 − l10 are arbitrary
constants, (77) can be written as

u (x, y, z) =
s∑
i=1

(
fi1

(
x
√
−l2i1 − l

2
i2

+ li1y + li2z + li3

)
+ fi2

(
−x
√
−l2i4 − l

2
i5

+ li4y + li5z + li6

))
+

∫∫
r (v) dvdv

k21 + k22 + k23
+ l7x+ l8y + l9z + l10 , (1 ≤ s <∞) ,

(78)
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where fi1 and fi2 are arbitrary unary second differentiable functions, li1 − li6 are arbitrary de-
termined constants.

Currently, using numerical methods to analyse Poisson equation is a hot research area [31],
under the condition of (75) we set

u (0, y, z) = p (k2y + k3z + k4) +

s∑
i=1

ϕi (li1y + li2z + li3) , (79)

ux (0, y, z) = k1p
′ (k2y + k3z + k4) +

s∑
i=1

ψi (li1y + li2z + li3) , (80)

where ϕi, ψi and p are known functions, and

p (k1x+ k2y + k3z + k4) =

∫∫
r (v) dvdv

k21 + k22 + k23
+ C1v + C2. (81)

In (78) set li1 = li4 ,li2 = li5 ,li3 = li6 and l7x+ l8y+ l9z+ l10 = C1v+C2, similar to the calculation
of (43) we get

fi1 (li1y + li2z + li3) + fi2 (li1y + li2z + li3) = ϕi (li1y + li2z + li3) ,

fi1 (li1y + li2z + li3)− fi2 (li1y + li2z + li3)

=
1√

−l2i1 − l
2
i2

∫ li1y+li2z+li3

li1y0+li2z0+li3

ψi(ξi)dξi + fi1(li1y0 + li2z0 + li3) − fi2(li1y0 + li2z0 + li3).

By the further calculation, the exact solution of Eq. (74) on the conditions of (75), (79) and
(80) is

u (x, y, z) = p (k1x+ k2y + k3z + k4)

+
s∑
i=1

(
1

2
ϕi

(
x
√
−l2i1 − l

2
i2

+ li1y + li2z + li3

)
+

1

2
ϕi

(
−x
√
−l2i1 − l

2
i2

+ li1y + li2z + li3

)

+
1

2
√
−l2i1 − l

2
i2

∫ x
√
−l2i1−l

2
i2
+li1y+li2z+li3

∫
−x

√
−l2i1−l

2
i2
+li1y+li2z+li3

ψi (ξi) dξi)

(82)
2D wave equation and acoustic wave equation which we studied previously are homogeneous

equations, the general solution and the exact solution of the Cauchy problem for their non-
homogeneous equation can be obtained similar to the Poisson equation.

1.8. Helmholtz equation

Before research Helmholtz equation, we first consider a PDE as follows

a1uxx + a2uyy + a3uzz + a4uxy + a5uyz + a6uzx = a7, (83)

where ai = ai(x, y, z, u), (i = 1, 2, · · · 7), according to Transformational Method 1, set

u (x, y, z) = f (v) = f (k1x+ k2y + k3z + k4) , (84)
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where k1 − k4 are parameters to be determined, f is an undetermined unary function, then

a1uxx + a2uyy + a3uzz + a4uxy + a5uyz + a6uzx

= k21a1f
′′
v + k22a2f

′′
v + k23a3f

′′
v + k1k2a4f

′′
v + k2k3a5f

′′
v + k1k3a6f

′′
v

= a7.

Namely

f
′′
v =

a7
k21a1 + k22a2 + k23a3 + k1k2a4 + k2k3a5 + k1k3a6

. (85)

If a7
k21a1+k

2
2a2+k

2
3a3+k1k2a4+k2k3a5+k1k3a6

can be converted into g(v) or h(f), it can be further com-

puted,set
ai (x, y, z, u) = ai (v) , (i = 1, 2, . . . 7) , (86)

So the particular solution of Eq. (83) on the condition of (86) is

u (x, y, z) =

∫∫
a7dvdv

k21a1 + k22a2 + k23a3 + k1k2a4 + k2k3a5 + k1k3a6
+ C1v + C2, (87)

where C1 and C2 are arbitrary constant, k1 − k4 are determinate parameters. For instance

uxx + (k1x+ k2y + k3z + k4)
muyy + (k1x+ k2y + k3z + k4)

nuzz = sin (k1x+ k2y + k3z + k4) .
(88)

According to (87) its particular solution is

u (x, y, z) =

∫∫
sinvdvdv

k21 + k22v
m + k23v

n
+ C1v + C2,

where v(x, y, z) = k1x+ k2y + k3z + k4. Set

ai (x, y, z, u) = ai (u) , (i = 1, 2, . . . 7) . (89)

From (84)-(85) we have

f
′′
v =

a7
k21a1 + k22a2 + k23a3 + k1k2a4 + k2k3a5 + k1k3a6

=⇒ v = C1 ±
∫ (

C2 + 2

∫
a7df

k21a1 + k22a2 + k23a3 + k1k2a4 + k2k3a5 + k1k3a6

)− 1
2

df,

where k1 − k4, C1 and C2 are arbitrary constant. Namely

a1 (u)uxx + a2 (u)uyy + a3 (u)uzz + a4 (u)uxy + a5 (u)uyz + a6 (u)uzx = a7 (u) . (90)

The particular solution of Eq. (90) is

v = C1 ±
∫ (

C2 + 2

∫
a7du

k21a1 + k22a2 + k23a3 + k1k2a4 + k2k3a5 + k1k3a6

)− 1
2

du. (91)

The solving method of Eq. (83) can be extended to any similar PDEs with n space variables.
Emden-Fowler equation [32, 33], Klein-Gordon equation [34, 35] and sine-Gordon equation [36]
are special cases of Eq. (90), which are the hotspots of current research.
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Consider the following PDE

a1uxx + a2uyy + a3uzz + k2u = 0 (92)

It’s a special case of Eq. (90), according to (91)

v = C1 ±
∫ (

C2 − 2

∫
k2udu

k21a1 + k22a2 + k23a3

)− 1
2

du

= C1 ±
√
k21a1 + k22a2 + k23a3arcsin (C3u)

k

⇒ u =
1

C3
sin

(
±k (v − C1)√

k21a1 + k22a2 + k23a3

)

= ±C4sin

(
C5 + k (k1x+ k2y + k3z)√

k21a1 + k22a2 + k23a3

)
.

Since C4 is an arbitrary constant, so the particular solution of Eq. (92) can be written as

u (x, y, z) = C4sin

(
C5 + k (k1x+ k2y + k3z)√

k21a1 + k22a2 + k23a3

)
, (93)

where k1 − k3,C4 and C5 are arbitrary constant. We use Transformational Method 3 to obtain
the general solution of Eq. (92), set

u (x, y, z) = g (x, y, z)h (w) = g (x, y, z)h (l1x+ l2y + l3z + l4) , (94)

where w(x, y, z) = l1x+ l2y + l3z + l4,l1 − l4 are undetermined parameters, h(w) and g(x, y, z)
are undetermined second differentiable functions, according to (72) and (94) we get

uxx = hgxx + 2l1gxh
′
w + l21gh

′′
w,

uyy = hgyy + 2l2gyh
′
w + l22gh

′′
w,

uzz = hgzz + 2l3gzh
′
w + l23gh

′′
w.

So
a1uxx + a2uyy + a3uzz + k2u

= a1hgxx + 2a1l1gxh
′
w + a1l

2
1gh

′′
w + a2hgyy + 2a2l2gyh

′
w

+ a2l
2
2gh

′′
w + a3hgzz + 2a3l3gzh

′
w + a3l

2
3gh

′′
w + k2gh.

Namely(
a1l

2
1 + a2l

2
2 + a3l

2
3

)
gh
′′
w + 2 (a1l1gx + a2l2gy + a3l3gz)h

′
w +

(
a1gxx + a2gyy + a3gzz + k2g

)
h = 0.

(95)
Set h(w) an arbitrary unary second differentiable function, according to (95) we obtain

a1l
2
1 + a2l

2
2 + a3l

2
3 = 0⇒ l1 = ±

√
−a2l22 − a3l23

a1
, (96)

a1l1gx + a2l2gy + a3l3gz = 0, (97)

a1gxx + a2gyy + a3gzz + k2g = 0. (98)
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By (93) the particular solution of Eq. (98) is

g (x, y, z) = C4sin

(
C5 + k (k1x+ k2y + k3z)√

k21a1 + k22a2 + k23a3

)
(99)

Substituting from (99) into (97) we get

a1l1gx + a2l2gy + a3l3gz

=
a1l1C4kk1 + a2l2C4kk2 + a3l3C4kk3√

k21a1 + k22a2 + k23a3
cos

(
C5 + k (k1x+ k2y + k3z)√

k21a1 + k22a2 + k23a3

)
= 0

⇒ a1l1C4kk1 + a2l2C4kk2 + a3l3C4kk3 = 0.

Namely

k1 =
−a2k2l2 − a3k3l3

a1l1
. (100)

Then

u (x, y, z) = g (x, y, z)h (w)

= sin

(
C5 + k (k1x+ k2y + k3z)√

k21a1 + k22a2 + k23a3

)
h (l1x+ l2y + l3z + l4)

= sin

C5a1l1 − k (a2k2l2 + a3k3l3)x+ ka1l1 (k2y + k3z)√
(a2k2l2 + a3k3l3)

2 +
(
a2k22 + a3k23

)
a21l

2
1

h (l1x+ l2y + l3z + l4) .

So the general solution of Eq. (92) is

u = sin

 l5 − k (a2k2l2 + a3k3l3)x+ k
√
−a1a2l22 − a1a3l23 (k2y + k3z)√

(a2k2l2 + a3k3l3)
2 − a1

(
a2k22 + a3k23

) (
a2l22 + a3l23

)


h1

√−a2l22 − a3l23
a1

x+ l2y + l3z + l4


+ sin

 l15 − k (a2k12l12 + a3k13l13)x− k
√
−a1a2l212 − a1a3l213 (k12y + k13z)√

(a2k12l12 + a3k13l13)
2 − a1

(
a2k212 + a3k213

) (
a2l212 + a3l213

)


h2

−
√
−a2l212 − a3l213

a1
x+ l12y + l13z + l14

 ,

(101)

where h1 and h2 are arbitrary unary second differentiable functions, k2,k3,k12,k13,l2 − l5 and
l12 − l15 are arbitrary constants.

Consider the following 3D Helmholtz equation

uxx + uyy + uzz + k2u = 0. (102)
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According to (101) we can get the general solution of Eq. (102) is

u = sin

 l5 − k (k2l2 + k3l3)x+ k
√
−l22 − l23 (k2y + k3z)√

(k2l2 + k3l3)
2 −

(
k22 + k23

) (
l22 + l23

)
h1

(√
−l22 − l23x+ l2y + l3z + l4

)

+ sin

 l15 − k (k12l12 + k13l13)x− k
√
−l212 − l213 (k12y + k13z)√

(k12l12 + k13l13)
2 −

(
k212 + k213

) (
l212 + l213

)


h2

(
−
√
−l212 − l213x+ l12y + l13z + l14

)
,

(103)
Consider the following 2D Helmholtz equation

uxx + uyy + k2u = 0. (104)

By (101) the general solution of Eq. (102) could be got

u = sin

C6 − k (a2k2l2 + a3k3l3)x+ k
√
−a1a2l22 − a1a3l23 (k2y + k3z)√

(a2k2l2)
2 −

(
a2k22

) (
a2l22

)


h1

√−a2l22
a1

x+ l2y + l4


+ sin

C8 − k (a2k12l12 + a3k13l13)x− k
√
−a1a2l212 − a1a3l213 (k12y + k13z)√

(a2k12l12)
2 −

(
a2k212

) (
a2l212

)


h2

−
√
−a2l212 − a3l213

a1
x+ l12y + l13z + l14

 .

The denominator of the above equation is equal to zero, so we can preliminarily judge that Eq.
(104) has no general solution.

For the 1D Helmholtz equation uxx + k2u = 0, according to (101) we can get that the de-
nominator is equal to zero, so it can be judged preliminarily that 1D Helmholtz equation does
not have any general solution.

Currently analysing the Helmholtz equation is mainly used numerical methods [37-40]. Here
we consider the following boundary value problem of Eq. (102)

u (0, y, z) = sin
(√

2k (y + 2z)
)
ϕ (y + z) , (105)

ux (0, y, z) =
√
−2sin

(√
2k (y + 2z)

)
φ′ (x+ y) + 3kicos

(√
2k (y + 2z)

)
φ (x+ y) , (106)

where ϕ,φ are known function, comparing (103) with (105) we obtain

k2 = k12 = l2 = l3 = l12 = l13 = 1 , k3 = k13 = 2, l4 = l14 = C6 = C8 = 0.

Namely

u =sin
(

3kix+
√

2k (y + 2z)
)
h1
(√
−2x+ y + z

)
+ sin

(
3kix−

√
2k (y + 2z)

)
h2
(
−
√
−2x+ y + z

)
.

(107)
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Then

u (0, y, z) =sin
(√

2k (y + 2z)
)
h1 (y + z)− sin

(√
2k (y + 2z)

)
h2 (y + z)

=sin
(√

2k (y + 2z)
)
ϕ (y + z)⇒ h1 (y + z)− h2 (y + z) = ϕ (y + z) ,

ux (0, y, z) =
√
−2sin

(√
2k (y + 2z)

)(
h
′
1 (y + z) + h

′
2 (y + z)

)
+ 3kicos

(√
2k (y + 2z)

)
(h1 (y + z) + h2 (y + z))

=
√
−2sin

(√
2k (y + 2z)

)
φ′ (x+ y) + 3kicos

(√
2k (y + 2z)

)
φ (x+ y)

⇒ h1 (y + z) + h2 (y + z) = φ (x+ y) .

Namely
h1 (y + z)− h2 (y + z) = ϕ (y + z) (108)

h1 (y + z) + h2 (y + z) = φ (x+ y) (109)

Then

h1 (y + z) =
1

2
(φ (y + z) + ϕ (y + z))

⇒ h1
(√
−2x+ y + z

)
=

1

2

(
φ
(√
−2x+ y + z

)
+ ϕ

(√
−2x+ y + z

))
,

h2 (y + z) =
1

2
(φ (y + z)− ϕ (y + z))

⇒ h2
(
−
√
−2x+ y + z

)
=

1

2

(
φ
(
−
√
−2x+ y + z

)
− ϕ

(
−
√
−2x+ y + z

))
.

So the exact solution of Eq. (102) on the conditions of (105) and (106) can be get

u =
1

2
sin
(

3kix+
√

2k (y + 2z)
) (
φ
(√
−2x+ y + z

)
+ ϕ

(√
−2x+ y + z

))
+

1

2
sin
(

3kix−
√

2k (y + 2z)
) (
φ
(√
−2x+ y + z

)
− ϕ

(√
−2x+ y + z

))
.

(110)

1.9. heat equation and diffusion equation

Consider the following PDE

a0ut + a1uxx + a2uyy + a3uzz = 0, (111)

where ai are known constants. For solving its particular solution, by Transformational Method
1 we set

u (t, x, y, z) = f (v) = f (k0t+ k1x+ k2y + k3z + k4) , (112)

where v(t, x, y, z) = k0t+ k1x+ k2y+ k3z+ k4,k0− k4 are parameters to be determined, f is an
undetermined unary second differentiable function. By (7)

a0ut + a1uxx + a2uyy + a3uzz = a0k0f
′
v +

(
a1k

2
1 + a2k

2
2 + a3k

2
3

)
f
′′
v = 0.

Set w = f
′
v,then

a0k0f
′
v +

(
a1k

2
1 + a2k

2
2 + a3k

2
3

)
f
′′
v = 0⇒

(
a1k

2
1 + a2k

2
2 + a3k

2
3

)
w
′
v = −a0k0w

⇒ w = k7e
−a0k0v

a1k
2
1+a2k

2
2+a3k

2
3 ⇒ f (v) = −k7

a1k
2
1 + a2k

2
2 + a3k

2
3

a0k0
e

−a0k0v

a1k
2
1+a2k

2
2+a3k

2
3 + k6.
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So the particular solution of Eq. (111) is

u (t, x, y, z) = k5e
−a0k0(k0t+k1x+k2y+k3z)

a1k
2
1+a2k

2
2+a3k

2
3 + k6, (113)

where k0 − k6 are arbitrary constants.
In order to obtain the general solution of Eq. (111), according to Transformational Method

3 we set
u (t, x, y, z) = gh (w) = g (t, x, y, z)h (l0t+ l1x+ l2y + l3z + l4) , (114)

where w(t, x, y, z) = l0t+ l1x+ l2y + l3z + l4, l0 − l4 are parameters to be determined, h and g
are undetermined second differentiable functions. By (71) and (72) we get

ut = l0gh
′
w + hgt,

uxx = l21gh
′′
w + 2l1gxh

′
w + hgxx,

uyy = l22gh
′′
w + 2l2gyh

′
w + hgyy,

uzz = l23gh
′′
w + 2l3gzh

′
w + hgzz.

Then

a0ut + a1uxx + a2uyy + a3uzz

= a0l0gh
′
w + a0hgt + a1l

2
1gh

′′
w + 2a1l1gxh

′
w + a1hgxx + a2l

2
2gh

′′
w + 2a2l2gyh

′
w + a2hgyy

+ a3l
2
3gh

′′
w + 2a3l3gzh

′
w + a3hgzz.

Namely (
a1l

2
1 + a2l

2
2 + a3l

2
3

)
gh
′′
w + (a0l0g + 2a1l1gx + 2a2l2gy + 2a3l3gz)h

′
w

+ (a0gt + a1gxx + a2gyy + a3gzz)h = 0.
(115)

Set h(w) an arbitrary unary second differentiable function, according to (115) we get

a1l
2
1 + a2l

2
2 + a3l

2
3 = 0⇒ l1 = ±

√
−a2l22 − a3l23

a1
, (116)

a0l0g + 2a1l1gx + 2a2l2gy + 2a3l3gz = 0, (117)

a0gt + a1gxx + a2gyy + a3gzz = 0. (118)

By (113) the particular solution of Eq. (118) is

g (t, x, y, z) = k5e
−a0k0(k0t+k1x+k2y+k3z)

a1k
2
1+a2k

2
2+a3k

2
3 + k6, (119)

Set k6 = 0, and substituting from (119) into (117), then

a0l0g + 2a1l1gx + 2a2l2gy + 2a3l3gz

= a0l0k5e
−a0k0(k0t+k1x+k2y+k3z)

a1k
2
1+a2k

2
2+a3k

2
3 − 2a0k0k5e

−a0k0(k0t+k1x+k2y+k3z)

a1k
2
1+a2k

2
2+a3k

2
3

a1l1k1 + a2l2k2 + a3l3k3
a1k21 + a2k22 + a3k23

= 0

⇒ l0 = 2k0
a1l1k1 + a2l2k2 + a3l3k3
a1k21 + a2k22 + a3k23
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We have

l0 = 2k0
a1l1k1 + a2l2k2 + a3l3k3
a1k21 + a2k22 + a3k23

. (120)

Therefore

u (x, y, z, t) = g (x, y, z, t)h (w) = k5e
−a0k0(k0t+k1x+k2y+k3z)

a1k
2
1+a2k

2
2+a3k

2
3 h (l0t+ l1x+ l2y + l3z + l4)

= e
−a0k0(k0t+k1x+k2y+k3z)

a1k
2
1+a2k

2
2+a3k

2
3 h

(
2k0 (a1l1k1 + a2l2k2 + a3l3k3) t

a1k21 + a2k22 + a3k23
+ l1x+ l2y + l3z + l4

)
.

So the general solution of Eq. (111) is

u = e
−a0k0(k0t+k1x+k2y+k3z)

a1k
2
1+a2k

2
2+a3k

2
3

h1

2k0

(
k1

√
−a1

(
a2l22 + a3l23

)
+ a2l2k2 + a3l3k3

)
t

a1k21 + a2k22 + a3k23
+

√
−a2l22 − a3l23

a1
x+ l2y + l3z + l4


+ e

−a0k10(k10t+k11x+k12y+k13z)

a1k
2
11+a2k

2
12+a3k

2
13 h2(

2k10(−k11
√
−a1(a2l212 + a3l213) + a2l12k12 + a3l13k13)t

a1k211 + a2k212 + a3k213

−

√
−a2l212 − a3l213

a1
x+ l12y + l13z + l14)

(121)

where h1 and h2 are arbitrary unary second differentiable functions, k0−k3,k10−k13,l2− l4 and
l12 − l14 are arbitrary constants.

The form of 3D heat equation and diffusion equation is

ut − a2 (uxx + uyy + uzz) = 0, (122)

According to (24) we can get the general solution of Eq. (122) is

u =e

k0(k0t+k1x+k2y+k3z)

(k21+k22+k23)a2 h1

2k0

(√
−l22 − l23k1 + l2k2 + l3k3

)
k21 + k22 + k23

t+
√
−l22 − l23x+ l2y + l3z + l4


+ e

k10(k10t+k11x+k12y+k13z)

(k211+k212+k213)a2

h2

2k10

(
−
√
−l212 − l213k11 + l12k12 + l13k13

)
k211 + k212 + k213

t−
√
−l212 − l213x+ l12y + l13z + l14


(123)

The form of 2D heat equation and diffusion equation is

ut − a2 (uxx + uyy) = 0 (124)

By (121) the general solution of Eq. (124) could be got

u =e

k0(k0t+k1x+k2y)

(k21+k22)a2 h1

(
2k0 (il2k1 + l2k2)

k21 + k22
t+ il2x+ l2y + l4

)
+ e

k10(k10t+k11x+k12y)

(k211+k212)a2 h2

(
2k10 (−il12k11 + l12k12)

k211 + k212
t− il12x+ l12y + l14

) (125)
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The form of 1D heat equation and diffusion equation is

ut − a2uxx = 0 (126)

According to (121) we have

u = Ce
k0(k0t+k1x)

a2k21 (127)

Therefore, it can be preliminarily determined that Eq. (126) has no general solution.

Nonlinear problem [41-44] and numerical methods [45-47] are the research hotspots of the
heat equation, here we consider the following initial value problem of Eq. (122)

u (x, y, z, 0) = e
x+y+z

a2
(
ϕ1

(√
−2x+ y + z

)
+ ϕ2

(
−
√
−2x+ y + z

))
(128)

Comparing (123) with (128) we get

k1 = k2 = k3 =
k4
3
, k11 = k12 = k13 =

k14
3
, l2 = l3 = l12 = l13 = 1, l5 = l15 = 0

So

u (x, y, z, t) = e
x+y+z+3t

a2(
h1
(√
−2x+ y + z +

(
4 + 2

√
−2
)
t
)

+ h2
(
−
√
−2x+ y + z +

(
4− 2

√
−2
)
t
)) (129)

Then

u (x, y, z, 0)

= e
x+y+z

a2
(
ϕ1

(√
−2x+ y + z

)
+ ϕ2

(
−
√
−2x+ y + z

))
= e

x+y+z

a2
(
h1
(√
−2x+ y + z

)
+ h2

(
−
√
−2x+ y + z

))
⇒ ϕ1

(√
−2x+ y + z

)
+ ϕ2

(
−
√
−2x+ y + z

)
= h1

(√
−2x+ y + z

)
+ h2

(
−
√
−2x+ y + z

)
⇒ ϕ1

(√
−2x+ y + z +

(
4 + 2

√
−2
)
t
)

= h1
(√
−2x+ y + z +

(
4 + 2

√
−2
)
t
)

ϕ2

(
−
√
−2x+ y + z +

(
4− 2

√
−2
)
t
)

= h2
(
−
√
−2x+ y + z +

(
4− 2

√
−2
)
t
)

Namely

h1
(√
−2x+ y + z +

(
4 + 2

√
−2
)
t
)

= ϕ1

(√
−2x+ y + z +

(
4 + 2

√
−2
)
t
)

h2
(
−
√
−2x+ y + z +

(
4− 2

√
−2
)
t
)

= ϕ2

(
−
√
−2x+ y + z +

(
4− 2

√
−2
)
t
)

So the exact solution of Eq. (122) on the conditions of (128) can be get

u (x, y, z, t)

= e
x+y+z+3t

a2
(
ϕ1

(√
−2x+ y + z +

(
4 + 2

√
−2
)
t
)

+ ϕ2

(
−
√
−2x+ y + z +

(
4− 2

√
−2
)
t
))
(130)

1.10. Schrödinger Equation

Linear [48-50] and nonlinear [51, 52] stationary state Schrödinger equation are the focus of
current research, Consider the following linear equation

~2

2m
4u− (V (x, y, z)− E)u = 0, (131)
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where m is the mass of the described particle and ~ is the reduced Plank constant, by Transfor-
mational Method 2, set

u (x, y, z) = f (v) = f (k1x+ k2y + k3z + k4) , (132)

V (x, y, z)− E = a (v) = a (k1x+ k2y + k3z + k4) , (133)

where v(x, y, z) = k1x+ k2y + k3z + k4, k1 − k4 are known parameters, V (x, y, z)− E = a(v) is
a known function, f is an undetermined unary second differentiable function, then

~2

2m
4u− (V (x, y, z)− E)u =

~2

2m

(
k21 + k22 + k23

)
f
′′
v − a (v) f = 0

⇒ f
′′
v + b (v) f = 0.

Namely
f
′′
v + b (v) f = 0. (134)

where

b (v) =
−2ma (v)

~2
(
k21 + k22 + k23

) =
−2m (V (x, y, z)− E)

~2
(
k21 + k22 + k23

) . (135)

If b(v) is some special function [53], Eq. (134) has a particular solution and its general solution
may be obtained by the law of second-order linear ODEs (LODEs), such as

b (v) = −c
(
cv2n + nvn−1

)
, (136)

V (x, y, z) = a (v) + E =
c~2
(
k21 + k22 + k23

)
2m

(
cv2n + nvn−1

)
+ E, (137)

where c is an arbitrary constant, the particular solution of Eq. (134) under the condition of
(137) is

f (v) = exp

(
cvn+1

n+ 1

)
= exp

(
c(k1x+ k2y + k3z + k4)

n+1

n+ 1

)
.

So the particular solution of Eq. (131) under the condition of (137) is

u (x, y, z) = exp

(
c(k1x+ k2y + k3z + k4)

n+1

n+ 1

)
. (138)

For getting the general solution of Eq. (131) under the condition of (137), according to Trans-
formational Method 3, we set

u (x, y, z) = g (x, y, z)h (w) = g (x, y, z)h (l1x+ l2y + l3z + l4) , (139)

where w(x, y, z) = l1x+ l2y+ l3z+ l4, l1− l4 are parameters to be determined, h(w) and g(x, y, z)
are undetermined second differentiable function, by (129) and (72) we obtain

uxx = hgxx + 2l1gxh
′
w + l21gh

′′
w, (140)

uyy = hgyy + 2l2gyh
′
w + l22gh

′′
w, (141)
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uzz = hgzz + 2l3gzh
′
w + l23gh

′′
w. (142)

Then

~2

2m
4u− V ((x, y, z)− E)u

=
~2

2m
hgxx +

~2

m
l1gxh

′
w +

~2

2m
l21gh

′′
w +

~2

2m
hgyy +

~2

m
l2gyh

′
w +

~2

2m
l22gh

′′
w +

~2

2m
hgzz

+
~2

m
l3gzh

′
w +

~2

2m
l23gh

′′
w + (V (x, y, z)− E)gh = 0.

We have
~2

2m

(
l21 + l22 + l23

)
gh
′′
w +

~2

m
(l1gx + l2gy + l3gz)h

′
w

+

(
~2

2m
gxx +

~2

2m
gyy +

~2

2m
gzz + (V (x, y, z)− E) g

)
h = 0.

(143)

Set h(w) an arbitrary second differentiable function, by (143) we get

l21 + l22 + l23 = 0 =⇒ l1 = ±
√
−l22 − l23, (144)

l1gx + l2gy + l3gz = 0, (145)

~2

2m
gxx +

~2

2m
gyy +

~2

2m
gzz + (V (x, y, z)− E) g = 0. (146)

By (138), the particular solution of Eq. (146) on the condition of (137) is

g (x, y, z) = exp

(
c(k1x+ k2y + k3z + k4)

n+1

n+ 1

)
. (147)

Substituting from (147) into (145) we get

l1ck1(k1x+ k2y + k3z + k4)
nexp

(
c(k1x+ k2y + k3z + k4)

n+1

n+ 1

)

+ l2ck2(k1x+ k2y + k3z + k4)
nexp

(
c(k1x+ k2y + k3z + k4)

n+1

n+ 1

)

+ l3ck3(k1x+ k2y + k3z + k4)
nexp

(
c(k1x+ k2y + k3z + k4)

n+1

n+ 1

)
= 0

=⇒ l1 =
−k2l2 − k3l3

k1
= ±

√
−l22 − l23

=⇒ l2 =
−k1k2l3 ±

√
−k41l23 − k21k23l23 − k22k23l23
k21 + k22

.

Namely

l2 =
−k1k2l3 ±

√
−k41l23 − k21k23l23 − k22k23l23
k21 + k22

. (148)

Then

u (x, y, z) = g (x, y, z)h (w) = exp

(
c(k1x+ k2y + k3z + k4)

n+1

n+ 1

)
h (l1x+ l2y + l3z + l4) .
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So the general solution of Eq. (131) on the condition of (137) is

u = exp

(
c(k1x+ k2y + k3z + k4)

n+1

n+ 1

)
(
h1

(√
−l22 − l23x+ l2y + l3z + l4

)
+ h2

(
−
√
−l212 − l213x+ l12y + l13z + l14

))
,

(149)

where h1 and h2 are arbitrary second differentiable unary function, k1−k4 and c are determinate

parameters, l3, l4, l13 and l14 are arbitrary constants,l12 =
−k1k2l13±l13

√
−k41−k21k23−k22k23

k21+k
2
2

.

Time dependent Schrödinger equation is always the focus of research [54-59], in addition,
the related nonlinear equation [60, 61] and the time fractional Schrödinger equations (TFSEs)
[62, 63] are the deeply researched field. Consider the following linear equation

i~ut +
~2

2m
4 u− V (x, y, z, t)u = 0. (150)

According to Method 2, set

u (x, y, z, t) = f (v) = f (k1x+ k2y + k3z + k4t+ k5) , (151)

V (x, y, z, t) = a (v) = a (k1x+ k2y + k3z + k4t+ k5) , (152)

where v = k1x + k2y + k3z + k4t + k5, k1 − k5 are known parameters, V (x, y, z, t) = a(v) is a
known function, f is an undetermined unary second differentiable function, then

i~ut +
~2

2m
4 u− V (x, y, z, t)u = i~k4f

′
v +

~2

2m

(
k21 + k22 + k23

)
f
′′
v − a (v) f = 0.

Namely
f
′′
v + kf

′
v + b (v) f = 0, (153)

where

k =
i2mk4

~
(
k21 + k22 + k23

) , b (v) =
−2ma (v)

~2
(
k21 + k22 + k23

) . (154)

If b(v) is some special function [53], Eq. (153) has a particular solution and its general solution
may be obtained by the law of second-order LODEs, such as

b (v) = c
(
−cv2n + kvn + nvn−1

)
.

The particular solution of Eq. (153) is

f (v) = exp

(
−cv

n+1

n+ 1

)
.

Namely

V (x, y, z, t) = a (v) =
− c~2

(
k21 + k22 + k23

)
2m

(
−cv2n + kvn + nvn−1

)
. (155)

The particular solution of Eq. (150) on the condition of (155) is

u (x, y, z, t) = exp

(
−c(k1x+ k2y + k3z + k4t+ k5)

n+1

n+ 1

)
. (156)
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By

f
′′
v + (g (v) + h (v)) f

′
v +

(
g (v)h (v) + g

′
v

)
f = 0. (157)

The particular solution of Eq. (157) is

f (v) = exp

(
−
∫
g (v) dv

)
. (158)

Set h(v) = −g(v) + k, where g(v) is an arbitrary unary first differentiable function, then

b (v) = −g2 (v) + kg (v) + g
′
v. (159)

Namely

V (x, y, z, t) = a (v) =
~2
(
k21 + k22 + k23

)
2m

(
g2 (v)− kg (v)− g′v

)
. (160)

The particular solution of Eq. (150) on the condition of (160) is

u (x, y, z, t) = f (v) = exp

(
−
∫
g (v) dv

)
. (161)

For getting the general solution of Eq. (150) on the condition of (155), according to Trans-
formational Method 3, we set

u (x, y, z, t) = g (x, y, z, t)h (w) = g (x, y, z, t)h (l1x+ l2y + l3z + l4t+ l5) , (162)

where w = l1x + l2y + l3z + l4t + l5, l1 − l5 are parameters to be determined, h and g are
undetermined second differentiable functions, by (71)-(72) and (162)

i~ut +
~2

2m
4 u− V (x, y, z, t)u

= i~l4gh
′
w + i~hgt +

~2

2m
l21gh

′′
w +

~2

m
l1gxh

′
w +

~2

2m
hgxx +

~2

2m
l22gh

′′
w +

~2

m
l2gyh

′
w

+
~2

2m
hgyy +

~2

2m
l23gh

′′
w +

~2

m
l3gzh

′
w +

~2

2m
hgzz − V gh

~2

2m

(
l21 + l22 + l23

)
gh
′′
w

+ ~
(
il4g +

~
m
l1gx +

~
m
l2gy +

~
m
l3gz

)
h
′
w +

(
i~gt +

~2

2m
gxx +

~2

2m
gyy +

~2

2m
gzz − V g

)
h = 0.

Namely
~2

2m

(
l21 + l22 + l23

)
gh
′′
w + ~

(
il4g +

~
m
l1gx +

~
m
l2gy +

~
m
l3gz

)
h
′
w

+

(
i~gt +

~2

2m
gxx +

~2

2m
gyy +

~2

2m
gzz − V g

)
h = 0.

(163)

Set h(w) an arbitrary second differentiable function, by (163) we get

l21 + l22 + l23 = 0 =⇒ l1 = ±
√
−l22 − l23, (164)

il4g +
~
m
l1gx +

~
m
l2gy +

~
m
l3gz = 0, (165)

i~gt +
~2

2m
gxx +

~2

2m
gyy +

~2

2m
gzz − V g = 0. (166)
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By (156) the particular solution of Eq. (166) on the condition of (155) is

g (x, y, z, t) = exp

(
−c(k1x+ k2y + k3z + k4t+ k5)

n+1

n+ 1

)
. (167)

Substituting from (167) into (165) we get

il4exp

(
−c(k1x+ k2y + k3z + k4t+ k5)

n+1

n+ 1

)

− ~
m
l1ck1(k1x+ k2y + k3z + k4t+ k5)

nexp

(
−c(k1x+ k2y + k3z + k4t+ k5)

n+1

n+ 1

)

− ~
m
l2ck2(k1x+ k2y + k3z + k4t+ k5)

nexp

(
−c(k1x+ k2y + k3z + k4t+ k5)

n+1

n+ 1

)

− ~
m
l3ck3(k1x+ k2y + k3z + k4t+ k5)

nexp

(
−c(k1x+ k2y + k3z + k4t+ k5)

n+1

n+ 1

)
= 0

=⇒ l4 = −~c
m

(l1k1 + l2k2 + l3k3) (k1x+ k2y + k3z + k4t+ k5)
n.

Namely

l4 = −~c
m

(l1k1 + l2k2 + l3k3) (k1x+ k2y + k3z + k4t+ k5)
n. (168)

Since l4 is a constant and is not a function of x, y, z and t, if (167) is the particular solution of
Eq. (166), by (168) n must equal 0, then

V =
− c~2

(
k21 + k22 + k23

)
2m

(
−cv2n + kvn + nvn−1

)
=
− c~2

(
k21 + k22 + k23

)
2m

(−c+ k) . (169)

Since k1− k5,k and c are determinate constants, so V (x, y, z, t) is an determinate constants too,
namely

l4 = −~c
m

(l1k1 + l2k2 + l3k3) . (170)

Then

u = gh = exp

(
−c(k1x+ k2y + k3z + k4t+ k5)

n+1

n+ 1

)
h (l1x+ l2y + l3z + l4t+ l5) .

So the general solution of Eq. (150) in the condition of (169) is

u = e−c(k1x+k2y+k3z+k4t+k5)(
h1

(√
−l22 − l23x+ l2y + l3z + l4t+ l5

)
+ h2

(
−
√
−l212 − l213x+ l12y + l13z + l14t+ l15

))
(171)

where h1 and h2 are arbitrary unary second differentiable functions,l14 = −~c
m (l11k1 + l12k2 + l13k3),

l2, l3, l5, l12, l13 and l15 are arbitrary parameters.

Consider the following initial value problem of Eq. (150) on the condition of (169)

u (x, y, z, 0) = ex+y+z
(
ϕ1

(√
−2x+ y + z

)
+ ϕ2

(
−
√
−2x+ y + z

))
, (172)
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ut (x, y, z, 0)

= ex+y+z
(
ϕ1

(√
−2x+ y + z

)
+ ϕ2

(
−
√
−2x+ y + z

))
+

~
m
ex+y+z

((
2 +
√
−2
)
ϕ
′
1

(√
−2x+ y + z

)
+
(
2−
√
−2
)
ϕ
′
2

(
−
√
−2x+ y + z

))
.

(173)

Comparing (171) with (172) we have

k1 = k2 = k3 = −1

c
, l2 = l3 = l12 = l13 = 1 , k5 = l5 = l15 = 0.

By further calculation which is in Appendix C, the exact solutions of the initial value problem
is

u =ex+y+z+t(ϕ1(
√
−2x+ y + z +

~
m

(2 +
√
−2)t)

+ ϕ2(−
√
−2x+ y + z +

~
m

(2−
√
−2)t)).

(174)

When V (x, y, z, t) is a constant, Eq. (150) is also an important case of the diffusion equa-
tion with a source [64], its general solution and the exact solutions of the Cauchy problem are
applicable to the diffusion equation.

1.11. Singular general solution of the Helmholtz equation

For the 3D Helmholtz equation
4u+ k2u = 0. (175)

By (93), its particular solution is

u (x, y, z) = C4sin

(
C5 + k (k1x+ k2y + k3z)√

k21 + k22 + k23

)
, (176)

where k1 − k3,C4 and C5 are arbitrary constant. Similar to the solving method of (101), by
(176) and Transformational Method 3 the SGS of Eq. (175) is

u = sin

C6 − k (k2l2 + k3l3)x+ k
√
−l22 − l23 (k2y + k3z)√

(k2l2 + k3l3)
2 −

(
k22 + k23

) (
l22 + l23

)
h1

(√
−l22 − l23x+ l2y + l3z + l4

)

+ sin

C8 − k (k12l12 + k13l13)x− k
√
−l212 − l213 (k12y + k13z)√

(k12l12 + k13l13)
2 −

(
k212 + k213

) (
l212 + l213

)


h2

(
−
√
−l212 − l213x+ l12y + l13z + l14

)
,

(177)
where h1 and h2 are arbitrary unary second differentiable functions, k2, k3, k12, k13, l2 − l4, l12 −
l14, C6 and C8 are arbitrary constants.

According to [65]

u = (k1coshαx+ k2sinhαx) (k3coshβy + k4sinhβy) (k5coshγz + k6sinhγz) , k2 = −α2 − β2 − γ2,
(178)

where k1−k6 are arbitrary constants, (178) is a particular solution of Eq. (175). Other particular
solutions of the Helmholtz equation can be referred to [65, 66].

Here we shall use (178) and Transformational Method 3 to obtain a new solution of Eq.
(175), and shall analyze the relationship between it and (177).
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According to Transformational Method 3, we set

u (x, y, z) = g (x, y, z)h (w) = g (x, y, z)h (l1x+ l2y + l3z + l4) , (179)

where h(w) and g(x, y, z) are undetermined second differentiable functions,w (x, y, z) = l1x +
l2y + l3z + l4,l1 − l4 are undetermined parameters, by (179) we have

uxx = hgxx + 2l1gxh
′
w + l21gh

′′
w, (180)

uyy = hgyy + 2l2gyh
′
w + l22gh

′′
w, (181)

uzz = hgzz + 2l3gzh
′
w + l23gh

′′
w. (182)

So

4 u+ k2u

= hgxx + 2l1gxh
′
w + l21gh

′′
w + hgyy + 2l2gyh

′
w + l22gh

′′
w + hgzz + 2l3gzh

′
w + l23gh

′′
w + k2gh = 0.

Namely(
l21 + l22 + l23

)
gh
′′
w + 2 (l1gx + l2gy + l3gz)h

′
w +

(
gxx + gyy + gzz + k2g

)
h = 0. (183)

Set h(w) an arbitrary unary second differentiable function, according to (183) we obtain

l21 + l22 + l23 = 0 =⇒ l1 = ±
√
−l22 − l23, (184)

l1gx + l2gy + l3gz = 0, (185)

gxx + gyy + gzz + k2g = 0. (186)

By (178), a particular solution of Eq. (186) is

g = (k1coshαx+ k2sinhαx) (k3coshβy + k4sinhβy) (k5coshγz + k6sinhγz) , k2 = −α2 − β2 − γ2,
(187)

Substituting (187) into (185)

l1gx + l2gy + l3gz

= αl1 (k2coshαx+ k1sinhαx) (k3coshβy + k4sinhβy) (k5coshγz + k6sinhγz)

+ βl2 (k1coshαx+ k2sinhαx) (k4coshβy + k3sinhβy) (k5coshγz + k6sinhγz)

+ γl3 (k1coshαx+ k2sinhαx) (k3coshβy + k4sinhβy) (k6coshγz + k5sinhγz) = 0,

we get

k1 = k2, k3 = k4, k5 = k6, l1 =
−βl2 − γl3

α
. (188)

Since

l1 = ±
√
−l22 − l23 =

−βl2 − γl3
α

=⇒

(√
k2 + γ2l2 −

βγl3√
k2 + γ2

)2

+

(
k2 + β2 − β2γ2

k2 + γ2

)
l23 = 0

=⇒
√
k2 + γ2l2 −

βγl3√
k2 + γ2

= 0, k2 + β2 − β2γ2

k2 + γ2
= 0

=⇒ l2 =
βγl3
k2 + γ2

, β = ±
√
−k2 − γ2, α = 0.
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For α = 0, we have

k3 = k4, k5 = k6, l3 =
−βl2
γ

, k2 = −β2 − γ2, (189)

and

k2 = −β2 − γ2 =⇒ β = ±
√
−k2 − γ2 =⇒ l1 = ±

√
−l22 − l23 = ±

√
−l22 −

β2l22
γ2

= ±kl2
γ

Namely

β = ±
√
−k2 − γ2, α = 0, l1 = ±kl2

γ
(190)

We set ω =
√
−k2 − γ2,then

u (x, y, z) = g (x, y, z)h (w)

= (k2coshαx+ k1sinhαx) (k3coshβy + k4sinhβy) (k5coshγz + k6sinhγz)h (l1x+ l2y + l3z + l4)

= (coshβy + sinhβy) (coshγz + sinhγz)h (l1x+ l2y + l3z + l4) = e±ωy+γzh (l1x+ l2y + l3z + l4) .

So

u (x, y, z)

= eωy+γz(h1(kx+ γy + ωz + C1) + h2(−kx+ γy + ωz + C2) + h3(kx+ γy − ωz + C3)

+ h4(−kx+ γy − ωz + C4)) + e−ωy+γz(h5(kx+ γy + ωz + C5) + h6(−kx+ γy + ωz + C6)

+ h7(kx+ γy − ωz + C7) + h8(−kx+ γy − ωz + C8))
(191)

where h1−h8 are arbitrary unary second differentiable functions, C1−C8 are arbitrary constants.
Substituting (191) into Eq. (175), we find the necessary to set h1 + h2 = C9 and h7 + h8 = C10,
where C9 and C10 are arbitrary constants, so the verified new general solution of Eq. (175) is:

u (x, y, z) =eωy+γz (h3 (kx+ γy − ωz + C3) + h4 (−kx+ γy − ωz + C4) + C9)

+ e−ωy+γz (h5 (kx+ γy + ωz + C5) + h6 (−kx+ γy + ωz + C6) + C10) .

In order to facilitate the writing and application, we rewrite the above equation

u (x, y, z) =eωy+γz (h1 (kx+ γy − ωz + C1) + h2 (−kx+ γy − ωz + C2) + C5)

+ e−ωy+γz (h3 (kx+ γy + ωz + C3) + h4 (−kx+ γy + ωz + C4) + C6) .
(192)

where h1−h4 are arbitrary unary second differentiable functions, C1−C6 are arbitrary constants.
Note that the number of arbitrary functions in (192) is four! Namely the number of arbitrary

functions in the SGS of 2th-order linear PDE (LPDE) is more than 2!
For the modified Helmholtz equation

4u− k2u = 0. (193)
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Similar to the calculation of (101), the SGS of Eq. (193) is

u = sin

C1 − ik (k2l2 + k3l3)x+ ik
√
−l22 − l23 (k2y + k3z)√

(k2l2 + k3l3)
2 −

(
k22 + k23

) (
l22 + l23

)


h1

(√
−l22 − l23x+ l2y + l3z + l4

)

+ sin

C2 + ik (k12l12 + k13l13)x− ik
√
−l212 − l213 (k12y + k13z)√

(k12l12 + k13l13)
2 −

(
k212 + k213

) (
l212 + l213

)


h2

(√
−l212 − l213x+ l12y + l13z + l14

)

+ sin

C3 − ik (k22l22 + k23l23)x− ik
√
−l222 − l223 (k22y + k23z)√

(k22l22 + k23l23)
2 −

(
k222 + k223

) (
l222 + l223

)


h3

(
−
√
−l222 − l223x+ l22y + l23z + l24

)

+ sin

C4 + ik (k32l32 + k33l33)x+ ik
√
−l232 − l233 (k32y + k33z)√

(k32l32 + k33l33)
2 −

(
k232 + k233

) (
l232 + l233

)


h4

(
−
√
−l232 − l233x+ l32y + l33z + l34

)
,

(193)

where h1−h4 are arbitrary unary second differentiable functions, k2, k3, k12, k13, k22, k23, k32, k33, l2−
l4, l12 − l14, l22 − l24, l32 − l34 and C1 − C4 are arbitrary constants. Note that the number of ar-
bitrary functions in (194) is four, the SGS of Eq. (193) which similar to (192) is more complex.

According to the above calculation, we propose a new problem: Comparing (192) with (177),
whether they are independent of each other? How to prove?

In the theory of ordinary differential equations (ODEs), it has been proven that the number
of the arbitrary constants in the general solution of mth-order ODEs is m [67, 68]. In the theory
of PDEs, almost all of the textbooks and professional books directly or indirectly declare that
the number of the arbitrary functions in the general solution of mth-order PDEs is m [20, 64, 69,
70], but no related rigorous proof up to now, so the above problem is very important, it relates
to how many arbitrary functions in the SGS of mth-order PDEs. By the law of superposition,
if (192) and (177) are independent, the number of arbitrary functions in the SGS of Eq. (175)
is six.

Because the concise general solution of a PDE may not be the only, we can use symbols
Gmn express these different solution, where n is the number of arbitrary functions and m is the
number of discretionary parameters in the corresponding concise general solution.

2. Principles of transformational equations

We presents five new concepts and five new theorems in this chapter, using Theorem 1 if the
solution of a PDE is known, the solutions of its various independent variable transformational
equations (IVTEs) can be obtained directly. According to Theorem 2 we can use two solvable
equations to obtain a new solvable PDE. By Theorem 4 and 5, the general solutions of the vector
wave equation in cartesian, cylindrical and spherical coordinate systems have been solved for
the first time. We point out that the general solutions or particular solutions of various symmet-
ric vector partial differential equations can be obtained similarly in any orthogonal coordinate
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system, such as vector Helmholtz equation, vector Laplace equation and the magnetic vector
potential equation and so on.

2.1. The principle of independent variable transformational equations

Many MPEs’ solutions under non-Cartesian coordinate system have been investigated deeply
[71-73]. One PDE in different coordinate systems has different forms, such as the Laplace
equation in spherical coordinates and cylindrical coordinates are written as

1

r2
∂

∂r

(
r2
∂u

∂r

)
+

1

r2sinθ

∂

∂θ

(
sinθ

∂u

∂θ

)
+

1

r2sin2θ

∂2u

∂ϕ2
= 0, (195)

1

r

∂

∂r

(
r
∂u

∂r

)
+

1

r2
∂2u

∂θ2
+
∂2u

∂z2
= 0. (196)

Here we begin to study the relationship law of the PDEs’ solutions in different coordinate
systems. First, we define independent variable transformational equations (IVTEs).

Definition. In the domain D, (D ⊂ Rn), (n ≥ 2), set xi are independent and yi are indepen-
dent too, (i = 1, 2, · · ·n), by xi = xi(y1, y2, · · · yn),yi = yi(x1, x2 · · ·xn), which are known,mth-
order PDE F (x1, . . . xn, u, ux1 , . . . uxn , ux1x2 , . . .) = 0 is converted into another mth-order PDE
G (y1, . . . yn, u, uy1 , . . . uyn , uy1y2 , . . .) = 0, then G = 0 is called a IVTE of F = 0.

Since the concrete forms of xi = xi (y1, y2, . . . yn) , yi = yi (x1, x2 . . . xn) are infinite, so every
PDE has infinite IVTEs. In the orthogonal coordinate system theory the forms of IVTEs are
always obtained by the metric and exterior calculus method, in fact, they could also be get
by known xi = xi(y1, . . . yn) and yi = yi(x1, . . . xn),such as the Laplace equation in cylindrical
coordinates, using

x = rcosθ , y = rsinθ , z = z. (197)

We obtain
r =

√
x2 + y2 , θ = arctan

y

x
, z = z, (198)

and further

rx =
x√

x2 + y2
= cosθ , ry =

y√
x2 + y2

= sinθ , rz = 0

θx =
−y

x2 + y2
=
−sinθ

r
, θy =

x

x2 + y2
=

cosθ

r
, θz = 0 , zx = zy = 0

ux = urrx + uθθx + uzzx = urcosθ − uθ
sinθ

r

uxx = urrrxcosθ − ursinθθx − uθθθx
sinθ

r
− uθ

cosθ

r
θx + uθ

sinθ

r2
rx

= urrcos2θ + ur
sin2θ

r
+ uθθ

sin2θ

r2
+ 2uθ

sinθcosθ

r2

uy = urry + uθθy + uzzy = ursinθ + uθ
cosθ

r

uyy = urrrysinθ + urcosθθy + uθθθy
cosθ

r
− uθ

sinθ

r
θy − uθ

cosθ

r2
ry

= urrsin
2θ + ur

cos2θ

r
+ uθθ

cos2θ

r2
− 2uθ

sinθcosθ

r2
.
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Then

uxx + uyy + uzz

= urrcos2θ + ur
sin2θ

r
+ uθθ

sin2θ

r2
+ 2uθ

sinθcosθ

r2
+ urrsin

2θ + ur
cos2θ

r
+ uθθ

cos2θ

r2

− 2uθ
sinθcosθ

r2
+ uzz = urr +

1

r
ur +

1

r2
uθθ + uzz =

1

r

∂

∂r

(
r
∂u

∂r

)
+

1

r2
∂2u

∂θ2
+
∂2u

∂z2
.

Namely

uxx + uyy + uzz =
1

r

∂

∂r

(
r
∂u

∂r

)
+

1

r2
∂2u

∂θ2
+
∂2u

∂z2
.

Using the definition of IVTEs we present Theorem 1.

Theorem 1. In the domain D, (D ⊂ Rn) ,if the solution u = f(x1, · · ·xn) of a mth-order PDE
F (x1, · · ·xn, u, ux1 , · · ·uxn , ux1x2 , · · · ) = 0 is known, then the solution of its IVTE G(y1, · · · yn, u,
uy1 , · · ·uyn , uy1y2 , · · · ) = 0 is u = f(x1, · · ·xn) = g(y1, · · · yn).

Proof. Using xi = xi(y1, · · · yn) and yi = yi(x1, · · ·xn), G(y1, · · · yn, u, uy1 , · · ·uyn , uy1y2 , · · · ) = 0
could be converted into F (x1, · · ·xn, u, ux1 , · · ·uxn , ux1x2 , · · · ) = 0, because the solution u =
f(x1, · · ·xn) of F = 0 is known, so u = f(x1, · · ·xn) is the solution of G = 0 too, by xi =
xi(y1, · · · yn), u = f(x1, · · ·xn) may be varied into u = g(y1, · · · yn).

According to Theorem 1, if the solution of a PDE is known, the solutions of its various
IVTEs can be obtained directly, as in spherical coordinates

x = rsinθcosϕ , y = rsinθsinϕ , z = rcosθ. (199)

By the general solution (16) of Laplace equation in the Cartesian coordinate system, its general
solution in the spherical coordinate system can be got directly

u (r, θ, ϕ) =f1

(
rsinθcosϕ

√
−k21 − k22 + k1rsinθsinϕ+ k2rcosθ + k3

)
+ f2

(
−rsinθcosϕ

√
−k24 − k25 + k4rsinθsinϕ+ k5rcosθ + k6

)
+ k7rsinθcosϕ+ k8rsinθsinϕ+ k9rcosθ + k10.

(200)

Using (197) the general solution of Laplace equation in the cylindrical coordinate system is

u (r, θ, z) =f1

(
rcosθ

√
−k21 − k22 + k1rsinθ + k2z + k3

)
+ f2

(
−rcosθ

√
−k24 − k25 + k4rsinθ + k5z + k6

)
+ k7rcosθ + k8rsinθ + k9z + k10.

(201)

All the solutions of PDEs obtained in this paper, we can use them to obtain the solutions
in all orthogonal coordinate system by Theorem 1, exact solutions of Cauchy problems can be
similarly analysed yet.

2.2. The principle of dependent variable transformational equations

First, we define the dependent variable transformational equations (DVTEs).
Definition. In the domainD, (D ⊂ Rn) ,set v = h(x1, xn, u, ux1 , · · ·uxn , ux1x2 , · · · ), so a PDE



35

F (x1, · · ·xn, v, vx1 , · · · vxn , vx1x2 , · · · ) = 0 may be converted intoG(x1, · · ·xn, u, ux1 , · · ·uxn , ux1x2 ,
· · · ) = 0, then G = 0 is called a DVTE of F = 0.

Using the definition of DVTE we present Theorem 2.

Theorem 2. In the domain D, (D ⊂ Rn) ,if the solution v = f(x1, · · ·xn) of a PDE F (x1, · · ·xn,
v, vx1 , · · · vxn , vx1x2 , · · · ) = 0 is known, set v = h(x1, · · ·xn, u, ux1 , · · ·uxn , ux1x2 , · · · ), then the so-
lution of its DVTE G(x1, · · ·xn, u, ux1 , · · ·uxn , ux1x2 , · · · ) = 0 is the solution of h(x1, · · ·xn, u, ux1 ,
· · ·uxn , ux1x2 , · · · ) = f(x1, · · ·xn).

Proof. Set v = h(x1, · · ·xn, u, ux1 , · · ·uxn , ux1x2 , · · · ), then G(y1, · · · yn, u, uy1 , · · ·uyn , uy1y2 , · · · )
= 0 could be converted into F (x1, · · ·xn, v, vx1 , · · · vxn , vx1x2 , · · · ) = 0, because the solution v =
f(x1, · · ·xn) of F = 0 is known, so if the solution u = g(x1, · · ·xn)ofh(x1, · · ·xn, u, ux1 , · · ·uxn ,
ux1x2 , · · · ) = f(x1, · · ·xn) can be solved, then u = g(x1, · · ·xn) is the solution of G = 0 yet.

Essentially, Theorem 2 uses two solvable equations to obtain a new solvable PDE, the two
solvable equations are

F (x1, . . . xn, v, vx1 , . . . vxn , vx1x2 , . . .) = 0, (202)

h (x1, . . . xn, u, ux1 , . . . uxn , ux1x2 , . . .) = f (x1, x2 . . . xn) = v. (203)

The new solvable PDE which is the DVTE is

G (x1, . . . xn, u, ux1 , . . . uxn , ux1x2 , . . .) = 0. (204)

Eq. (202) may be a solvable PDE or ODE, Eq. (203) may be a solvable PDE, ODE or function
equation, so the concretely using methods of Theorem 2 may be infinite. Actually, Transforma-
tional Method 1-4 are specific applications of Theorem 2. Here we use Theorem 2 to get the
general solution of two linear PDEs first, in Chapter 4, we’ll use it to solve the general solution
of two nonlinear PDEs.

Example 2.1

uxy + a (x, y)ux + b (x, y)uy + (ax (x, y) + b (x, y) a (x, y))u = c (x, y) , (205)

where a, b, c are any known binary functions, Eq. (205) is a second order linear hyperbolic PDE,
due to

vx + b (x, y) v = c (x, y) , (206)

the general solution of Eq. (206) is [74]:

v (x, y) = e−
∫
b(x,y)dx

(
ϕ (y) +

∫
c (x, y) e

∫
b(x,y)dxdx

)
, (207)

where ϕ(y) is an arbitrary unary function, by Theorem 2 we set

v (x, y) = uy + a (x, y)u. (208)

According to (207) we get

u (x, y) = e−
∫
a(x,y)dy

(
φ (x) +

∫
v (x, y) e

∫
a(x,y)dydy

)

= e−
∫
a(x,y)dy

(
φ (x) +

∫ (
e−

∫
b(x,y)dx

(
ϕ (y) +

∫
c (x, y) e

∫
b(x,y)dxdx

))
e
∫
a(x,y)dydy

)
,
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where φ(x) is an arbitrary unary function, by (208) we could get that Eq. (205) is a DVTE of
Eq. (206), according to Theorem 2, the general solution of Eq. (205) is

u = e−
∫
a(x,y)dy

(
φ (x) +

∫ (
e−

∫
b(x,y)dx

(
ϕ (y) +

∫
c (x, y) e

∫
b(x,y)dxdx

))
e
∫
a(x,y)dydy

)
.

(209)
Example 2.2

ayuxy + axuyy + aybux + axbuy + (aybx + axby)u = 0, (210)

where a,b are any known binary functions, due to

ayvx + axvy = 0, (211)

the general solution of Eq. (211) is [74]:

v = g (a (x, y)) , (212)

where g is an arbitrary unary first differentiable function, by Theorem 2 we set

v (x, y) = uy + b (x, y)u. (213)

According to (207) and (212) we get

u (x, y) = e−
∫
b(x,y)dy

(
φ (x) +

∫
v (x, y) e

∫
a(x,y)dydy

)

= e−
∫
b(x,y)dy

(
φ (x) +

∫
g (a (x, y)) e

∫
b(x,y)dydy

)
,

where φ(x) is an arbitrary unary function, by (213) we could get that Eq. (210) is a DVTE of
Eq. (211), according to Theorem 2, the general solution of Eq. (210) is

u (x, y) = e−
∫
b(x,y)dy

(
φ (x) +

∫
g (a (x, y)) e

∫
b(x,y)dydy

)
. (214)

The definition and rule of DVTEs can be extended to ODEs.

Definition. In the domain D, (D ⊂ R1),set w = h
(
x, y, y′, y′′, . . . y(m)

)
,so an nth-order ODE

F
(
x,w,w′, w′′, . . . w(n)

)
may be converted into an n+mth-order ODEG

(
x, y, y′, y′′, . . . y(m+n)

)
=

0 then G = 0 is called a DVTE of F = 0.

Theorem 3. In the domain D, (D ⊂ R1),if the solution w = f(x) of an ODE F (x,w,w′, w′′, . . .
w(n)) = 0 is known, set w = h(x, y, y′, y′′,. . . y(m)) ,then the solution of its DVTE G(x, y, y′, y′′, . . .
y(m+n)) = 0 , is the solution of h

(
x, y, y′, y′′, . . . y(m)

)
= f(x).

For the theoretical system’ completeness we present Theorem 3, the proof method of Theo-
rem 3 is similar to Theorem 2. In fact, some ODEs have been solved by Theorem 3 [53], so here
we will not study and example.

2.3. General Solutions of Vector Equation in Various Orthogonal Coordinate Sys-
tems



37

In Rn space (n ≥ 2), the expression of a vector function u is

u = u1e1 + u2e2 + . . .+ unen, (215)

where ui = ui(x1, x2, · · ·xn), i = (1, 2, · · ·n), Suppose u satisfies the PDE

F

(
x1, . . . xn, u,

∂u

∂x1
, . . .

∂u

∂xn
,

∂2u

∂x1∂x2
, . . .

)
= 0. (216)

If Eq. (216) satisfies

F

(
x1, . . . xn, u,

∂u

∂x1
, . . .

∂u

∂xn
,

∂2u

∂x1∂x2
, . . .

)
=

n∑
i=1

Fi

(
x1, . . . xn, ui,

∂ui
∂x1

, . . .
∂ui
∂xn

,
∂2ui
∂x1∂x2

, . . .

)
ei = 0.

(217)

That is, only the dependent variable ui in the ith component equation, and the form of each

component Fi

(
x1, . . . xn, ui,

∂ui
∂x1

, . . . ∂ui∂xn
, ∂2ui
∂x1∂x2

, . . .
)

in Eq. (217) are the same, we call the vector

PDEs as the symmetric vector partial differential equations (SVPDEs).
By Maxwell equations we can get the vector wave equation which represents the electromag-

netic wave spreading in the vacuum [75]

4u− 1

c2
∂2u

∂t2
= 0, (218)

where c is the speed of light, u is the electric-field strength E or magnetic induction B, in
3-dimensional space

u = uxex + uyey + uzez, (219)

4u− 1

c2
∂2u

∂t2
=

(
4ux −

1

c2
∂2ux
∂t2

)
ex+

(
4uy −

1

c2
∂2uy
∂t2

)
ey+

(
4uz −

1

c2
∂2uz
∂t2

)
ez = 0, (220)

the form of each component Fi

(
x, y, z, ui,

∂ui
∂x , . . .

∂ui
∂z ,

∂2ui
∂x∂x , . . .

)
in Eq. (220) are the same, so Eq.

(218) is a SVPDEs. Another example is that time harmonic electromagnetic waves distribution
in space satisfies the vector Helmholtz equation

4u+ k2u = 0, (221)

where k is a constant related to the medium and the frequency of electromagnetic wave, u is
the electric-field strength E or magnetic induction B, for

4u+ k2u =
(
4ux + k2ux

)
ex +

(
4uy + k2uy

)
ey +

(
4uz + k2uz

)
ez = 0. (222)

the form of each component Fi in Eq. (222) are the same, so it is a SVPDEs too. A vector PDE
may be a SVPDE in a certain orthogonal coordinate system and may not in other orthogonal
coordinate system, such as the form of vector Helmholtz equation in the cylindrical coordinate
system is [20](
4ur −

ur
r2
− 2

r2
∂uθ
∂θ

+ k2ur

)
er +

(
4uθ −

uθ
r2

+
2

r2
∂ur
∂θ

+ k2uθ

)
eθ +

(
4uz + k2uz

)
ez = 0.

(223)
Obviously Eq. (223) is not a SVPDE.

Any a n-dimensional SVPDE F = 0 can be decomposed into n independent equations
Fi = 0, (i = 1, 2, · · ·n), we call Fi = 0 the corresponding scalar equation (CSE) of F = 0,
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due to each Fi in F = 0 has the same form, so every SVPDE has a unique CSE. The CSE of
Eq. (218) is:

4ui −
1

c2
∂2ui
∂t2

= 0 (224)

The CSE of Eq. (221) is
4ui + k2ui = 0 (225)

Here we propose a new theorem based on the above two new definitions.

Theorem 4. If there are m arbitrary functions in the general solution of the CSE Fi = 0,
then the number of arbitrary functions in the general solution of the n-dimensional SVPDE
F = 0 is mn

Proof. Because a n-dimensional SVPDE F = 0 can be decomposed into n independent e-
quations Fi = 0, (i = 1, 2, · · ·n), and each Fi = 0 has the same form, so the numbers of arbitrary
functions in the general solution of every Fi = 0 are all m, according to Eq. (215) we can obtain
the number of arbitrary functions in the general solution of F = 0 is mn.

Now we begin to analyze the solution law of vector PDEs in various orthogonal coordinate
system. By exterior differential and the form in Cartesian coordinate system, the form of a
vector PDE in various orthogonal coordinate systems can be calculated [20]. In this paper, we
propose a new simple method which can not only easily calculate the form of a vector PDE in
any orthogonal coordinate systems, and can directly get its solutions in all kinds of orthogonal
coordinate systems by the solution of any an orthogonal coordinate system, therefore it has
great advantages.

According to the definition of different orthogonal coordinate system and the magnitude of
every unit vector is equal to 1, we can write out the mathematical relationship between the unit
vectors of different orthogonal coordinate system, such as the relation between the unit vector
er, eθ, ez of cylinder coordinate system and the unit vectors ex, ey, ez of Cartesian coordinate
system, for

er = cosθex + sinθey, eθ = −sinθex + cosθey, ez = ez. (226)

By Eq. (226) we can get

ex = cosθer − sinθeθ, ey = sinθer + cosθeθ, ez = ez. (227)

For the spherical coordinate system
From Figure 1.1 we get

er = sinθcosϕex + sinθsinϕey + cosθez (228)

eϕ = −sinϕex + cosϕey (229)

According to Figure 1.2

eθ = cosθcosϕex + cosθsinϕey − sinθez. (230)

By further calculation we have

ex = cosϕsinθer + cosϕcosθeθ − sinϕeϕ (231)

ey = sinϕsinθer + sinϕcosθeθ + cosϕeϕ (232)

ez = cosθer − sinθeθ (233)
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Figure 1.1: Figure 1.2:

By the functional relationship between the unit vector in different coordinate systems, the
function relation of dependent variable components in diversified coordinate systems can be
deduced, and the form of a vector PDE in various coordinate systems can be got too, such as
the cylindrical coordinate system

u = uxex + uyey + uzez = ux (cosθer − sinθeθ) + uy (sinθer + cosθeθ) + uzez

= (uxcosθ + uysinθ) er + (−uxsinθ + uycosθ) eθ + uzez = urer + uθeθ + uzez
(234)

From Eq. (234) we get

ur = uxcosθ + uysinθ, uθ = −uxsinθ + uycosθ (235)

By Eq. (235) we can obtain

ux = cosθur − sinθuθ, uy = sinθur + cosθuθ (236)

So

4u = (4ux) ex +
(
4uy

)
ey + (4uz) ez

=

((
1

r

∂

∂r

(
r
∂

∂r

)
+

1

r2
∂2

∂θ2
+

∂2

∂z2

)
(cosθur − sinθuθ)

)
(cosθer − sinθeθ)

+

((
1

r

∂

∂r

(
r
∂

∂r

)
+

1

r2
∂2

∂θ2
+

∂2

∂z2

)
(sinθur + cosθuθ)

)
(sinθer + cosθeθ)

+ (4uz) ez

= (cos2θ4ur −
2sinθcosθ

r2
∂ur
∂θ
− cos2θur

r2
− sinθcosθ4uθ −

2cos2θ

r2
∂uθ
∂θ

+
sinθcosθuθ

r2

+ sin2θ4ur +
2sinθcosθ

r2
∂ur
∂θ
− sin2θur

r2
+ sinθcosθ4uθ −

2sin2θ

r2
∂uθ
∂θ
− sinθcosθuθ

r2
)er

+ (−sinθcosθ4ur +
2sin2θ

r2
∂ur
∂θ

+
sinθcosθur

r2
+ sin2θ4uθ +

2sinθcosθ

r2
∂uθ
∂θ
− sin2θuθ

r2

+ sinθcosθ4ur +
2cos2θ

r2
∂ur
∂θ
− sinθcosθur

r2
+ cos2θ4uθ −

2sinθcosθ

r2
∂uθ
∂θ
− cos2θuθ

r2
)eθ

+ (4uz) ez

Namely

4u =

(
4ur −

ur
r2
− 2

r2
∂uθ
∂θ

)
er +

(
4uθ −

uθ
r2

+
2

r2
∂ur
∂θ

)
eθ + (4uz) ez (237)
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Similar to the independent variable transformational equations (IVTE) presented in [10],
essentially the vector PDE in different coordinate systems are the IVTE each other. Therefore,
we propose the concept of an independent variable transformation vector equation (IVTVE).

Definition. In the domain D, (D ⊂ Rn)(n ≥ 2),set xi are independent and yi are independent
too,(i = 1, 2, · · ·n),by xi = xi (y1, y2, . . . yn) ,yi = yi (x1, x2, . . . xn) , exi = fi(y1, y2,. . . yn, ey1 , ey2 ,
. . . eyn) and eyi = gi (x1, x2 . . . xn, ex1 , ex2 , . . . exn) which are known, mth-order vector PDE

F
(
x1, . . . xn, u,

∂u
∂x1

, . . . ∂u∂xn ,
∂2u

∂x1∂x2
, . . .

)
= 0 can be converted into another mth-order vector

PDE G
(
y1, . . . yn, u,

∂u
∂y1

, . . . ∂u∂yn ,
∂2u

∂y1∂y2
, . . .

)
= 0,then G = 0 is called a IVTVE of F = 0.

According to the define of IVTVE we propose theorem 5.

Theorem 5. In the domain D, (D ⊂ Rn),if the solution u = f (x1, x2 . . . xn, ex1 , ex2 , . . . exn) of a

mth-order vector PDE F
(
x1, . . . xn, u,

∂u
∂x1

, . . . ∂u∂xn ,
∂2u

∂x1∂x2
, . . .

)
= 0 is known, then the solution of

its IVTVE G
(
y1, . . . yn, u,

∂u
∂y1

, . . . ∂u∂yn ,
∂2u

∂y1∂y2
, . . .

)
= 0, is u = f (x1, x2 . . . xn, ex1 , ex2 , . . . exn) =

g (y1, y2 . . . yn, ey1 , ey2 , . . . eyn).

Proof. Using xi = xi (y1, y2, . . . yn) ,yi = yi (x1, x2, . . . xn) , exi = fi (y1, y2, . . . yn, ey1 , ey2 , . . . eyn)

and eyi = gi (x1, x2 . . . xn, ex1 , ex2 , . . . exn),G
(
y1, . . . yn, u,

∂u
∂y1

, . . . ∂u∂yn ,
∂2u

∂y1∂y2
, . . .

)
= 0, could be

converted into F
(
x1, . . . xn, u,

∂u
∂x1

, . . . ∂u∂xn ,
∂2u

∂x1∂x2
, . . .

)
= 0 because the solution

u = f (x1, x2 . . . xn, ex1 , ex2 , . . . exn) of F = 0 is known, so u = f (x1, x2 . . . xn, ex1 , ex2 , . . . exn) is
the solution of G = 0 too, by xi = xi (y1, y2, . . . yn) , and exi = fi (y1, y2, . . . yn, ey1 , ey2 , . . . eyn),
u = f (x1, x2 . . . xn, ex1 , ex2 , . . . exn) may be varied into u = g (y1, y2 . . . yn, ey1 , ey2 , . . . eyn).

Using theorem 5, we can solve the general solutions of vector wave equation and Helmholtz
equation in Cartesian coordinate system, the CSE Eq. (224) of Eq. (218) is the acoustic
equation, we had solved its general solution in Section 1.4

ui =f1i

(
k1ix+ k2iy + k3iz + ct

√
k21i + k22i + k23i + k4i

)
+ f2i

(
k5ix+ k6iy + k7iz − ct

√
k25i + k26i + k27i + k8i

)
+ k9ix+ k10iy + k11iz + k12it+ k13i

(238)
where f1i andf2i are arbitrary unary second differentiable functions, k1i − k13i are arbitrary
parameters, (i = x, y, z). Using Eq. (219) and (238), we can obtain the general solution of Eq.
(218) with six arbitrary second differentiable functions

u =
∑

i=x,y,z

(f1i

(
k1ix+ k2iy + k3iz + ct

√
k21i + k22i + k23i + k4i

)

+ f2i

(
k5ix+ k6iy + k7iz − ct

√
k25i + k26i + k27i + k8i

)
+ k9ix+ k10iy + k11iz + k12it+ k13i)ei

(239)

It is necessary to pay an attention to that the wave velocity ui are all the speed of light velocity
c.
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The general solution of the Helmholtz equation Eq. (225) is

ui =sin

k3i − k (k1il1i + k2il2i)x+ k
√
−l21i − l22i (k1iy + k2iz)√

(k1il1i + k2il2i)
2 −

(
k21i + k22i

) (
l21i + l22i

)


h1i

(√
−l21i − l22ix+ l1iy + l2iz + l3i

)

+ sin

k6i − k (k4il4i + k5il5i)x− k
√
−l24i − l25i (k4iy + k5iz)√

(k4il4i + k5il5i)
2 −

(
k24i + k25i

) (
l24i + l25i

)


h2i

(
−
√
−l24i − l25ix+ l4iy + l5iz + l6i

)
,

(240)

where h1i and h2i are arbitrary unary second differentiable functions, k1i − k6iand l1i − l6iare
arbitrary constants. Using Eq. (219) and (240), we can obtain the general solution of the vector
Helmholtz equation Eq. (221) with six arbitrary second differentiable functions

u =
∑

i=x,y,z

(sin

k3i − k (k1il1i + k2il2i)x+ k
√
−l21i − l22i (k1iy + k2iz)√

(k1il1i + k2il2i)
2 −

(
k21i + k22i

) (
l21i + l22i

)


h1i

(√
−l21i − l22ix+ l1iy + l2iz + l3i

)

+ sin

k6i − k (k4il4i + k5il5i)x− k
√
−l24i − l25i (k4iy + k5iz)√

(k4il4i + k5il5i)
2 −

(
k24i + k25i

) (
l24i + l25i

)


h2i

(
−
√
−l24i − l25ix+ l4iy + l5iz + l6i

)
)ei

(241)

The solutions of PDEs in different orthogonal coordinate systems have been the focus of
research [71-73]. According to Theorem 5, if a solution of a vector PDE is known, the solutions
of its various IVTVEs can be obtained directly, as in the cylindrical coordinate system

x = rcosθ , y = rsinθ , z = z. (242)

Using Eq. (227), (239), (242) and Theorem 5, the general solution of vector wave equation in
cylindrical coordinate system can be obtained directly

u = (f1x + f2x + gx) (cosθer − sinθeθ) + (f1y + f2y + gy) (sinθer + cosθeθ) + (f1z + f2z + gz) ez

= (cosθf1x + cosθf2x + cosθgx + sinθf1y + sinθf2y + sinθgy) er

+ (−sinθf1x − sinθf2x − sinθgx + cosθf1y + cosθf2y + cosθgy) eθ + (f1z + f2z + gz) ez

Namely

u = (cosθ (f1x + f2x + gx) + sinθ (f1y + f2y + gy)) er

+ (−sinθ (f1x + f2x + gx) + cosθ (f1y + f2y + gy)) eθ + (f1z + f2z + gz) ez,
(243)

where

f1i = f1i

(
k1ircosθ + k2irsinθ + k3iz + ct

√
k21i + k22i + k23i + k4i

)
(244)

f2i = f2i

(
k5ircosθ + k6irsinθ + k7iz − ct

√
k25i + k26i + k27i + k8i

)
(245)
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gi = k9ircosθ + k10irsinθ + k11iz + k12it+ k13i (246)

For the spherical coordinate system

x = rsinθcosϕ , y = rsinθsinϕ , z = rcosθ. (247)

By Eq. (227), (231-233), (247) and Theorem 5, the general solution of vector wave equation in
spherical coordinate system can be obtained straightway

u = (f1x + f2x + gx) (cosϕsinθer + cosϕcosθeθ − sinϕeϕ)

+ (f1y + f2y + gy) (sinϕsinθer + sinϕcosθeθ + cosϕeϕ)

+ (f1z + f2z + gz) (cosθer − sinθeθ)

Namely
u = (f1x + f2x + gx) (cosϕsinθer + cosϕcosθeθ − sinϕeϕ)

+ (f1y + f2y + gy) (sinϕsinθer + sinϕcosθeθ + cosϕeϕ)

+ (f1z + f2z + gz) (cosθer − sinθeθ)

Namely

u = (cosϕsinθ (f1x + f2x + gx) + sinϕsinθ (f1y + f2y + gy) + cosθ (f1z + f2z + gz)) er

+ cosϕcosθ (f1x + f2x + gx) + sinϕcosθ (f1y + f2y + gy)− sinθ (f1z + f2z + gz) eθ

+ (−sinϕ (f1x + f2x + gx) + cosϕ (f1y + f2y + gy)) eϕ,

(243)

where

f1i = f1i

(
k1irsinθcosϕ+ k2irsinθsinϕ+ k3ircosθ + ct

√
k21i + k22i + k23i + k4i

)
, (249)

f2i = f2i

(
k5irsinθcosϕ+ k6irsinθsinϕ+ k7ircosθ + ct

√
k25i + k26i + k27i + k8i

)
, (250)

gi = k9irsinθcosϕ+ k10irsinθsinϕ+ k11ircosθ + k12it+ k13i, (i = x, y, z) . (251)

The general solutions of the vector Laplace equation and Helmholtz equation and so on in cylin-
drical coordinate system and spherical coordinate system can be obtained similarly.

3. General solutions laws of linear partial differential equations

In recent years, many numerical methods have been developed to solve LPDEs, such as Fi-
nite integration method [76, 77], Bernoulli matrix method [78], Chebyshev matrix method [79]
and so on, the existence [80], uniqueness [81, 82] and stability [83] of the solution are also the
focus of research. Using the principle of transformational equations, if the solution of a LPDE
is known, the solutions of its infinite IVTEs and DVTEs can be obtained, which may be LPDEs
or NLPDEs. In this chapter, we will research new general solutions laws of LPDEs.

3.1. General solutions laws of linear partial differential equations with variable
coefficients

In this section, if there is no special interpretation,ai = ai (x1, . . . xn) , aji = aji (x1, . . . xn) ,
ai1i2...in = ai1i2...in (x1, . . . xn) , bi = bi (x1, . . . xn) , bji = bji (x1, . . . xn) ,li and lji are arbitrary
constants,f and fi are arbitrary unary smooth functions (i, j = 1, 2, · · · ).

Proposition 1. If v(x1, · · ·xn) is the particular solution of a1ux1 +a2ux2 + . . .+anuxn = 0,then
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its general solution is u = f(v(x1, · · ·xn)).

Prove. By Transformational Method 1 set u (x1, . . . xn) = f (v) = f (v (x1, . . . xn)) then

a1ux1 + a2ux2 + . . . anuxn = a1vx1f
′ + a2vx2f

′ + . . . anvxnf
′ = 0.

Namely a1vx1 + a2vx2 + . . . anvxn = 0, if its particular solution is known, the general solution of
a1ux1 + a2ux2 + . . . anuxn = 0 is u(x1, · · ·xn) = f(v(x1, · · ·xn)).

Proposition 2. If a1 =
−a2ajx2−a3ajx3−...−anajxn

ajx1
then the general solution of a1ux1 + a2ux2 +

. . . anuxn = 0, is u = f(aj(x1, · · ·xn)).

Prove. According to Transformational Method 2, set u(x1, · · ·xn) = f(aj(x1, · · ·xn)),(j =
2, 3, · · ·n), then

a1ux1 + a2ux2 + . . .+ anuxn = a1ajx1f
′ + a2ajx2f

′ + . . .+ anajxnf
′ = 0.

Namely

a1 =
−a2ajx2 − a3ajx3 − . . .− anajxn

ajx1
.

So the general solution of

a1ux1 + a2ux2 + . . . anuxn = 0 under the condition of a1 =
−a2ajx2−a3ajx3−...−anajxn

ajx1
. is u =

f(aj(x1, · · ·xn)).

Proposition 3.
a1vx1 + a2vx2 + . . .+ anvxn = 0, (252)

a1gx1 + a2gx2 + . . .+ angxn + an+1g = 0. (253)

If the particular solutions of Eq. (252) and Eq. (253) are known, the general solution of
a1ux1 + a2ux2 + . . .+ anuxn + an+1u = 0 is u = g(x1, · · ·xn)f(v(x1, · · ·xn)).

Prove. According to Transformational Method 3, set u(x1, · · ·xn) = g(x1, · · ·xn)f(v(x1, · · ·xn)),
the

a1ux1 + a2ux2 + . . .+ anuxn + an+1u

= (a1vx1 + a2vx2 + . . .+ anvxn) gf
′
v + (a1gx1 + a2gx2 + . . .+ angxn + an+1g) f = 0.

Setting f an arbitrary unary first differentiable function, we obtain

a1vx1 + a2vx2 + . . .+ anvxn = 0, (252)

a1gx1 + a2gx2 + . . .+ angxn + an+1g = 0. (253)

So if the particular solutions of Eq. (252) and Eq. (253) are known, the general solution of
a1ux1 + a2ux2 + . . .+ anuxn + an+1u = 0 is

u(x1, · · ·xn) = g(x1, · · ·xn)f(v(x1, · · ·xn)). (254)

Proposition 4. If the general solution u = f(v(x1, · · ·xn)) of a1ux1 + a2ux2 + . . . + anuxn =
0 is known, then the general solution of a1ux1 + a2ux2 + . . . + anuxn + an+1 = 0 is u =
f(v(x1, · · ·xn))+g(x1, · · ·xn),where u = g(x1, · · ·xn) is the particular solution of a1ux1 +a2ux2 +
. . .+ anuxn + an+1 = 0.
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Proposition 4 is obvious, and almost needs no proof.

Proposition 5. If the general solution u = f(v(x, y, z)) of (b1Dx + b2Dy + b3Dz)u = 0 is
known, where Dxj ≡ ∂

∂xj
, ( xj = x, y, z) then the general solution of (b1Dx + b2Dy + b3Dz)

2u = 0

is u = f1 (v (x, y, z)) + (l1x+ l2y + l3z + l4) f2 (v (x, y, z)) .

Prove. Because the general solution u = f(v(x, y, z)) of (b1Dx + b2Dy + b3Dz)u = 0 is
known, apparently u = f(v(x, y, z)) is also the solution of (b1Dx + b2Dy + b3Dz)

2u = 0, set-
ting u = g(x, y, z)f(v(x, y, z)) is the solution of is the solution of (b1Dx + b2Dy + b3Dz)

2u = 0
too, then

(b1Dx + b2Dy + b3Dz)
2u

=
(
b21D

2
x + b22D

2
y + b23D

2
z + 2b1b2DxDy + 2b1b3DxDz + 2b2b3DyDz

)
gf

=b21 (gfxx + 2fxgx + gxxf) + b22 (gfyy + 2fygy + gyyf) + b23 (gfzz + 2fzgz + gzzf)

+ 2b1b2 (gxfy + gfxy + gxyf + gyfx) + 2b1b3 (gxfz + gfxz + gxzf + gzfx)

+ 2b2b3 (gyfz + gfyz + gyzf + gzfy)

=
(
b21fxx + b22fyy + b23fzz + 2b1b2fxy + 2b1b3fxz + 2b2b3fyz

)
g

+
(
b21gxx + b22gyy + b23gzz + 2b1b2gxy + 2b1b3gxz + 2b2b3gyz

)
f

+
(
2b21gx + 2b1b2gy + 2b1b3gz

)
fx +

(
2b22gy + 2b1b2gx + 2b2b3gz

)
fy

+
(
2b23gz + 2b1b3gx + 2b2b3gy

)
fz

=
(
b21gxx + 2b1b2gxy + b22gyy + 2b1b3gxz + 2b2b3gyz + b23gzz

)
f

+ 2b1gx (b1fx + b2fy + b3fz) + 2b2gy (b1fx + b2fy + b3fz) + 2b3gz (b1fx + b2fy + b3fz)

=
(
b21gxx + 2b1b2gxy + b22gyy + 2b1b3gxz + 2b2b3gyz + b23gzz

)
f = 0

=⇒ b21gxx + 2b1b2gxy + b22gyy + 2b1b3gxz + 2b2b3gyz + b23gzz = 0.

Namely
b21gxx + 2b1b2gxy + b22gyy + 2b1b3gxz + 2b2b3gyz + b23gzz = 0, (255)

g(x, y, z) has to be a particular solution of Eq. (255), due to

g (x, y, z) = l1x+ l2y + l3z + l4, (256)

(256) is a particular solution of Eq. (255), so the general solution of (b1Dx + b2Dy + b3Dz)
2u = 0

is u = f1 (v (x, y, z)) + (l1x+ l2y + l3z + l4) f2 (v (x, y, z)) .

Proposition 6. If the general solution u = f(v(x1, · · ·xn)) of (b1Dx1+b2Dx2+· · ·+bnDxn)u = 0
is known, then the general solution of (b1Dx1 + b2Dx2 + . . .+ bnDxn)2u = 0 is u = f1(v(x1, . . . xn
)) + (l1x1 + l2x2 + . . .+ lnxn) f2 (v (x1, . . . xn)) .

Prove. Because the general solution u = f(v(x1, · · ·xn)) of (b1Dx1 + b2Dx2 + · · ·+ bnDxn)u = 0
is known, apparently u = f(v(x1, · · ·xn)) is the solution of (b1Dx1 + b2Dx2 + . . .+ bnDxn)2u = 0
yet, according to Proposition 5, we set that u = g(x1, · · ·xn)f = lsxsf is the solution of
(b1Dx1 + b2Dx2 + . . .+ bnDxn)2u = 0 too, namely g(x1, · · ·xn) = lsxs , ls is an arbitrary
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constant,(s = 1, 2, · · ·n), then

(b1Dx1 + b2Dx2 + . . . bnDxn)2u =

 n∑
i=1

b2iD
2
xi + 2

∑
i<j

bibjDxiDxj

 (gf)

=
n∑
i=1

b2i (gxixif + 2gxifxi + gfxixi) + 2
∑
i 6=j

bibj
(
gxixjf + gxifxj + gxjfxi + gfxixj

)

= g

 n∑
i=1

b2i fxixi + 2
∑
i<j

bibjfxixj

+ f

 n∑
i=1

b2i gxixi + 2
∑
i<j

bibjgxixj

+ 2

n∑
i=1

b2i gxifxi

+ 2
∑
i 6=j

bibj
(
gxifxj + gxjfxi

)
= 2

n∑
i=1

b2i gxifxi + 2
∑
i<j

bibjgxifxj + 2
∑
i<j

bibjgxjfxi

= 2b2sl
2
sfxs + 2lsbs

∑
s<j

bjfxj + 2lsbs
∑
i<s

bifxi = 2lsbs

n∑
i=1

bifxi = 0.

That u = lsxsf(v(x1, · · ·xn)) is the solution of (b1Dx1 + b2Dx2 + . . .+ bnDxn)2u = 0 is proved.
So its general solution is

u = f1 (v (x1, . . . xn)) + (l1x1 + l2x2 + . . .+ lnxn) f2 (v (x1, . . . xn)) . (257)

Note (257) may be written as

u = f1 (v (x1, . . . xn)) + (l1x1 + l2x2 + . . .+ lnxn + ln+1) f2 (v (x1, . . . xn)) .

According to Proposition 6, we present a conjecture

Conjecture 1. If the general solution u = f(v(x1, · · ·xn)) of (b1Dx1 +b2Dx2 +· · ·+bnDxn)u = 0
is known, then the general solution of (b1Dx1 + b2Dx2 + . . .+ bnDxn)mu = 0 is

u =
m∑
j=1

(lj1x1 + lj2x2 + . . .+ ljnxn)j−1fj (v (x1, . . . xn)) .

Theoretically Conjecture 1 can be proved by mathematical induction, we shall not analyse
it further.

For the mth-order linear PDE with variable coefficients∑
i1+i2+...+in=m

ai1i2...inu
(i1i2...in)
x1x2...xn = 0, (258)

where ij are positive integers, 1 ≤ j ≤ n, If Eq. (258) can be translated into

(b11Dx1 + b12Dx2 + . . .+ b1nDxn) (b21Dx1 + b22Dx2 + . . .+ b2nDxn) . . .

(bm1Dx1 + bm2Dx2 + . . .+ bmnDxn)u = 0.
(259)

For

(bj1Dx1 + bj2Dx2 + . . .+ bjnDxn)u = bj1ux1 +bj2ux2 +. . .+bjnuxn = 0 , (j = 1, 2, . . .m) . (260)

If the particular solutions u = vj(x1, · · ·xn), (j = 1, 2, · · ·m) of Eq. (260) are all known, by
Proposition 1 the general solution of Eq. (258) is

u =

m∑
j=1

fj (vj (x1, x2, . . . xn)) . (261)
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If Eq. (258) can be translated into:

q∏
j=1

(bj1Dx1 + bj2Dx2 + . . .+ bjnDxn)pju = 0, (262)

where
q∑
j=1

pj = m,its general solution of conjecture may be written by Conjecture 1.

Proposition 7. If the general solution u = g(x1, · · ·xn)f(v(x1, · · ·xn)) of (b1Dx1 +b2Dx2 + · · ·+
bnDxn+bn+1)u = 0 is known, then the general solution of (b1Dx1 + b2Dx2 + . . .+ bnDxn + bn+1)

2u
= 0 is u = g (x1, . . . xn) (f1 (v (x1, . . . xn)) + (l1x1 + l2x2 + . . .+ lnxn) f2 (v (x1, . . . xn))) .

Prove. If the general solution u = g(x1, · · ·xn)f(v(x1, · · ·xn)) of (b1Dx1 + b2Dx2 + · · · +
bnDxn +bn+1)u = 0 is known,is known, apparently (b1Dx1 + b2Dx2 + . . .+ bnDxn + bn+1)

2u = 0
is u = g(x1, . . . xn)f(v(x1, . . . xn)) is the solution of (b1Dx1 + b2Dx2 + . . .+ bnDxn + bn+1)

2u = 0
yet, set

u = ht = lsxsg (x1, x2, . . . xn) f (v (x1, x2, . . . xn)) , (263)

where h = lsxs,t = g (x1, x2, . . . xn) f (v (x1, . . . xn)) and ls is an arbitrary constant(s = 1, 2, · · ·n).
Assuming (263) is a particular solution of (b1Dx1 + b2Dx2 + . . .+ bnDxn + bn+1)

2u = 0, then

(b1Dx1 + b2Dx2 + . . .+ bnDxn + bn+1)
2u

=

n∑
i=1

b2i (hxixit+ 2hxitxi + htxixi) + b2n+1ht

+ 2
∑

1≤i<j≤n
bibj

(
hxixj t+ hxitxj + hxj txi + htxixj

)
+ 2bn+1

n∑
i=1

bi (hxit+ htxi)

=h

 n∑
i=1

b2i txixi + b2n+1t+ 2
∑

1≤i<j≤n
bibjtxixj + 2bn+1

n∑
i=1

bitxi

+ t
n∑
i=1

b2ihxixi

+ 2

n∑
i=1

b2ihxitxi + 2t
∑

1≤i<j≤n
bibjhxixj + 2

∑
1≤i<j≤n

bibjhxitxj + 2
∑

1≤i<j≤n
bibjhxj txi

+ 2bn+1t
n∑
i=1

bihxi

=2

n∑
i=1

b2ihxitxi + 2
∑

1≤i<j≤n
bibjhxitxj + 2

∑
1≤i<j≤n

bibjhxj txi + 2bn+1t

n∑
i=1

bihxi

=2b2shxstxs + 2bshxs
∑

1≤s<j≤n
bjtxj + 2bshxs

∑
1≤i<s≤n

bitxi + 2bn+1bshxst

That (263) is a solution of (b1Dx1 + b2Dx2 + . . .+ bnDxn + bn+1)
2u = 0 is proved, so its general

solution is u = g (x1, . . . xn) (f1 (v (x1, . . . xn)) + (l1x1 + l2x2 + . . .+ lnxn) f2 (v (x1, . . . xn))) .
According to Proposition 7, we present Conjecture 2.

Conjecture 2. If the general solution u = g (x1, . . . xn) f (v (x1, . . . xn)) of (b1Dx1+b2Dx2+· · ·+
bnDxn)u = 0 is known, the general solution of (b1Dx1 + b2Dx2 + . . .+ bnDxn + bn+1)

mu = 0 is

u = g (x1, . . . xn)
m∑
j=1

(lj1x1 + lj2x2 + . . .+ ljnxn)j−1fj (v (x1, . . . xn)) , (m ≥ 2) .
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For the mth-order linear PDE with variable coefficients∑
0≤i1+i2+...+in≤m

ai1i2...inu
(i1i2...in)
x1x2...xn = 0, (264)

where ij are positive integers, 1 ≤ j ≤ n. Suppose Eq. (264) can be translated into:(
b11Dx1 + b12Dx2 + . . .+ b1nDxn + b1n+1

) (
b21Dx1 + b22Dx2 + . . .+ b2nDxn + b2n+1

)
. . .
(
bm1Dx1 + bm2Dx2 + . . .+ bmnDxn + bmn+1

)
u = 0.

(265)

If the particular solutions gj(x1, · · ·xn) of (bj1Dx1 + bj2Dx2 + · · · + bjnDxn + bjn+1)u = 0 and
the particular solutions vj(x1, · · ·xn) of (bj1Dx1 + bj2Dx2 + · · ·+ bjnDxn)u = 0 re all known(j =
1, 2, · · ·n), by Proposition 3 the general solution of Eq. (265) is

u (x1, . . . xn) =

m∑
j=1

(gj (x1, . . . xn) fj (vj (x1, . . . xn))) . (266)

Suppose Eq. (264) can be translated into

q∏
j=1

(
bj1Dx1 + bj2Dx2 + . . .+ bjnDxn + bjn+1

)pju = 0, (267)

where
q∑
j=1

pj = m,its general solution of conjecture may be written by Conjecture 2.

For the mth-order linear PDE with variable coefficients∑
0≤i1+i2+...+in≤m

ai1i2,...inu
(i1i2...in)
x1x2...xn = h (x1, x2, . . . xn) , (268)

where h(x1, x2, · · ·xn) is an arbitrary known function, we need first solve the particular solution
of Eq. (268), by the general solution of its homogeneous equation, the general solution of Eq.
(268) could be got.

3.2. General solutions laws of linear partial differential equations with constant
coefficients

Here we will research the general solutions laws of LPDEs with constant coefficients, which
are the special cases of LPDEs with variable coefficients. In this section, if there is no special
interpretation ai, aji , bi, bji , ci, ki, kji , li, lji and ai1i2...in are arbitrary constants, f and fi are ar-
bitrary unary smooth functions (i, j = 1, 2, · · · ).

Proposition 8. The general solution of a1ux1+a2ux2+. . .+anuxn = 0 is u = f(−1a1 (a2k2+a3k3+
. . . ankn)x1 + k2x2 + . . .+ knxn + kn+1). Prove. According to Transformational Method 1, set
u (x1, . . . xn) = f (v) , v (x1, . . . xn) = k1x1 + k2x2 + . . .+ knxn + kn+1,then

a1ux1 + a2ux2 + . . .+ anuxn = a1k1f
′
v + a2k2f

′
v + . . .+ anknf

′
v = 0

=⇒ k1 =
−1

a1
(a2k2 + a3k3 + . . .+ ankn) .

So the general solution of a1ux1 +a2ux2 + . . .+anuxn = 0 is u (x1, x2, . . . xn) = f(−1a1 (a2k2 +a3k3
+ . . . ankn)x1 + k2x2 + . . .+ knxn + kn+1).
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Proposition 9. The general solution of (b1Dx1 + b2Dx2 + . . .+ bnDxn)2u = 0 is u = f1(
−1
b1

(b2k12
+b3k13 + . . .+ bnk1n)x1 + k12x2 + . . .+ k1nxn + k1n+1) + (l1x1 + l2x2 + . . .+ lnxn)f2(

−1
b1

(b2k22 +
b3k23 + . . .+ bnk2n)x1 + k22x2 + . . .+ k2nxn + k2n+1).

Prove. According to Proposition 6 and Proposition 8, we can get Proposition 9 directly.
By Proposition 9 and Conjecture 1, we present Conjecture 3.

Conjecture 3. The general solution of (b1Dx1 + b2Dx2 + . . .+ bnDxn)mu = 0 is

u =
m∑
j=1

(lj1x1 + . . .+ ljnxn)j−1fj

(
−1
b1

(b2kj2 + . . .+ bnkjn)x1 + kj2x2 + . . .+ kjnxn + kjn+1

)
.

For the mth-order LPDE with constant coefficients∑
i1+i2+...+in=m

ai1i2...inu
(i1i2...in)
x1x2...xn = 0, (269)

where ij are positive integers, 1 ≤ j ≤ n. If Eq. (269) can be translated into

(b11Dx1 + b12Dx2 + . . .+ b1nDxn) (b21Dx1 + b22Dx2 + . . .+ b2nDxn)

. . . (bm1Dx1 + bm2Dx2 + . . .+ bmnDxn)u = 0.
(270)

By (261) and Proposition 8, the general solution of Eq. (270) is

u =
m∑
j=1

fj

(
−1

bj1
(bj2kj2 + bj3kj3 + . . .+ bjnkjn)x1 + kj2x2 + . . .+ kjnxn + kjn+1

)
. (271)

If Eq. (269) can be converted into

q∏
j=1

(bj1Dx1 + bj2Dx2 + . . .+ bjnDxn)pju = 0, (272)

where
q∑
j=1

pj = m,its general solution of conjecture may be written by Conjecture 3.

Proposition 10. The general solution of a1ux1 + a2ux2 + . . . + anuxn + an+1u = 0 is u =

f
(
−1
a1

(a2k2 + a3k3 + . . .+ ankn)x1 + k2x2 + . . .+ knxn + kn+1

) n∑
i=1

cie
−an+1xi

ai .

Prove. We set u = g(x1, · · ·xn)f(v), where v (x1, . . . xn) = k1x1 + . . .+ knxn + kn+1,then

a1ux1 + a2ux2 + . . .+ anuxn + an+1u

= a1gx1f + a1k1gf
′
v + a2gx2f + a2k2gf

′
v + . . .+ angxnf + ankngf

′
v + an+1gf

= (a1k1 + a2k2 + . . .+ ankn) gf
′
v + (a1gx1 + a2gx2 + . . .+ angxn + an+1g) f = 0.

Setting f an arbitrary unary first differentiable function, then we get

a1k1 + a2k2 + . . .+ ankn = 0 =⇒ k1 =
−1

a1
(a2k2 + a3k3 + . . . ankn) , (273)

a1gx1 + a2gx2 + . . .+ angxn + an+1g = 0. (274)

Set g(x1, · · ·xn) = h(xi), (i = 1, 2, · · ·n), then

a1gx1 + . . .+angxn +an+1g = aihxi +an+1h = 0 =⇒ h (xi) = g (x1, . . . xn) = cie
−an+1xi

ai ,
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so u =
n∑
i=1

cie
−an+1xi

ai is the particular solution of a1ux1 + a2ux2 + . . .+ anuxn + an+1u = 0,thus

its general solution is

u = f

(
−1

a1
(a2k2 + a3k3 + . . .+ ankn)x1 + k2x2 + . . .+ knxn + kn+1

) n∑
i=1

cie
−an+1xi

ai . (275)

Proposition 11. The general solution of (b1Dx1 + b2Dx2 + . . .+ bnDxn + bn+1)
2u = 0 is

u =(
2∑
j=1

(lj1x1 + lj2x2 + . . .+ ljnxn)j−1fj(
−1

b1
(b2kj2 + b3kj3 + . . .+ bnkjn)x1 + kj2x2

+ . . .+ kjnxn + kjn+1))
n∑
i=1

cie
−bn+1xi

bi .

Prove. According to Proposition 7 and Proposition 10, we can get Proposition 11 directly.
By Proposition 11, we present Conjecture 4.

Conjecture 4. The general solution of (b1Dx1 + b2Dx2 + . . .+ bnDxn + bn+1)
mu = 0 is

u =(
m∑
j=1

(lj1x1 + lj2x2 + . . .+ ljnxn)j−1fj(
−1

b1
(b2kj2 + b3kj3 + . . .+ bnkjn)x1 + kj2x2 + . . .

+ kjnxn + kjn+1))
n∑
i=1

cie
−bn+1xi

bi , (m ≥ 2)

.
For the mth-order linear PDE with constant coefficients∑

0≤i1+i2+...+in≤m
ai1i2...inu

(i1i2...in)
x1x2...xn = 0, (276)

where ij are positive integers, 1 ≤ j ≤ n. Suppose Eq. (276) can be translated into(
b11Dx1 + b12Dx2 + . . .+ b1nDxn + b1n+1

) (
b21Dx1 + b22Dx2 + . . .+ b2nDxn + b2n+1

)
. . .
(
bm1Dx1 + bm2Dx2 + . . .+ bmnDxn + bmn+1

)
u = 0.

(277)

According to Proposition 10 the general solution of Eq. (277) is

u =
m∑
j=1

(
fj

(
−1

bj1
(bj2kj2 + . . .+ bjnkjn)x1 + kj2x2 + . . .+ kjnxn + kjn+1

) n∑
i=1

cjie

−bjn+1
xi

bji

)
.

(278)
Suppose Eq. (276) can be translated into

q∏
j=1

(
bj1Dx1 + bj2Dx2 + . . .+ bjnDxn + bjn+1

)pju = 0, (279)

where
q∑
j=1

pj = m,its general solution of conjecture may be written by Conjecture 4.
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For the mth-order linear PDE with constant coefficients∑
0≤i1+i2+...+in≤m

ai1i2...inu
(i1i2...in)
x1x2...xn = g (x1, x2, . . . xn) . (280)

If g(x1, · · ·xn) = h(v),v = k1x1 + . . .+ knxn + kn+1, h is a known unary function, k1, k2, · · · kn+1

are known parameters, according to Transformational Method 2 set u(x1, x2, · · ·xn) = f(v), Eq.
(280) could be converted into a mth-order nonhomogeneous LODE with constant coefficients,
and its particular solution f(v) could be obtained. Using (278) and so on, the general solution
of the homogeneous equation of Eq. (280) can be had, thus the general solution of Eq. (280)
may be gained further.

4. General solutions and particular solutions of nonlinear partial differential e-
quations

We have studied Eq. (18), (27) and Eq. (83), which are NLPDEs, and have obtained their
exact solutions or general solutions. Since the importance of NLPDEs, many effective methods
have been proposed to obtain their exact solutions, such as F-expansion method [84], tanh-
sech method [85C87], extended tanh method [88C90], multiple exp-function method [91, 92],
hyperbolic function method [93], Jacobi elliptic function expansion method [94], homogeneous
balance method [95C97], sineCcosine method [98C100] and so on. In this section we will solve
some typical examples by the new laws and methods proposed in this paper.

According to (1), (2) we present Theorem 6 first.

Theorem 6. In the domain D, (D ⊂ Rn), if u(x1, x2, · · ·xn) is a first differentiable function,
then

∂
∫
f (u) du

∂xi
= f (u)uxi . (281)

Proof. Set

v (x1, x2, . . . xn) = g (u) =

∫
f (u) du. (282)

By (2) and (282)

vxi =
∂
∫
f (u) du

∂xi
= g′ (u)uxi = f (u)uxi .

Thus the theorem is proved.

Example 4.1.
b (u)ux = a (x, y) , (283)

where a(x, y) is an any known binary function, b(u) is an arbitrary known unary function, by
Theorem 6

b (u)ux =
∂
∫
b (u) du

∂x
= a (x, y)

∫
b (u) du = φ (y) +

∫
a (x, y) dx,

where φ(y) is an arbitrary unary function, so the general solution of Eq. (283) is:∫
b (u) du = φ (y) +

∫
a (x, y) dx. (284)

Example 4.2.
ayuxx + axuxy + ayb (u)u2x + axb (u)uxuy = 0, (285)
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where a is an any known binary function, b(u) is an arbitrary known unary function, due to

ayvx + axvy = 0, (211)

the general solution of Eq. (211) is
v = g (a (x, y)) , (212)

where g is an arbitrary unary first differentiable function, by Theorem 2 we set

v (x, y) = f (u)ux, (286)

where f is an undetermined unary function, according to (284) and (212)∫
f (u) du = φ (y) +

∫
v (x, y) dx = φ (y) +

∫
g (a (x, y)) dx,

where φ(y) is an arbitrary unary function, by (286)

ayvx + axvy = ayf (u)uxx + ayf
′ (u)u2x + axf (u)uxy + axf

′ (u)uxuy = 0

=⇒ ayuxx + axuxy + ay
f ′ (u)

f (u)
u2x + ax

f ′ (u)

f (u)
uxuy

= ayuxx + axuxy + ayb (u)u2x + axb (u)uxuy = 0

=⇒ b (u) =
f ′ (u)

f (u)
=⇒ f (u) = e

∫
b(u)du.

So Eq. (285) is a DVTE of Eq. (211), according to Theorem 2, the general solution of Eq. (285)
is ∫

e
∫
b(u)dudu = φ (y) +

∫
g (a (x, y)) dx. (287)

Example 4.3.
uxy + a (u)uxuy + b (x, y)uy = 0, (288)

where a(u) is an any known unary function, b(x, y) is an arbitrary known binary function, due
to

vx + b (x, y) v = 0, (289)

the general solution of Eq. (289) is [74]

v = ϕ (y) e−
∫
b(x,y)dx, (290)

where ϕ(y) is an arbitrary unary function, by Theorem 2 we set

v = f (u)uy, (291)

where f is an undetermined unary first differentiable function, according to (284) and (290)∫
f (u) du =

∫
vdy = φ (x) +

∫
ϕ (y) e−

∫
b(x,y)dxdy,

where φ(x) is an arbitrary unary function, by (291)

vx + b (x, y) v = f (u)uxy + f ′ (u)uxuy + b (x, y) f (u)uy = 0

=⇒ uxy +
f ′ (u)

f (u)
uxuy + b (x, y)uy = uxy + a (u)uxuy + b (x, y)uy = 0

=⇒ f ′ (u)

f (u)
= a (u) =⇒ f (u) = e

∫
a(u)du.
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So Eq. (288) is a DVTE of Eq. (289), according to Theorem 2, the general solution of Eq. (288)
is ∫

e
∫
a(u)dudu = φ (x) +

∫
ϕ (y) e−

∫
b(x,y)dxdy. (292)

Example 4.4.
a1ux1 + a2ux2 + . . . anuxn + an+1h (u) = 0, (293)

where ai = ai(x1, · · ·xn), (i = 1, 2, · · ·n + 1), and h(u) is an arbitrary known unary function.
By Proposition 3, supposing the general solution w = g(x1, · · ·xn)f(v(x1, · · ·xn)) of a1wx1 +
a2wx2 + · · · anwxn + an+1w = 0 is known, set

w = p (u) . (294)

Then
wxi = p

′
uuxi , (295)

a1wx1 + a2wx2 + . . . anwxn + an+1w = a1p
′
uux1 + a2p

′
uux2 + . . . anp

′
uuxn + an+1p (u) = 0

=⇒ a1ux1 + a2ux2 + . . . anuxn + an+1
p (u)

p′u
= a1ux1 + a2ux2 + . . . anuxn + an+1h (u) = 0

=⇒ p (u)

p′u
= h (u)

=⇒ w = p (u) = e
∫

du
h(u) = g (x1, x2, . . . xn) f (v (x1, x2, . . . xn)) .

So Eq. (293) is a DVTE of a1wx1 + a2wx2 + · · · anwxn + an+1w = 0,according to Theorem 2, the
general solution of Eq. (293) is

e
∫

du
h(u) = g (x1, x2, . . . xn) f (v (x1, x2, . . . xn)) . (296)

If ai are constants, by Proposition 10 and (296), the general solution of Eq. (293) can be get

e
∫

du
h(u) = f

(
−1

a1
(a2k2 + a3k3 + . . . ankn)x1 + k2x2 + . . .+ knxn + kn+1

) n∑
i=1

cie
−an+1xi

ai , (297)

where k2 − kn+1 and c1 − cn are arbitrary constants.
In the theory of PDEs, converting a PDE to a relatively simple ODE is a classical method,

such as Laplace transform, Fourier transform, and so on integral transformation belong to this
type of way. According to Eq. (7) and (8), two kinds of PDEs can be transformed into ODEs,
and now we use two new theorems to express this idea:

Theorem 7. In the domain D, (D ⊂ Rn), any established mth-order PDE with n space variables
F (x1, · · ·xn, u, ux1 , · · ·uxn , ux1x2 , · · · ) = 0, If all the known functions satisfy ai (x1, . . . xn) =
ai(k1x1 + . . . + knxn + kn+1),where k1, k2, · · · kn+1 are known parameters, set u (x1, . . . xn) =
f (k1x1 + . . .+ knxn + kn+1), then substitute u = f (k1x1 + . . .+ knxn + kn+1) and its partial
derivatives into F = 0
1. If F = 0 is a linear PDE, then it can be converted to a linear ODE,

2. If F = 0 is a non-linear PDE, then it can be converted to a non-linear ODE.

Proof. Set v(x1, · · ·xn) = k1x1 + · · · + knxn + kn+1, then ai(x1, · · ·xn) = aiv, u = f(v), by
(7) and (8) F = 0 can be converted to an ODE whose dependent variable is f and independent
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variable is v, since each linear term in F = 0 is transformed into a new linear term, each non-
linear term is transformed into a new nonlinear term, so the theorem is proved.

Theorem 8. In the domain D, (D ⊂ Rn),any established mth-order PDE with n space variables
F (u, ux1 , · · ·uxn , ux1x2 , · · · ) = 0, namely in the equation there is no known function ai(x1, · · ·xn)
set u(x1, · · ·xn) = f(k1x1 + · · ·+ knxn + kn+1), where k1, k2, · · · kn+1 are unascertained param-
eters, then substitute u = f(k1x1 + · · ·+ knxn + kn+1) and its partial derivatives into F = 0
1. If F = 0 is a linear PDE, then it can be converted to a linear ODE,

2. If F = 0 is a non-linear PDE, then it can be converted to a non-linear ODE.

Proof. Set v(x1, · · ·xn) = k1x1 + · · ·+knxn+kn+1, then u = f(v), by (2.7) and (2.8) F = 0 can
be converted to an ODE whose dependent variable is f and independent variable is v, since each
linear term in F = 0 is transformed into a new linear term, each non-linear term is transformed
into a new nonlinear term, so the theorem is proved.

Theorem 7 and 8 is a further application of Transformational Method 1 and 2. In the previ-
ous, the method of solving the particular solution of Poisson equation is in fact using theorem
7, the method of solving Eq. (27) is actually the application of theorem 8. Now we use theorem
8 to solve two typical nonlinear PDEs.

Example 6.4.
a (u)ut + b (u)ux + c (u)uxx = 0. (298)

According to Theorem 8, set u(x, t) = f(v) = f(k1x + k2t + k3), k1 − k3 are parameters to be
determined, f is an undetermined unary second differentiable function, then

a (u)ut + b (u)ux + c (u)uxx = k2a (f) f
′
v + k1b (f) f

′
v + k21c (f) f

′′
v = 0.

Namely

f
′′
v +

k2a (f) + k1b (f)

k21c (f)
f
′
v = 0 (299)

Because
y′′ + b (y)

(
y′
)2

+ c (y)
(
y′
)m

= 0. (300)

The general solution of Eq. (300) is [53]

x = C2 +

∫ (
−e(2−m)

∫
b(y)dy

C1 + (2−m)
∫
c (y) e(2−m)

∫
b(y)dydy

) 1
2−m

dy, (301)

where C1 and C2 are arbitrary constants, so the exact solution of Eq. (298) is

v = k1x+ k2t+ k3 =

∫
du

C1 −
∫ k2a(u)+k1b(u)

k21c(u)
du
. (302)

where k1 − k3 are arbitrary constants, Burgers equation

ut + uux + αuxx = 0, (303)

is a special case of Eq. (298), according to (302) its exact solution is

k1x+ k2t+ k3 = −2k21α

∫
du

C1 + 2k2u+ k1u2
. (304)
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Example 6.5.
a (u)ut + b (u)ux + c (u)uxxx = 0. (305)

According to Theorem 8, set u(x, t) = f(v) = f(k1x + k2t + k3), k1 − k3 are parameters to be
determined, f is an undetermined unary third differentiable function, then

a (u)ut + b (u)ux + c (u)uxxx = k2a (u) f
′
v + k1b (u) f

′
v + k31c (u) f

′′′
v = 0.

Namely

f
′′′
v +

k2a (u) + k1b (u)

k31c (u)
f
′
v = 0. (306)

Because
y′′′ + b (y) y′

(
y′′
)m

= 0. (307)

The general solution of Eq. (307) is [53]

x = C1 +

∫ C2 − 2

∫ (
C3 + (1−m)

∫
b (y) dy

) 1
1−m

dy


−1
2

dy, (308)

where C1 − C3 are arbitrary constants, so the exact solution of Eq. (305) is

k1x+ k2t+ k3 =

∫ (
C1 − C2u− 2

∫ ∫
k2a (u) + k1b (u)

k31c (u)
dudu

)−1
2

du. (309)

where k1−k3 are arbitrary constants, KdV equation, mKdV equation and KdV-mKdV equation

ut + uux + βuxxx = 0, (310)

ut + αu2ux + βuxxx = 0, (311)

ut + γuux + αu2ux + βuxxx = 0, (312)

are special cases of Eq. (305), according to (309) their exact solutions are

k1x+ k2t+ k3 =

∫ (
C1 − C2u−

k2
k31β

u2 − k1
3k31β

u3
)−1

2

du, (313)

k1x+ k2t+ k3 =

∫ (
C1 − C2u−

k2
k31β

u2 − k1α

6k31β
u4
)−1

2

du, (314)

k1x+ k2t+ k3 =

∫ (
C1 − C2u−

k2
k31β

u2 − k1γ

3k31β
u3 − k1α

6k31β
u4
)−1

2

du, (315)

respectively. Since k1 − k3 are arbitrary constants, (304), (313)-(315) are all solitary wave solu-
tions.

5. Extention and conclusion

5.1. Two axioms and a conjecture
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For revealing the relationship between an arbitrary mth-order partial differential equation
(PDE) of n variables and an arbitrary mth-differentiable function of n variables, we present
Axiom 1.

Axiom 1. In the domain D, (D ⊂ Rn), any established mth-order PDE with n variables
F (x1, · · ·xn, u, ux1 , · · ·uxn , ux1x2 , · · · ) = 0, set f(x1, · · ·xn) an arbitrary known function, f ∈
Cm(D), then substitute from u = f(x1, · · ·xn) and its partial derivatives into F = 0
1. In case of getting 0 = 0, then u = f(x1, · · ·xn) is the solution of F = 0,

2. In case of getting k = 0, but in fact k 6= 0, then u = f(x1, · · ·xn) is not the solution of
F = 0,

3. In case of getting h(x1, · · ·xl) = 0,(l ≤ n), then u = f(x1, · · ·xn) is the solution of F = 0
under the condition of h(x1, · · ·xl) = 0.

Among the three conclusions of Axiom 1, the first two are obvious and the relevant cases
could be illustrated easily, we mainly analyse the third conclusion, such as

Example 5.1.
z3x + z3y + z3 = x3y3. (316)

We may choose an arbitrary binary first differentiable function, for instance substitute z = xy
into Eq. (316)

z3x + z3y + z3 = y3 + x3 + x3y3 = x3y3 =⇒ y = −x.

So z = xy is a solution of Eq. (316) under the condition of y = −x. Note z = −x2 is not a
particular solution of Eq. (316), in 3-dimensional space, z = −x2 is a three-dimensional surface
perpendicular to the y-axis, z = xy under the condition of y = −x is a three-dimensional curve:

x = x

y = −x
z = xy = −x2

or set x = t,then: 
x = t

y = −t
z = −t2

So the geometric meaning and the mathematical meaning of these two cases are completely
different.

Substituting from any function of n variables into an arbitrary PDE of n variables may
obtain other special circumstances, such as denominator equal zero and so on, the probabilities
of these circumstances are very low like geting 0 = 0 or k = 0, so Axiom 1 reveals that almost
any mth-differentiable function of n variables is a conditional solution of an arbitrary mth-order
PDE of n variables.

Axiom 1 may be extended to ordinary differential equations (ODEs), so we present Axiom
2.

Axiom 2. In the domain D, (D ⊂ R1), any established mth-order ordinary differential e-
quation (ODE) F (x, y, y(1), y(2) · · · y(m)) = 0, set f(x) known and f ∈ Cm(D), then substitute
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from y = f(x) and its derivatives into F = 0
1. In case of getting 0 = 0, then y = f(x) is the solution of F = 0,

2. In case of getting k = 0, but in fact k 6= 0, then y = f(x) is not the solution of F = 0,

3. In case of getting g(x) = 0, then y = f(x) is the solution of F = 0 under the condition
of g(x) = 0,

4. In case of getting x = k1, k2 · · · kl(l ≥ 1), then y = f(x) is the discrete solution of F = 0
under the condition of x = k1, k2 · · · kl.

The probability of the above first and second results is very little, so Axiom 2 reveals that
almost every unary mth-differentiable function is a conditional solution of an arbitrary mth-
order ODE. Such as Abel equation.

Example 5.2.
y′ + y3 + a (x) = 0, (317)

where a(x) is an arbitrary unary functions, discretionarily set y = cx, then

y
′
+ y3 + a (x) = c+ c3x3 + a (x) = 0 =⇒ a (x) = −c− c3x3.

Therefore, under the condition of a(x) = −c − c3x3, the particular solution of the Eq. (317) is
y = cx.

Example 5.3.
y′ + y3 + x3 = 0, (318)

set y = cx, then

y
′
+ y3 + x3 = c+

(
c3 + 1

)
x3 = 0 =⇒ x =

(
−c

c3 + 1

) 1
3

.

Therefore, on the point x =
(
−c
c3+1

) 1
3
. the particular solution of the Eq. (318) is y = cx. In

some specific case, the general solution of the Abel equation may be referred to [101, 102].

We know that a univariate function satisfying certain conditions can be expanded into a
Taylor series or a Fourier series. When we consider the Cauchy problem of Eq. (38), we assume
that the conditions are (41) and (42). Now we propose a conjecture about the n-ary function:

Conjecture 5. A n-ary function satisfying certain conditions can be expanded into a series:

f (x1, x2, . . . xn) =
s∑
i=1

ϕi
(
ki1x1 + ki2x2 + . . .+ kinxn + kin+1

)
, (1 ≤ s ≤ ∞) (319)

Where ϕi are arbitrarily determined unary functions and kij are arbitrarily determined param-
eters.

For the unary function, Conjecture 5 is obviously correct, because the Taylor series and Fouri-

er series are all special cases of
s∑
i=1

ϕi (ki1x+ ki2) for the n-ary function (n ≥ 2), how to strictly

prove Conjecture 5 is a new mathematical problem. Even if some f(x1, x2, · · ·xn) cannot be
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strictly expanded to (318), since ϕi, kij can be arbitrarily chosen, it can be further envisioned that

f(x1, x2, · · ·xn) should be approximatively replaced to
s∑
i=1

ϕi
(
ki1x1 + ki2x2 + . . .+ kinxn + kin+1

)
in a restricted domain.

5.2. General Equations and Restricted Equations

In this book, we have solved general solutions of many important PDEs, such as the concise
general solution of acoustic equation in Cartesian coordinate system is

p =f1

(
k1x+ k2y + k3z + c0t

√
k21 + k22 + k23 + k4

)
+ f2

(
k5x+ k6y + k7z − c0t

√
k25 + k26 + k27 + k8

)
+ k9x+ k10y + k11z + k12t+ k13.

(63)

If we set k3 = k7 = k11 = 0, then

p =f1

(
k1x+ k2y + c0t

√
k21 + k22 + k4

)
+ f2

(
k5x+ k6y − c0t

√
k25 + k26 + k8

)
+ k9x+ k10y + k12t+ k13

(320)

(320) is essentially the general solution (58) of 2D wave equation

u =f1

(
k1x+ k2y + at

√
k21 + k22 + k3

)
+ f2

(
k4x+ k5y − at

√
k24 + k25 + k6

)
+ k7x+ k8y + k9t+ k10.

(58)

If we set k2 = k3 = k6 = k7 = k11 = 0, then

p = f1 (k1x+ c0k1t+ k4) + f2 (k5x− c0k5t+ k8) + k9x+ k12t+ k13 (321)

(321) is essentially the general solution (48) of the 1D wave equation

u = f1 (k1x+ k1at+ k2) + f2 (k3x− k3at+ k4) + k5x+ k6t+ k7, (48)

Such as the concise general solution of 3D heat equation in Cartesian coordinate system is

u =e

k0(k0t+k1x+k2y+k3z)

(k21+k22+k23)a2 h1

2k0

(√
−l22 − l23k1 + l2k2 + l3k3

)
k21 + k22 + k23

t+
√
−l22 − l23x+ l2y + l3z + l4


+ e

k10(k10t+k11x+k12y+k13z)

(k211+k212+k213)a2

h2

2k10

(
−
√
−l212 − l213k11 + l12k12 + l13k13

)
k211 + k212 + k213

t−
√
−l212 − l213x+ l12y + l13z + l14


(123)

If we set k0 = k10 = 0, then

u = h1

(√
−l22 − l23x+ l2y + l3z + l4

)
+ h2

(
−
√
−l212 − l213x+ l12y + l13z + l14

)
, (322)

Contrast (322) with (16)

u = f1(x
√
−k22 − k23 + k1y + k2z + k3)

+f2(−x
√
−k24 − k25 + k4y + k5z + k6) + k7x+ k8y + k9z + k10,

(16)
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(322) is a part of the general solution of Laplace equation.
Now let us ask a question: Why there is such a relation in the general solutions of these

different equations?
In order to solve this problem, we first propose three new defines: general equations,

restricted equations and homologous restricted equations.

If the equation Fi = 0 is a special case of the equation F = 0, (i = 1, 2, · · · ), then Fi = 0 is
the restricted equation of F = 0, F = 0 is the general equation of Fi = 0, Fi = 0 between each
other known as the homologous restricted equations.

In theory, any equation can have infinite general equations; if an equation contains arbitrary
known functions or parameters, the equation can have infinite restricted equations.

Using the above defines, we propose Axiom 3:

Axiom 3: If there is no meaningless case, the solution of a general equation is known, then
the solutions of all its restricted equations are known; if the solution of a restricted equation is
unknown, then the solutions of all its general equations are unknown.

Axiom 3 is not hard to be understood. Since restricted equations are special cases of their
general equations, the solutions of restricted equations are also special cases of the solutions
of their general equations. Unless nonsensical cases occur, the solutions of all the restricted
equations can be directly obtained by the known solutions of their general equations. On the
other hand, if the solution of a restricted equation is not solved, it is impossible to solve the
solutions of its general equations which are more complex.

According to the above defines and laws, we can explain why the solutions of some PDEs are
similar, or even there are some definite relationships within them. Because they are homologous
restricted equations, such as one-dimensional, two-dimensional and three-dimensional wave e-
quation are all the restricted equations of Eq. (38); the heat equation and the Laplace equation
are both the restricted equations of Eq. (111).

Since there is k7x+ k8y + k9z + k10 in the general solution of the Laplace equation, we can
make a preliminary judgment that these terms may be absent in the general solutions of (111)
and (122).

5.3. Conclusion

In this paper, we have proposed ten new concepts, three new axioms and eight new theorems,
they are:

concise general solution (CGS); series general solution (SGS); independent variable trans-
formational equations (IVTEs); dependent variable transformational equations (DVTEs); sym-
metric vector partial differential equations (SVPDEs); corresponding scalar equation (CSE);
independent variable transformation vector equation (IVTVE); general equations; restricted e-
quations; homologous restricted equations.

Axiom 1. In the domain D, (D ⊂ Rn), any established mth-order PDE with n variables
F (x1, · · ·xn, u,
ux1 , · · ·uxn , ux1x2 , · · · ) = 0, set f(x1, · · ·xn) an arbitrary known function, f ∈ Cm(D), then sub-
stitute from u = f(x1, · · ·xn) and its partial derivatives into F = 0
1. In case of getting 0 = 0, then u = f(x1, · · ·xn) is the solution of F = 0,
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2. In case of getting k = 0, but in fact k 6= 0, then u = f(x1, · · ·xn) is not the solution of
F = 0,

3. In case of getting h(x1, · · ·xl) = 0, (l ≤ n), then u = f(x1, · · ·xn) is the solution of F = 0
under the condition of h(x1, · · ·xl) = 0.

Axiom 2. In the domain D, (D ⊂ R1), any established mth-order ordinary differential e-
quation (ODE) F (x, y, y(1), y(2) · · · y(m)) = 0, set f(x) known and f ∈ Cm(D), then substitute
from y = f(x) and its derivatives into F = 0
1. In case of getting 0 = 0, then y = f(x) is the solution of F = 0,

2. In case of getting k = 0, but in fact k 6= 0, then y = f(x) is not the solution of F = 0,

3. In case of getting g(x) = 0, then y = f(x) is the solution of F = 0 under the condition
of g(x) = 0,

4. In case of getting x = k1, k2 · · · kl(l ≥ 1), then y = f(x) is the discrete solution of F = 0
under the condition of x = k1, k2 · · · kl.

Above two new axioms reveal that almost any mth-differentiable function with n variables
is a conditional solution of an arbitrary mth-order PDE with n variables and almost any unary
mth-differentiable function is a conditional solution of an arbitrary mth-order ODE.

Axiom 3. If there is no meaningless case, the solution of a general equation is known, then
the solutions of all its restricted equations are known; if the solution of a restricted equation is
unknown, then the solutions of all its general equations are unknown.

Theorem 1. In the domain D, (D ⊂ Rn), if the solution u = f(x1, · · ·xn) of a mth-order PDE
F (x1, · · ·xn, u, ux1 , · · ·uxn , ux1x2 , · · · ) = 0 is known, then the solution of its IVTE G(y1, · · · yn, u,
uy1 , · · ·uyn , uy1y2 , · · · ) = 0 is u = f(x1, · · ·xn) = g(y1, · · · yn).

Theorem 1 reveals the law of partial differential equations solution in various orthogonal
coordinate system.

Theorem 2. In the domain D, (D ⊂ Rn), if the solution v = f(x1, · · ·xn) of a PDE F (x1, · · ·xn,
v, vx1 , · · · vxn , vx1x2 , · · · ) = 0 is known, set v = h(x1, · · ·xn, u, ux1 , · · ·uxn , ux1x2 , · · · ) then the so-
lution of its DVTE G(x1, · · ·xn, u, ux1 , · · ·uxn , ux1x2 , · · · ) = 0 is the solution of h(x1, · · ·xn, u, ux1 ,
· · ·uxn , ux1x2 , · · · ) = f(x1, · · ·xn).

Theorem 3. In the domain D, (D ⊂ R1), if the solution w = f(x) of an ODE F (x,w,w′, w′′, . . .
w(n)) = 0 is known, set w = h

(
x, y, y′, y′′, . . . y(m)

)
, then the solution of its DVTE G(x, y, y′, y′′,

. . . y(m+n)) = 0 is the solution of h
(
x, y, y′, y′′, . . . y(m)

)
= f(x).

Theorem 4. If there are m arbitrary functions in the general solution of the CSE Fi = 0,
then the number of arbitrary functions in the general solution of the n-dimensional SVPDE
F = 0 is mn.

Theorem 5. In the domain D, (D ⊂ Rn), if the solution u = f (x1, x2 . . . xn, ex1 , ex2 , . . . exn) of a

mth-order vector PDE F
(
x1, . . . xn, u,

∂u
∂x1

, . . . ∂u∂xn ,
∂2u

∂x1∂x2
, . . .

)
= 0 is known, then the solution of
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its IVTVE G
(
y1, . . . yn, u,

∂u
∂y1

, . . . ∂u∂yn ,
∂2u

∂y1∂y2
, . . .

)
= 0 is u = f (x1, x2 . . . xn, ex1 , ex2 , . . . exn) =

g (y1, y2, . . . yn, ey1 , ey2 , . . . eyn)

Theorem 6. In the domain D, (D ⊂ Rn),if u(x1, x2, · · ·xn) is a first differentiable function,
then

∂
∫
f (u) du

∂xi
= f (u)uxi . (281)

Theorem 7. In the domain D, (D ⊂ Rn),any established mth-order PDE with n space vari-
ables F (x1, . . . xn, u, ux1 , . . . uxn , ux1x2 , . . .) = 0,If all the known functions satisfy ai (x1, . . . xn) =
ai(k1x1 + . . . + knxn + kn+1) where k1, k2, · · · kn+1 are known parameters, set u (x1, . . . xn) =
f (k1x1 + . . .+ knxn + kn+1), then substitute u = f (k1x1 + . . .+ knxn + kn+1) and its partial
derivatives into F = 0
1. If F = 0 is a linear PDE, then it can be converted to a linear ODE,

2. If F = 0 is a non-linear PDE, then it can be converted to a non-linear ODE.

Theorem 8. In the domain D, (D ⊂ Rn),any established mth-order PDE with n space variables
F (u, ux1 , · · ·uxn , ux1x2 , · · · ) = 0, namely in the equation there is no known function ai(x1, · · ·xn)
set u (x1, . . . xn) = f (k1x1 + . . .+ knxn + kn+1),where k1, k2, · · · kn+1 are unascertained param-
eters, then substitute u = f (k1x1 + . . .+ knxn + kn+1) and its partial derivatives into F = 0
1. If F = 0 is a linear PDE, then it can be converted to a linear ODE,

2. If F = 0 is a non-linear PDE, then it can be converted to a non-linear ODE.

In Chapter 2, we indicate that Transformational Method 1-4 are specific applications of
Theorem 2. In fact, Transformational Method 1-4 are also concrete applications of Axiom 1.
According to Axiom 1, the complete representation of the four transformation methods should
be:

Transformational Method 1. In the domain D, (D ⊂ Rn), any established mth-order PDE
with n variables F (x1, · · ·xn, u, ux1 , · · ·uxn , ux1x2 , · · · ) = 0,set v = v(x1, · · ·xn) and u = f(v) are
both undetermined mth-differentiable functions (u, v ∈ Cm(D)), then substitute u = f(v) and its
partial derivatives into F = 0
1. In case of working out v(x1, · · ·xn) and f(v), then u = f(v) is the solution of F = 0,

2. In case of dividing out f(v) and its partial derivative, also working out v(x1, · · ·xn), then
u = f(v) is the solution of F = 0, and f is an arbitrary unary mth-differentiable function,

3. In case of dividing out f(v) and its partial derivative, also getting k = 0, but in fact k 6= 0,
then u = f(v) is not the solution of F = 0, and f is an arbitrary unary mth-differentiable
function.

4. In case of working out v(x1, · · ·xn) and f(v) under the condition of h(x1, · · ·xl) = 0, (l ≤ n),
then u = f(v) is the solution of F = 0 under the condition of h(x1, · · ·xl) = 0,

5. In case of dividing out f(v) and its partial derivative, also working out v(x1, · · ·xn) un-
der the condition of h(x1, · · ·xl) = 0, (l ≤ n), then u = f(v) is the solution of F = 0 under the
condition of h(x1, · · ·xl) = 0, and f is an arbitrary unary mth-differentiable function.
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Transformational Method 2. In the domain D, (D ⊂ Rn), any established mth-order
PDE with n variables F (x1, · · ·xn, u, ux1 , · · ·uxn , ux1x2 , · · · ) = 0,set v = v(x1, · · ·xn) known
and u = f(v) undetermined (u, v ∈ Cm(D)), then substitute u = f(v) and its partial derivatives
into F = 0
1. In case of working out f , then u = f(v) is the solution of F = 0,

2. In case of dividing out f and its partial derivative, also getting 0 = 0, then u = f(v) is
the solution of F = 0, and f is an arbitrary unary mth-differentiable function,

3. In case of dividing out f and its partial derivative, also getting k = 0, but in fact k 6= 0, then
u = f(v) is not the solution of F = 0, and f is an arbitrary unary mth-differentiable function

4. In case of working out f under the condition of h(x1, · · ·xl) = 0, (l ≤ n), then u = f(v)
is the solution of F = 0 under the condition of h(x1, · · ·xl) = 0,

5. In case of dividing out f and its partial derivative, also getting h(x1, · · ·xl) = 0, (l ≤ n),
then u = f(v) is the solution of F = 0 under the condition of h(x1, · · ·xl) = 0, and f is an
arbitrary unary mth-differentiable function.

Transformational Method 3. In the domain D, (D ⊂ Rn), any established mth-order
PDE with n variables F (x1, · · ·xn, u, ux1 , · · ·uxn , ux1x2 , · · · ) = 0,setting f(v), g(x1, · · ·xn) and
v(x1, · · ·xn) are all undetermined function, g, v ∈ Cm(D), then substitute u = gf(v) and its
partial derivatives into F = 0
1. In case of working out f, g and v, then u = gf(v) is the solution of F = 0,

2. In case of dividing out f and its partial derivative, also working out g and v, then u = gf(v)
is the solution of F = 0, and f is an arbitrary unary mth-differentiable function,

3. In case of getting k = 0, but in fact k 6= 0, then u = gf(v) is not the solution of F = 0,

4. In case of working out f, g and v under the condition of h(x1, · · ·xl) = 0, (l ≤ n), then
u = gf(v) is the solution of F = 0 under the condition of h(x1, · · ·xl) = 0,

5. In case of dividing out f and its partial derivative, also working out g and v under the
condition of h(x1, · · ·xl) = 0, (l ≤ n), then u = gf(v) is the solution of F = 0 under the condi-
tion of h(x1, · · ·xl) = 0, and f is an arbitrary unary mth-differentiable function.

Transformational Method 4. In the domain D, (D ⊂ Rn), any established mth-order PDE
with n variables F (x1, · · ·xn, u, ux1 , · · ·uxn , ux1x2 , · · · ) = 0,setting g(x1, · · ·xn) is known and
f(v), v(x1, · · ·xn) are undetermined, g, v ∈ Cm(D), then substitute u = gf(v) and its partial
derivatives into F = 0
1. In case of working out f and v, then u = gf(v) is the solution of F = 0,

2. In case of dividing out f and its partial derivative, also working out v(x1, · · ·xn), then
u = gf(v) is the solution of F = 0, and f is an arbitrary unary mth-differentiable function,

3. In case of getting k = 0, but in fact k 6= 0, then u = gf(v) is not the solution of F = 0,

4. In case of working out f and v under the condition of h(x1, · · ·xl) = 0, (l ≤ n), then
u = gf(v) is the solution of F = 0 under the condition of h(x1, · · ·xl) = 0,
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5. In case of dividing out f and its partial derivative, also working out v(x1, · · ·xn) under
the condition of h(x1, · · ·xl) = 0, (l ≤ n), then u = gf(v) is the solution of F = 0 under the
condition of h(x1, · · ·xl) = 0, and f is an arbitrary unary mth-differentiable function.

Using above four new transformational methods, the general solutions and the exact solutions
of the Cauchy problem for the Laplace equation, 2D wave equation, the acoustic wave equation,
Helmholtz equation, heat equation and the diffusion equation have been solved. In some cases,
the general solutions and the exact solutions of the Cauchy problem for the Poisson equation
and Schrödinger equation have been solved too. We also find a singularity of general solutions of
Helmholtz equation for the first time, namely the number of arbitrary functions in the general
solutions is more than 2.

For research the laws of the general solution of mth-order LPDEs with n variables, we also
present 11 Propositions and 4 conjectures in Chapter 3.

Appendix

Appendix A

In (37) it can be proved that if k1, l1 6= 0 and k1, l1 9 0, c1v can be described by f1 and f2,
set

ki = li = Ci, (i = 2, 3, . . . n+ 1) .

Then
f1 = f1 (kx1 + C2x2 + . . .+ Cnxn + Cn+1) ,

f2 = f2 (−kx1 + C2x2 + . . .+ Cnxn + Cn+1) ,

where

k =

(
−a2C

2
2 + a3C

2
3 + . . .+ anC

2
n + an+1C2C3

a1

) 1
2

.

Set

Ac1(kx1 + C2x2 + . . .+ Cnxn + Cn+1) +Bc1(−kx1 + C2x2 + . . .+ Cnxn
+Cn+1) = (A+B)c1(C1x1 + C2x2 + . . .+ Cnxn + Cn+1)⇒ C1 = A−B

A+Bk.

If A = B 6= 0, then A−B
A+B = 0. If B = −A+ 1, then

lim
A→∞

A−B
A+B

= lim
A→∞

(2A− 1)→∞, lim
A→∞

A−B
A+B

= lim
A→∞

(2A− 1)→ −∞.

Namely A−B
A+B ∈ (−∞,∞), if k 6= 0 and k 9 0, selecting A,B felicitously, C1 may equal to

arbitrary real number, so c1v can be described by f1, f2, and

c1v = c1 (C1x1 + C2x2 + . . .+ Cnxn + Cn+1)

= Ac1
A+B (kx1 + C2x2 + . . .+ Cnxn + Cn+1)

+ Bc1
A+B (−kx1 + C2x2 + . . .+ Cnxn + Cn+1) ,

where C1 = A−B
A+Bk.

Appendix B
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The calculation of (43) as follows. In (40), set c1 = 0, kij = lij , (i = 1, 2, · · · s, j = 2, 3, · · ·n+
1)

ki1 =
(
−
(
a2k

2
i2 + . . .+ ank

2
in + an+1ki2ki3

)
/a1
) 1

2 . (44)

According to (40)-(42)

u (0, x2, . . . xn) =
s∑
i=1

(f1i(ki2x2 + . . .+ kinxn + kin+1) + f2i(ki2x2 + . . .+ kinxn + kin+1))

=
s∑
i=1

ϕi(ki2x2 + . . .+ kinxn + kin+1),

ux1 (0, x2, . . . xn) =

s∑
i=1

(ki1f
′
1i(ki2x2 + . . .+ kinxn + kin+1)− ki1f

′
2i(ki2x2 + . . .+ kinxn + kin+1))

=

s∑
i=1

(ki2x2 + . . .+ kinxn + kin+1).

We have
f1i
(
ki2x2 + . . .+ kinxn + kin+1

)
+ f2i

(
ki2x2 + . . .+ kinxn + kin+1

)
= ϕi

(
ki2x2 + . . .+ kinxn + kin+1

)
,

(323)

ki1f
′
1i

(
ki2x2 + . . .+ kinxn + kin+1

)
− ki1f

′
2i

(
ki2x2 + . . .+ kinxn + kin+1

)
= ψi

(
ki2x2 + . . .+ kinxn + kin+1

) (324)

According to (324) we get

f1i(ki2x2 + . . .+ kinxn + kin+1)− f2i(ki2x2 + . . .+ kinxn + kin+1)

= 1
ki1

∫ ki2x2+...+kinxn+kin+1

ki2x20+...+kinxn0+kin+1

ψ(ξi)dξi+

f1i(ki2x20 + . . .+ kinxn0 + kin+1)− f2i(ki2x20 + . . .+ kinxn0 + kin+1)

(325)

Combining (323) and (325), then

f1i
(
ki2x2 + . . .+ kinxn + kin+1

)
= 1

2ϕi
(
ki2x2 + . . .+ kinxn + kin+1

)
+ 1

2ki1

∫ ki2x2+...kinxn+kin+1

ki2x20+...+kinxn0+kin+1

ψ (ξi) dξi

+1
2f1i

(
ki2x20 + . . .+ kinxn0 + kin+1

)
− 1

2f2i
(
ki2x20 + . . .+ kinxn0 + kin+1

)
⇒ f1i

(
ki1x1 + ki2x2 + . . .+ kinxn + kin+1

)
= 1

2ϕi
(
ki1x1 + ki2x2 + . . .+ kinxn + kin+1

)
+ 1

2ki1

∫ ki1x1+ki2x2+...kinxn+kin+1

ki2x20+ki3x30+...+kinxn0+kin+1

ψ (ξi) dξi

+1
2f1i

(
ki2x20 + . . .+ kinxn0 + kin+1

)
− 1

2f2i
(
ki2x20 + . . .+ kinxn0 + kin+1

)
f2i
(
ki2x2 + . . .+ kinxn + kin+1

)
= 1

2ϕi
(
ki2x2 + . . .+ kinxn + kin+1

)
− 1

2ki1

∫ ki2x2+...+kinxn+kin+1

ki2x20+...+kinxn0+kin+1

ψ (ξi) dξi−

1
2f1i

(
ki2x20 + . . .+ kinxn0 + kin+1

)
+ 1

2f2i
(
ki2x20 + . . .+ kinxn0 + kin+1

)
⇒ f2i

(
−ki1x1 + ki2x2 + . . .+ kinxn + kin+1

)
= 1

2ϕi
(
−ki1x1 + ki2x2 + . . .+ kinxn + kin+1

)
− 1

2ki1

∫ −ki1x1+ki2x2+...+kinxn+kin+1

ki2x20+ki3x30+...+kinxn0+kin+1

ψ (ξi) dξi

−1
2f1i

(
ki2x20 + . . .+ kinxn0 + kin+1

)
+ 1

2f2i
(
ki2x20 + . . .+ kinxn0 + kin+1

)
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In the conditions of (41) and (42), the exact solution of Eq. (38) is

u =
1

2

s∑
i=1

(ϕi(ki1x1 + ki2x2 + . . .+ kinxn + kin+1)

+ ϕi(−ki1x1 + ki2x2 + . . .+ kinxn + kin+1)

+
1

ki1

∫ ki1x1+ki2x2+...+kinxn+kin+1

−ki1x1+ki2x2+...+kinxn+kin+1

ψ(ξi)dξi)

(43)

Appendix C

Consider the following initial value problem of Eq. (150) on the condition of (169)

u (x, y, z, 0) = ex+y+z
(
ϕ1

(√
−2x+ y + z

)
+ ϕ2

(
−
√
−2x+ y + z

))
, (172)

ut (x, y, z, 0)

= ex+y+z
(
ϕ1

(√
−2x+ y + z

)
+ ϕ2

(
−
√
−2x+ y + z

))
+

~
m
ex+y+z

((
2 +
√
−2
)
ϕ
′
1

(√
−2x+ y + z

)
+
(
2−
√
−2
)
ϕ
′
2

(
−
√
−2x+ y + z

))
.

(173)

Comparing (171) with (172) we have

k1 = k2 = k3 = −1

c
, l2 = l3 = l12 = l13 = 1 , k5 = l5 = l15 = 0.

Then

u (x, y, z, t) =ex+y+z−ck4t(h1(
√
−2x+ y + z +

~
m

(2 +
√
−2)t)

+ h2(−
√
−2x+ y + z +

~
m

(2−
√
−2)t)),

(x, y, z, t) =− ck4ex+y+z−ck4t(h1(
√
−2x+ y + z +

~
m

(2 +
√
−2)t)

+ h2(−
√
−2x+ y + z +

~
m

(2−
√
−2)t))

+ ex+y+z−ck4t(
~
m

(2 +
√
−2)h

′
1(
√
−2x+ y + z +

~
m

(2 +
√
−2)t)

+
~
m

(2−
√
−2)h

′
2(−
√
−2x+ y + z +

~
m

(2−
√
−2)t)).

Therefore

u (x, y, z, 0) = ex+y+z
(
ϕ1

(√
−2x+ y + z

)
+ ϕ2

(
−
√
−2x+ y + z

))
= ex+y+z

(
h1
(√
−2x+ y + z

)
+ h2

(
−
√
−2x+ y + z

))
=⇒ h1

(√
−2x+ y + z

)
= ϕ1

(√
−2x+ y + z

)
=⇒ h1

(√
−2x+ y + z +

~
m

(
2 +
√
−2
)
t

)
= ϕ1

(√
−2x+ y + z +

~
m

(
2 +
√
−2
)
t

)
.

Namely

h1

(√
−2x+ y + z +

~
m

(
2 +
√
−2
)
t

)
= ϕ1

(√
−2x+ y + z +

~
m

(
2 +
√
−2
)
t

)
. (326)

h2

(
−
√
−2x+ y + z +

~
m

(
2−
√
−2
)
t

)
= ϕ2

(
−
√
−2x+ y + z +

~
m

(
2−
√
−2
)
t

)
. (327)



65

Thus

ut (x, y, z, 0) = ex+y+z
(
ϕ1

(√
−2x+ y + z

)
+ ϕ2

(
−
√
−2x+ y + z

))
+

~
m
ex+y+z

((
2 +
√
−2
)
ϕ
′
1

(√
−2x+ y + z

)
+
(
2−
√
−2
)
ϕ
′
2

(
−
√
−2x+ y + z

))
= −ck4ex+y+z

(
h1
(√
−2x+ y + z

)
+ h2

(
−
√
−2x+ y + z

))
+ ex+y+z

(
~
m

(
2 +
√
−2
)
h
′
1

(√
−2x+ y + z

)
+

~
m

(
2−
√
−2
)
h
′
2

(
−
√
−2x+ y + z

))
=⇒ k4 = −1

c
.

So the exact solutions of the initial value problem is

u =ex+y+z+t(ϕ1(
√
−2x+ y + z +

~
m

(2 +
√
−2)t)

+ ϕ2(−
√
−2x+ y + z +

~
m

(2−
√
−2)t)).

(174)
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[51] P. Bégout, J.I. DÍaz, Localizing estimates of the support of solutions of some
nonlinear Schrödinger equations C The stationary case, Ann. I. H. Poincaré C AN. 29 (2012)
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nonlinear Schröinger equation, Phys. Lett. A 372 (2008) 553-558.

[64] K.M. Liang, Mathematical and Physical Methods, Higher Education Press, Bei-
jing, China, 1978, pp. 162-163.

[65] A.D. Polyanin, Handbook of Linear Partial Differential Equations for Engineers
and Scientists, CRC Press, Florida, (2001).

[66] S. V. Ershkov, Exact solution of Helmholtz equation for the case of non-paraxial
Gaussian beams, J. King Saud Univ. (Sci.) 27 (2015) 198-203.

[67] T.R. Ding, C.Z. Li, Tutorials of Ordinary Differential Equations, Second ed., Higher
Education Press, Beijing, China, (2004).

[68] W.A. Adkins, M.G. Davidson, Ordinary Differential Equations, Springer, New Y-
ork, (2012).

[69] L. C. Evans, Partial Differential Equations, American Mathematical Society, Providence,
(1998).

[70] J. Jost, Partial differential equations, Third ed., Springer, New York, (2013)

[71] L. Hu, J. Zou, X. Fu, H. Y. Yang, X.D. Ruan, C.Y. Wang, Divisionally analyti-
cal solutions of Laplaces equations for dry calibration of electromagnetic velocity probes,
Appl. Math. Model. 33 (2009) 3130-3150.

[72] W.F. Ames, Invariant solutions of the underwater acoustic wave equation, Com-
put. Math. Appl. 11 (1985) 681-685.



70

[73] T.F. Chan, L. Shen, A stable explicit scheme for the ocean acoustic wave equa-
tion, Comput. Math. Appl. 11 (1985) 929-936.

[74] A.D. Polyanin, V.F. Zaitsev, A. Moussiaux, Handbook of First Order Partial Dif-
ferential Equations, CRC Press, Florida, (2001), pp.4, pp.62.

[75] S.H. Guo, Electrodynamics, Higher Education Press, Beijing, China, 1995.

[76] M. Li, C.S. Chen, Y.C. Hon, P.H. Wen, Finite integration method for solving
multi-dimensional partial differential equations, Appl. Math. Model. 39 (2015) 4979-4994.

[77] P.H. Wen, Y.C. Hon, M. Li, T. Korakianitis, Finite integration method for par-
tial differential equations, Appl. Math. Model. 37 (2013) 10092-10106.

[78] F. Toutounian, E. Tohidi, A new Bernoulli matrix method for solving second or-
der linear partial differential equations with the convergence analysis, Appl. Math. Comput.
223 (2013) 298-310.

[79] C. Kesan, Chebyshev polynomial solutions of second-order linear partial differen-
tial equations, Appl. Math. Comput. 134 (2003) 109-124.

[80] L. Ehrenpreis, Fourier Analysis in Several Comples Variables, Wiley-Interscience,
New York, 1970.

[81] P.-C. Hu, B.Q. Li, On meromorphic solutions of linear partial differential equa-
tions of second order, J. Math. Anal. Appl. 393 (2012) 200-211.

[82] D.G. Aronson, Isolated singularities of solutions of second order parabolic equa-
tions, Arch. Rat. Mech. Anal. 19 (1965) 231-238

[83] N. Lungu, D. Popa, HyersCUlam stability of a first order partial differential e-
quation, J. Math. Anal. Appl. 385 (2012) 86-91.

[84] Z. Sheng, The periodic wave solutions for the (2 + 1) dimensional KonopelchenkoC-
Dubrovsky equations, Chaos Solitons Fract. 30 (2006) 1213-1220.

[85] W.X. Ma, Travelling wave solutions to a seventh order generalized KdV equation,
Phys. Lett. A. 180 (1993) 221-224.

[86] W. Malfliet, Solitary wave solutions of nonlinear wave equations, Amer. J. Phys.
60 (7) (1992) 650-654.

[87] A.M. Wazwaz, Two reliable methods for solving variants of the KdV equation
with compact and noncompact structures, Chaos Solitons Fract. 28 (2) (2006) 454-462.

[88] S.A. El-Wakil, M.A. Abdou, New exact travelling wave solutions using modified
extended tanh-function method, Chaos Solitons Fract. 31 (4) (2007) 840-852.

[89] E. Fan, Extended tanh-function method and its applications to nonlinear equa-
tions, Phys. Lett. A 277 (4-5) (2000) 212-218.



71

[90] A.M. Wazwaz, The tanh-function method: Solitons and periodic solutions for the
DoddCBulloughCMikhailov and the TzitzeicaCDoddCBullough equations, Chaos Solitons
Fract. 25 (1) (2005) 55-63.

[91] W.X. Ma, T.W. Huang, Y. Zhang, A multiple exp-function method for nonlinear
differential equations and its application, Phys. Scr. 82 (2010) 065003.

[92] I. E. Inan, Y. Ugurlu, Exp-function method for the exact solutions of fifth order
KdV equation and modified Burgers equation, Appl. Math. Comput. 217 (2010) 1294-1299.

[93] T.C. Xia, B. Li, H.Q. Zhang, New explicit and exact solutions for the NizhnikC-
NovikovCVesselov equation, Appl. Math. E-Notes 1 (2001) 139-142.

[94] M. Inc, M. Ergut, Periodic wave solutions for the generalized shallow water wave
equation by the improved Jacobi elliptic function method, Appl. Math. E-Notes 5 (2005)
89-96.

[95] M. L. Wang, Solitrary wave solution for variant Boussinesq equation, Phys. Lett.
A 199 (1995) 169-172.

[96] M. Khalfallah, New exact traveling wave solutions of the (3 + 1) dimensional Kadomt-
sevCPetviashvili (KP) equation, Commun. Nonlinear Sci. Numer. Simul. 14 (2009) 1169-1175.

[97] E.G. Fan, Two new applications of the homogeneous balance method, Phys. Lett.
A 265 (2000) 353-357.

[98] A.M. Wazwaz, A sineCcosine method for handling nonlinear wave equations, Math.
Comput. Model. 40 (5-6) (2004) 499-508.

[99] E. Yusufoglu, A. Bekir, Solitons and periodic solutions of coupled nonlinear evo-
lution equations by using sineCcosine method, Int. J. Comput. Math. 83 (12) (2006) 915-924.

[100] A.M. Wazwaz, The sineCcosine method for obtaining solutions with compact
and noncompact structures, Appl. Math. Comput. 159 (2) (2004) 559-576.

[101] M.K. Mak, T. Harko, New method for generating general solution of the Abel
differential equation, Comput. Math. Appl. 43 (2002) 91-94.

[102] M.K. Mak, H.W. Chan, T. Harko, Solutions generating technique for Abel-type
nonlinear ordinary differential equations, Comput. Math. Appl. 41 (10/11), (2001),
1395-1401.


