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Abstract

Simulating Bell correlations by Monte Carlo methods can be time-
consuming due to the large number of trials required to produce reliable
statistics. For a noisy vector model, formulating the vector threshold
crossing in terms of geometric probability can eliminate the need for trials,
with inferred probabilities replacing statistical frequencies.

The noisy vector model for simulating quantum correlations

A classical model for producing Bell-like correlations, demonstrated by noisy
images of polarized coins, was recently introduced by McEachern [1], who rea-
soned that quantum correlations arise from a process from which it is possible
to obtain only one bit of information per sample. The noisy vector model [2]
is a simplified variation of the coin model that satisfies McEachern’s one-bit
criterion.

Both models exploit detection and post-selection loopholes. The correlations
can be estimated through many random trials in the manner of a Monte Carlo
experiment. A small but consistent difference from the sinusoidal pattern ex-
pected from quantum mechanics becomes apparent after a large number of trials.

The noisy vector model using geometric probability, about to be described, has
the advantage of high accuracy while requiring less computation than the Monte
Carlo method, and rules out the possibility that the difference might be due to
an artifact of pseudo-random number generation. See [3] for C code to calculate
the probability functions.

Geometric Probability

One of the earliest problems in geometric probability is Buffon’s needle, the aim
being to calculate the probability that a needle dropped on a planked floor would
cross one of the lines formed by adjacent planks. To demonstrate the concept
with a simple case, assume that the length, 7, of the needle is less than the width
of the planks, so that a needle can only cross one line. Suppose we are given the
distance, z < r, from the sharp point of the needle to the closest line. Imagine
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the circle formed by rotating the needle about that point. The probability that
the needle will cross the line corresponds to the angular proportion of the circle
determined by its intersection with the line, as in the illustration below,
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Noisy Vector Model and Geometric Probability

The noisy vector model consists of two parts: a constant signal vector which is
always aligned with the x-axis, added to a randomly oriented noise vector. The
coordinates of the signal vector sent to Alice are (—R, 0), while the signal sent to
Bob is (R, 0). The signal magnitude is taken to be R = 1. The noise consists of
a randomly oriented vector of constant magnitude, » = 1/3, which corresponds
to model 3 in [2]. The threshold, e = 1/4, is the minimum value required
for a projection measurement to be detected as positive, with a symmetrical
condition for negative polarity detection. The projection of Alice’s vector onto
Alice’s instrument rotated by an angle, «, is shown below for the noiseless case.
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The signal with noise is a vector terminating anywhere on the circular locus of
Alice’s or Bob’s noise vector shown below. The likelihood that the projection
onto the instrument axis will cross the threshold amounts to the problem in
geometric probability discussed above.

The instrument for detecting positive polarity is shown below. It can be rotated
about the origin, and a detection is reported if the projection of the noisy vector
meets or exceeds the threshold, e. The markings on the instrument indicate the
threshold, and divide the range of the projection into four regions, lettered A-D.

If the projection, p, of the noiseless signal lies in region A (p > € + r), the
polarity of the noisy vector must be positive. Similarly, projections lying in
region D (p < e — r) cannot be declared positive. Regions B and C are close

enough to the threshold (within 7 of €) to require more detailed treatment using
geometric probability.
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Below, Alice has rotated her instrument by o = 90°, so that the projection, p =
—Rcos a, of her noiseless signal is at the origin, lying in region C (e—7 < p < ¢)
of the instrument. In region C, the probability of Alice indicating a positive
detection is given by the geometric probability,

1 —
P(Alice, o, +) = - .aur(:cos(6 " p) (2)

If the projection of the noiseless signal had landed in region B (e < p < e+ )
the probability of Alice indicating a positive detection would be given by
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Calculation of Correlation

For the Monte Carlo method, observations were reduced to four totals (IV, .,

N, _, N_,, N__) of detected polarity pairs reported by Alice and Bob for each
1nstance of angular difference, § = o — 3. Using probabilities instead, note that
Bob’s angle 5 = o — 6, and define mean joint probabilities by averaging over all

angles, «, in 1° increments as in prior examples,

PO,+,+) = X, P(Alice,a,+) P(Bob,a — 6 +)/360 (4)
PO,+,—) = X, P(Alice,a,+) P(Bob,«a — 6,—) /360 (5)
P(0,—,+) = B4 P(Alice, o, —) P(Bob, o — 0, +) / 360 (6)
P#,—,—) = X, P(Alice,a, —) P(Bob,a — 8, —) / 360 (7)

The correlation is then given by

PO, +,+) + P(O,—,—) — P(O,+,—) — P(O,—,+)

CO) = Be. v ) + PO.—.—) + PO.+.-) + PO, 1)




The denominator in Eq. (8) is the detection rate which, when averaged over 6,
agrees with the mean detection rate reported by the Monte Carlo method.

Probabilities are shown in Fig. 1 and 2. The correlation is shown in Fig. 3

CHSH Inequality

The Clauser-Horne-Shimony-Holt inequality illustrates the procedure needed to
simulate quantum measurement. Alice and Bob make two measurements each,
and the inequality is based on four pairs of measurements,

E(a,p) = Cla—p) (9)
E(a, ) = Cla=p) (10)
E(,B) = C( —p) (11)
E(d,p") = C(' = p') (12)
where the CHSH statistic
S=E(x,8) — E(o, ")+ E(, B) + E(d/, 3) (13)
will satisfy the inequality, |S| < 2, under classical assumptions.
Equivalently, mean joint probabilities could be defined as
P(a,B,+,4+) = Xg P(Alice,a+6,+) P(Bob, 8+ 0,+) / 360 (14)
P(a,B,+,—) = Xy P(Alice,a+6,+) P(Bob, 8+ 0,—) /360 (15)
P(a,B,—,4+) = Xg P(Alice,a+6,—) P(Bob, 8+ 6,+) /360 (16)
P(a,B8,—,—) = Xg P(Alice,a+6,—) P(Bob,8+6,—) /360 (17)

with the measurement, E(a, (), calculated in the same manner as the correla-
tion. Because of even symmetry, it is sufficient to average over 180° of phase.

For randomly selected instrument settings, o, a’, 8, 8’, the CHSH inequality is
violated in approximately 15% of trials. The CHSH statistic would never violate
the inequality if the joint probabilities were not averaged over the phase, 6, in
the above four equations - i.e., if the classical joint probability P(«, 8,+,+) =
P(Alice, i, +) P(Bob, 8,+) was used instead of Eq. (14), with a similar sim-
plification for the other three equations. In other words, it is phase averaging
that transforms classical measurements covering all possible orientations into
the quantum measurement, so that the quantum measurement depends only on
the relative phase difference between Alice’s and Bob’s settings.

The greatest violation of the CHSH statistic for the noisy vector model is |S| =
2.833 at (o, o, 3, 8') = (0°,90°,45°,135°), which is slightly greater than 21/2 ~
2.828, the maximum violation expected from quantum theory.
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Alice’s probabilities- no noise case - signal only
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Figure 1: Noisy vector model 3 (signal only), with parameters R = 1, r = 0,
€ = 1/4. Probability that Alice will detect a positive (or negative) polarity
as a function of instrument angle. No noise, but still has threshold. Solid red
curve is joint probability that Alice’s measurement and Bob’s measurement
both exceed the detection threshold.




Alice’s probabilities for noisy vector model 3
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Figure 2: Noisy vector model 3 with parameters R =1, r =1/3, e =1/4.

Geometric probability that Alice will detect a positive (or negative) polarity
as a function of instrument angle. Swap curves for Bob’s probabilities. The

expected average detection rate is 0.6952.




Correlation from geometric probability
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Figure 3: Noisy vector model 3 computed using geometric probability,
with parameters R = 1, r = 1/3, ¢ = 1/4. This shows the correlation and
difference from the cosine nearly identical to the Monte Carlo simulation in

[2].




