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ABSTRACT. This paper deals with the analysis of physically possible constructions 

of a viscous incompressible fluid model. Physical principles that allow to create the 

only possible construction of this model were found. The new model does not use 

new constants that characterize properties of the fluid and coincides with the Stokes 

model only in the plane case. Within the framework of this model, new equations 

for fluid motion were obtained. The new equations coincide with Navier-Stokes 

system in the plane case, but do not coincide in the three-dimensional one. The 

model makes it possible to see why the three-dimensional Navier-Stokes equations 

cannot physically adequately describe fluids motion, and obliquely confirms the 

finite time for the existence of its regular solutions. 

 

       In paper [1] it was shown that the equation similar in several key properties to 

three-dimensional Navier-Stokes equation for incompressible fluid, has a smooth 

solution which blows up in finite time. It was also shown that the problem of Navier-

Stokes equation in the three-dimensional case cannot be solved by analysis methods 

existing today. 

       Almost a mystique situation: the Navier-Stokes equation must describe real 

fluids; which behavior has a certain set of properties. These properties should be 

visible during the analysis of the equation but this does not happen. More precisely, 

it happens only for the plane case of fluid motion, but not for the three-dimensional 

one [2], [3]. Suspicion occurs that Navier-Stokes equation have some defect. And 

this defect has physical nature and arises only in the three-dimensional case. 

       Using only the laws of conservation of mass and three components of impulse 

for an incompressible fluid it is possible to obtain such equations system: 
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There is no reason for doubts in this system of equations since it’s fundamental, as 

it’s based exceptionally on conservation laws. To receive Navier Stokes system from 
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(1) it is necessary to have formulas for the stresses which determines the dependence 

between the stresses tensor    
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and the deformation rates tensor 
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At this stage, we must introduce the empirical Newton's viscous friction law into the 

system of fundamental equations. If Navier-Stokes equation has a defect, it can only 

originate from the viscous friction law. 

       Generally, the question of mathematical dependence of tensors   and   was 

investigated, for example in [4], where based on Stokes postulates the following 

formula was received. 

                                              
2 I                                             (3) 

 

Here I - is a unit tensor, ,  ,  - are scalar functions of principal invariants 1I ,

2I , 3I  of deformation rates tensor  . Functions  ,  ,   can be chosen in an 

arbitrary way, the result is a fluid with a specific set of viscous properties. The 

assumption of linear dependence between tensors   and   was accepted for real 

Newtonian fluids. For incompressible viscous fluids, this dependence was 

formulated as: 

                                                 2pI                                                  (4) 

 

This is Stokes model of viscous incompressible fluid. The author in [4] gave the 

following assessment of this assumption: «…The fact that this is a hypothesis should 

be clearly understood: it is not to be derived from experiments, nor can it be proved 

by abstract reasoning; if results obtained on the basis of this hypothesis agree with 

experiments, then of course so much the better for the hypothesis and our faith in its 

validity». 

       Following formulas follows from (4) 
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          xx p  2 ;                  xyyxxy    

          yy p  2 ;                  xzzxxz                                       (5) 

          zz p  2 ;                  yzzyyz    

 

       Using formulas (5), mass and energy conservation laws, for incompressible 

fluid one can define the function of energy dissipation D  

 

                     222222 222 yzxzxyzyxD                                 (6) 

 

Function D  is an invariant of deformation rates tensor  , as it is stated through 

its principal invariants. 

                                                  2

2
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       Going back to formula (4) one can note that it is possible to prove physically, 

but physical principles included in this proof will require formula modification. 

       Two assumptions, not one, were made when formula (4) was developed. The 

first – about linear dependence between   and  , it looks obvious. The second – 

was not obviously formulated, but it exists and is hidden in the speculations. So, 

from (3) based on the first assumption, the formula (4) was obtained, where 

coefficient 2 was set in from the beginning with no explanations why. But it has a 

strong reason, because only in this case shear stresses, described by formulas (5) will 

give value corresponding to the Newton’s scheme within the viscous tension law. 
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But in this scheme the fluid motion is plane, while formulas (4) describe the three-

dimensional motion. The question is: how adequate is the assumption that shear 

stress in the plane–parallel fluid motion in Newton’s scheme will not change 

with applying additional deformations in orthogonal planes? This assumption is 

doubtful and should be checked. Then formula (4) should be stated as following: 

 

                                             2pI                                                  (7) 

 

Where  , according to (3) may be dimensionless scalar function of the principal 

invariants 1I , 2I , 3I  of the deformation rates tensor  . In case of plane motion, 

function   should take the value equal to one, formula (7) must correspond to the 

Newton’s scheme. Formulas for stresses in this case will look like this: 
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          xx p  2 ;                  xyyxxy    

          yy p  2 ;                    xzzxxz                                      (8) 

          zz p  2 ;                  yzzyyz    

 

And function of dissipation D  will look like this: 

 

                     222222 222 yzxzxyzyxD                              (9) 

 

       The problem of dependence between tensors   and   can be also looked 

from a different perspective, which will allow to disclose the following: in formula 

(7) the value   is a function of the principal values 1e , 2e , 3e  of the deformation 

rates tensor  .The value of function   in dependence of correlation between 1e , 

2e , 3e  values is restricted in the closed interval 3/41   . For the plane 

motion, 1  and formulas for stresses (8) will coincide with (5). Since principal 

values 1e , 2e , 3e  may be expressed through the principal invariants 1I , 2I , 3I , 

value   can be considered as a function of principal invariants 1I , 2I , 3I  of 

tensor  , which is in full compliance with (3). From the other side, function   is 

fully defined by velocities field, therefore continuously depends on coordinates, i.e. 

),,( zyx  . Important to mention that function   is an invariant of 

deformation rates tensor  . 

       It is also important to mention that formula (7) is a new model of the viscous 

incompressible Newtonian fluid. This model has a linear dependence between the 

tensors   and  , and completely corresponds to the Newton’s scheme mentioned 

above. It will be shown below that the Stokes model (4), in the case of three-

dimensional fluid motion, does not correspond to reality. Therefore, formula (7) is 

the only possible construction of the incompressible fluid model with a linear 

dependence of the tensors   and  . 

       Let's analyze tensor   in principal axis, let's name these axis ZYX ,, , in 

this case it will look like this: 
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where 1ex  , 2ey  , 3ez  , and 1e , 2e , 3e  are the principal values of the 

tensor. Let's choose from three deformation rates x , y , z  the one with the 

highest absolute value. Let it be y  for determinacy, define value 

                                                ym                                                                                   (10) 

and then define the following values 

 

           mxx  /            myy  /             mzz  /                      (11) 

 

Value y  will be equal to 1 or -1, let's consider that always 1y  (this will not 

affect the final results), so the compression always occurs along axis Y . Then due 

to incompressibility of fluid the tension will always occur along axis X  and Z , 

values x and z will be always positive. In addition to this, if we define  z , 

then  1x , we get the following result 

 

                          1x ,            1y ,            z                          (12) 

 

From this it is clear, that by varying one parameter 5.00   it is possible to 

analyze the full spectrum of possible correlations between values x , y , z . 

Further it is convenient to add parameter  - a measure of the deformation condition 

triaxiality, defining it as following 

                                                           2                                                        (13) 

 

Value 0  will correspond to plane fluid motion (no triaxiality) and value 1  

will correspond to the highest triaxiality level; 5.0x , 1y , 5.0z . 

       According to formulas (9), (10), (11), (12), (13) let's define the dissipation D  

 

         )24()1()1(2 222222   mmD              (14) 

 

In particular, for plane deformation, 1 , 0 , this formula will give 

 

                                                    
24 mD                                                        (15) 

 

Using formulas (8), (10), (11), (12), (13) let's calculate the stresses 
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                     )2(   mx p ;        0xy  

                     my p  2 ;                   0xz                                     

                      mz p  ;                   0yz  

 

 Among three stresses x , y , z , let's define the highest max  and the lowest 

min , considering the sign. One can straight away see that x max  and 

y min . Let's analyze the value 

 

                     )4()( minmax   myx                  (16) 

 

By physical meaning this is the measure of viscous stresses which occur in the fluid 

as a reaction to its deformation, caused by deformation rate m  with triaxiality 

parameter  . We will speak about value )(  in the plural, the stresses, because 

this value characterizes the total viscous stresses level. It is important to mention 

that value   is an invariant of tensor  , because it is definitely defined by 

principal values 1e , 2e , 3e , it follows from the procedure of its obtaining. 

       Let’s consider the deformation process of the small element dxdydz in 

principal axis, Fig. 1. 

                                         

                                         Figure 1. Deformation scheme. 

Define the deformation process as follows. During the period of time t , where 

5.00   and t  is a small period of time, plane deformation happens only in 

plane YZ  ( 0x , my   , mz   ). Then during the period of time 
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t )1(   plane deformation happens only in plane XY ( mx   , my   ,

0z ). After, this cycle is repeated again and again… Let’s consider this 

deformation process in the limit with 0t . What will the observer see in this 

case? The observer will see that there is a process of three-dimensional deformation 

of the element dxdydz with such deformation rates: mx  )1(  , 

my   , mz   . No internal structure of this process will be seen because 

0t . How to determine the dissipation from the observer's point of view? Very 

simply, since the value 02   , then the dissipation will be determined by the 

formula (14) 

)24( 22   mD  

On the other hand, at any point of time the deformation is plane, only the planes YZ  

and XY in which this deformation occurred were changed. As the deformation is 

always plane, dissipation will be defined by formula (15). 

24 mD   

These two formulas can be simultaneously valid only if 

                                               224

4
)(





                                          (17) 

The function )(  diagram is shown on the Fig. 2. 

 

Figure 2. Function )(  diagram. 
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Thus, arises the fluid model with constant dissipation (7), in this model dissipation 

does not depend on the triaxiality parameter   

                                                    
24)( mD    

Two models (4) and (7) are incompatible with each other, hence the Stokes model 

does not correspond to reality. 

       Thus, the Stokes model (4) is incorrect, it contains internal contradictions, as a 

result of which, it incorrectly describes the viscous fluid behavior in the three-

dimensional motion. The values of viscous stresses and dissipation in the Stokes 

model turn out to be underestimated, at 1 , by 25%. However, it is interesting 

to understand what type of motion is described by the three-dimensional equations 

system of fluid motion, based on this model. Using equations system (1) and stresses 

formulas from the Stokes model (5) we will get Navier Stokes equation system: 
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It can be asserted that equations (18) inherited the physical properties of the Stokes 

model (if this were not so, then the form of the equations would not change with a 

change in the form of the model, which would look absurd). In this case, one can 

investigate certain properties of the equations by investigation the properties of the 

model. Investigation of the properties of equations (18) is extremely difficult, while 

the investigation of the properties of model (4) is simple. However before 

investigating model properties lets highlight the following fact. 

       In hydrodynamics, there are many examples of fluid motion possessing the 

minimum dissipated energy property, they are described, for example, in [4]. For 

linear hydrodynamics, the Helmholtz variational principle of the minimum of the 

dissipated energy is known. Examples of generalization of this principle to nonlinear 

hydrodynamics is known [6]. The physical meaning of the principle of minimum 

energy dissipation is completely understandable, it is a manifestation of a more 

general physical principle: any physical system tends to a state with the lowest 

energy and will move to this state by the least resistance, i.e. by the least energy 

costs. 
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       Let's define 1  in formulas (14) and (16), hence the Stokes model will be 

analyzed. Let's look at the dependencies )(D  (see Fig. 3) and )(  (see Fig. 4).  

 

Figure 3. Dependence )(D  for the Stokes model. 

 

Figure 4. Dependence )(  for the Stokes model. 

 

Fig. 3 shows that dissipation D  is a monotonically decreasing function of   and 

Fig. 4 shows that the same type of dependence exists in stresses. From physical point 

of view similar type of dependence is a classic example of "energy hole". Only this 

fact alone is enough to draw a conclusion about the inadequacy of the Stokes model. 

By simple reasoning, one can understand the consequences of this type of 

dependence )(D . 

       So, there is a variant of fluid deformation 1  with the lowest dissipation 

energy and with the lowest stresses level for any m  value. Energetically, this is the 

most beneficial case of fluid deformation. Because of that the fluid will tend to move 

the way that the value of its triaxiality   would differentiate from 1 in the least 

possible way in every point of space. In case the area of fluid motion is not initially 

the three-dimensional fluid source (sink) where in all area 1 , then generally it 
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would be impossible to realize this type of fluid motion. What type of motion will 

this contradiction lead to? It is obvious that any plane motion 0 , will inevitably 

become a three-dimensional 0 . However, the contradiction does not disappear 

in this case, since at each point of space 1 . Developing this scheme further, 

probably, the general picture of motion in the absence of external forces can be 

described as follows: plane or simply laminar fluid motion will be possible only 

during a short initial phase. As value   of these motions are close to zero, the pattern 

of fluid motion will be quickly destroyed with the course of time. Any initial motion 

(except the source) will be quickly turbulized. Whereas the level of turbulence with 

the course of time will become massively smaller and the structure of fluid motion 

will be like a "quantum foam". Reynolds scheme, according to which the turbulence 

occurs when the Reynolds number reaches the critical value, does not fit to this 

picture. 

 

                                        This is contrary to experience! 

 

       However, the picture of the movement described above fully corresponds to 

what can be seen in a strong mathematical study of these equations, for example [5]: 

«…Mathematical analysis of boundary value problems for the Navier-Stokes 

equations shows, that the only kind of solution, for which we can guarantee the 

existence in general, in the case of a three-dimensional flow is a Hopf’s weak 

solution. We believe that weak solutions correspond to fully developed turbulence, 

though not describe it exactly. The differential properties of these solutions are so 

bad that not only the gradients of the velocity vector, but also the velocity difference 

in neighboring arbitrarily close points can go to infinity». 

       Following the logic, from all that has been said above one can draw such 

conclusion: all solutions of the three-dimensional Navier-Stokes system always 

describe a turbulent motion with a decreasing scale (there can be exceptions when 

exposed to external forces or centrifugal forces when the entire mass of fluid rotates 

around some axis). Considering the results of [1], it can be assumed that this will be 

a multi-stage process in which, with a decrease in the scale of turbulence, there will 

periodically occur the blowup stages. The reasons are hidden in the Stokes model, it 

leads to a dependence of the dissipation on the triaxiality parameter  .  Dependence 

)(D  cannot have a minimum. The presence of a minimum means that there are 

the most beneficial conditions for the fluid deformation, the fluid will tend to realize 

them, and this will inevitably lead to the turbulence. 

       One more conclusion can be drawn regarding numerical modeling. Since the 

scale of turbulence decreases with the time, an adequate numerical simulation of the 

three-dimensional Navier-Stokes equations will be possible only at the initial stage. 

Inevitably will come a time when the scale of the turbulence becomes comparable 

to the step size of the computational mesh. From now on, the numerical calculations 
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results will have nothing to do with what the Navier-Stokes system will actually 

produce. 

       There is also the possibility to understand in general terms what will describe a 

model with constant dissipation. It is quite obvious that if constD )(  the 

character of fluid motion cannot be controlled by dissipation, in this case the 

parameters, which controls the character of fluid motion, may only be viscous and 

inertia stresses. Using formulas (16), (17) let's define the stresses arising from the 

viscosity. 

                                 )24(

)4(4
)(

2







 m  

 

The function )(  diagram is shown on the Fig. 5. 

 

 

Figure 5. Dependence )(  for the model of constant dissipation. 

 

On the stresses diagram (see Fig. 4) there is a maximum in 536.00   . 

Maximum value of stresses exceeds minimum (with 0  and 1 ) by 

approximately 7,7%. This diagram allows in general to describe the behavior of a 

viscous fluid in this case. 

       Let's assume that there is a laminar fluid motion with value of   close to zero, 

in which a small local perturbation happened. Value   increases in the area of 

perturbation, which leads to viscous stresses increase according to the dependence 

shown on Figure 4. The fluid somehow resists and tries to calm down the 

perturbation. But this character of fluid motion will remain till value   is less than 

0  (rising section of diagram - stability region). In the contrary case 0   

(decreasing section of diagram - instability region) turbulence will occur. In this 

situation, everything will depend from correlation between viscous and inertia 

forces. If the inertia forces are less than the forces of viscosity, turbulence will fade, 
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in the contrary case, turbulence will develop. A classical scheme of turbulence 

development occurs when reaching the critical Reynolds number. It is visible that 

the existence of increasing section in )(  dependence allows to postpone the 

moment of turbulence development by minimizing initial perturbation level. It is 

also clear that fluid motion will be resistant to infinitely small perturbations as for 

turbulence development   must be more than 0 . If turbulence occurs it will not 

be able to stop, as in turbulence area value of 1  is in the decreasing section of 

dependence )(  and the transition to the increasing section relates to overcoming 

the barrier with 0  … 

       If in the derivation of Navier-Stokes equations, in system (1) instead of formulas 

for stresses (5) one uses (8), new equations different form Navier-Stokes will be 

received. Left parts of those equations will be fully corresponding to Navier-Stokes 

system (18), differences will be only in the right parts of equations, which are as 

following: 
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It is important to mention that for the plane fluid motion those equations will be fully 

corresponding to Navier-Stokes system. One cannot but hope that strong 

mathematical research of this equations will show that they have properties which 

are described above for moving fluid, and which cannot be found in Navier-Stokes 

system. 

       And now we can highlight the following: in modified equations in components 

containing viscosity it is always present in combinations   and ix / . If the 

fluid motion starts to be different from plane, values of functions   and ix /  

start to increase and the fluid viscosity is somehow increasing. Moreover, if function 

  is limited at its maximum, the functions ix /  do not have such limits. As a 

rough approximation, one can consider that modified equations are Navier-Stokes 

equations where in the event of triaxiality in plane fluid motion considerable increase 

of viscosity happens. Curiously fact is that a variant of modified Navier-Stokes 

equations with increasing viscosity was earlier proposed by Ladyzhenskaya O.A. 

[2]. In equations proposed by her, increase of viscosity happens in the areas with 

larger velocity gradients and regulated by a small constant   (additional 

characteristic of viscous fluid properties). However, according to her own saying: 
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«... equation system requires thorough full analysis from the physical phenomenon 

point of view which occurs in liquid media. Also, coefficient   requires definition. 

But from mathematical point of view the system (at least by today) has the advantage 

that it has a proven unique solvability "in general" for initial-boundary value 

problems and range of other properties, which are assumed for Navier-Stokes 

equations, but cannot be proven». 

       In the equations proposed by O.A. Ladyzhenskaya, the effect of increasing 

viscosity also occurs in the plane case, however, problems with plane motion do not 

arise even in the presence of large velocity gradients and without this effect. This 

effect is required only for the three-dimensional equation system (dissipation 

increases) then it is possible to find all necessary properties which are searched for 

Navier-Stokes system for about one hundred years. One cannot help but remember 

the words of Confucius about difficulties of finding a black cat in a dark room, 

especially when it's not there… 
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