
 

Riemannian space-time, de Donder Conditions and 

Gravitational Field in Flat Space-time 

Gordon Liu 
Copernicus Institute for Physics and Astronomy, Toronto, Canada 

Email: gordonliu168@gmail.com 

 

Received December 1, 2012; revised January 3, 2013; accepted January 12, 2013 

ABSTRACT  

Let the coordinate system
ix of flat space-time to absorb a second rank tensor field

ij of the flat space-time deforming 

into a Riemannian space-time, namely, the tensor field
 is regarded as a metric tensor with respect to the coordinate 

system x
. After done this, x

is not the coordinate system of flat space-time anymore, but is the coordinate system of 

the new Riemannian space-time. The inverse operation also can be done. According to these notions, the concepts of the 

absorption operation and the desorption operation are proposed. These notions are actually compatible with Einstein's 

equivalence principle. By using these concepts, the relationships of the Riemannian space-time, the de Donder condi-
tions and the gravitational field in flat space-time are analyzed and elaborated. The essential significance of the de 

Donder conditions (the harmonic conditions or gauge) is to desorb the tensor field of gravitation from the Riemannian 

space-time to the Minkowski space-time with the Cartesian coordinates. Einstein equations with de Donder conditions 

can be solved in flat space-time. Base on Fock's works, the equations of gravitational field in flat space-time are ob-

tained, and the tensor expression of the energy-momentum of gravitational field is found. They all satisfy the global 

Lorentz covariance. 

 
Keywords: General Relativity; Gravitation; Riemannian Space-time; Flat Space-time; Einstein Equations; Harmonic conditions; 

Energy-momentum Tensor; Significance of the coordinates ; Gravitational Red-shift  

1. Introduction  

Although General Relativity (GR) is widely accepted 

wherewith its graceful structures and elegance of its 

concepts, also giving a description of gravitational phe-

nomena in agreement with observation, it is rather dis-

concerting to note that the theory appears strikingly dif-

ferent from the present particle theory. Gravitation plays 

a unique role in physics, as it is connected with the ge-

ometry of space and time. Supersymmetry appears to be 

required to have a perturbative quantum theory that in-

cludes gravitons and is also exactly Lorentz invariant. 

Whether the observed global Lorentz invariance of flat 

space-time is realized exactly in nature [1]? The notions 

of energy and momentum play an important role in 

physics, while there is no widely accepted way to local-

ize the energy and momentum of the gravitational field 

itself [2].  
  Facing those disharmonies, a number of authors have 

discussed the utility of introducing the metric of flat 

background space-time into GR [3]-[22]. Those theories 

called the bi-metric gravitation or the field-theoretical 

approach to General Relativity. All of authors have been 

aware of that there is a correct intrinsic structure in GR, 

even if they feel uncomfortable with purely geometrical 

interpretation of gravitation. That is the structural form 

of Einstein equations! That is why all of authors guess 

their Lagrangian densities according to the Einstein 

equations in order to corresponding with Einstein equa-

tions. However, in those theories, some authors assume 

that two metric tensors, the Riemannian space-time and 

flat background space-time, exist at the same time; while 

others assigned have no particular fundamental or geo-

metric significance to the relationships of the Riemanni-
an space-time, the gravitational field and the flat back-

ground space-time [2], [23]. Some questions naturally 

arise. Why is the structural form of Einstein equations 

correct even if it is obtained from the geometric inter-

pretation that people feel uncomfortable? What relation-

ship between the gravitational field and the Riemannian 

space-time is exactly?  Can we find a way to hold the 

structural form of Einstein equations, abandon the purely 

geometric interpretation of gravitation and make the 

equations global Lorentz invariance? Or can we regard 
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Einstein equations as the equations of gravitation in flat 

space-time? 

  The present paper is intended to answer above ques-

tions. To do this, for the convenience to express the con-

cepts of the absorption and desorption, the motion equa-

tions of a freely falling particle in a gravitational field 

will be derived in chapter 2. Then, in chapter 3, the con-

cepts of the absorption and desorption will be introduced 

to find the relationship between the Riemannian 

space-time and the tensor field in the flat space-time. The 
equations of gravitational field and the expression of the 

energy-momentum tensor of gravitational field in the flat 

space-time will be obtained in chapter 4. Furthermore, 

the significance of the coordinates and the essence of the 

gravitational red-shift will be analyzed and elaborated. 

2. Kinematics of a Freely Falling Particle in 
Gravitational Field 

2.1. Approximate Analysis of Newton's Theory 
of Gravitation in the Minkowski Space-time 

In the inertial reference frames with Cartesian coordinate 

system ix  (English letters i, j, etc. take 0, 1, 2, 3, denote 

that the physical quantities are in the Minkowski 

space-time with Cartesian coordinates ix ), the metric 

tensor is
ij . The freely falling particle moves in the 

Newton gravitational field. Considering approximation, 
2( / ) 1v c  (c is light speed in vacuum), its Lagrangian 

density is 

           2 21

2
I I gL m c m v m     .          (1) 

Here   is the Newton potential and 
gm  is the gravita-

tional mass of a freely falling particle. Assuming 
Im = 

gm = m, in other words, the inertial mass is equal to the 

gravitational mass. This is the weak equivalence princi-

ple (WEP) [24]. Eotvos, Dicke etc. have precisely proven 

this conclusion by using their examination [25]. There-
out, we arrive at the classical approximate action of the 

particle in the Newton gravitational field,  

 

           2 2 2 21 2I mc c c dt dr    ,  (2) 

 

where 2 2 2 2dr dx dy dz   . Write the formula (2) as 

             i j

ijI mc dx dx   ,            (3) 

where 

            

2

2
1 0 0 0

0 1 0 0.

0 0 1 0

0 0 0 1

ij

c

 
 

 
   

 
 
  

   (4) 

We can see that the tensor 
ij is obviously related to the 

gravitational potential (GP) and the metric tensor of the 
Minkowski space-time. We call this the General Gravita-

tional Potential (GGP) tensor. 

2.2. The Motion Equations of a Freely Falling 
Particle in Gravitational Field 

Via the formulas (3) and (4), we are inspired to extend 

them to precise forms in the Minkowski Space-time. We 

take 
2 i j

ijdA dx dx .    (5) 

Here dA is a scalar which is constituted by the GGP 

tensor 
ij  and i jdx dx , called Gravitational Action 

(GA) line element. .ik i

kj j    Hence, the action of a 

particle in gravitational field 

.I mc dA        (6) 

Via 0,I   we deduce the motion equations of a freely 

falling particle in gravitational field in an inertial refer-

ence frame, 

i j

ijI dA dx dx      .   (7) 

We easily obtain 

 
2

2
0,

m l k
m

lk

d x dx dx

dA dAdA
      (8) 

where 

 
1

( ).
2

m mi il ik lk

lk k l ix x x

  
    

  
   (9) 

Note that m

lk  is not the affine connection, and also dA

is not the line element of space-time, call m

lk  the Gen-

eral Strength (GS) of gravitational field. The space-time 

is still the Minkowski space-time, and the reference 

frame is the inertial reference frame. This is completely 

no relationship with Riemann geometry.  

2.3. The General Motion Equations of a freely 
falling particle 

To extend the motion equations (8) and (9) to a 

non-inertial reference frame with the coordinates x  

(The Greek letters  ,  , etc. take 0, 1, 2, 3 and denote 

the curved coordinates in the non-inertial reference 

frames or in the Riemannian space-time. Its metric tensor 

is  ), we obtain the general motion equations. Due to 
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the equations satisfying the covariance under the coordi-

nate transformation between arbitrary real reference 

frames, they are same in form, 
2

2
0,

d x dx dx

dA dAdA

  


     (10) 

where 

1
( )

2 x x x

    
   

  
    

  
.  (11) 

Note that, here dA is not the line element of space-time, 

but is the GA line element; 

 is not the affine connec-

tion of space-time, but is the general strength of gravita-

tion. 

3. A-D Operation and Deformation of 
Space-time 

3.1. Absorption Operation (A) 

We construct a scalar dA by using a tensor field 
ij

and the vectors idx  and jdx  in a flat space-time, 
2 ( )i i j

ijdA x dx dx  .   (12) 

Here 
ij  is not the metric tensor of the coordinate 

system ix . The formula (12) is same as the GA line 

element (5). Let ix  absorb
ij , namely, 

ij is re-

garded as the metric tensor of the coordinate system ix . 

Thus, the coordinates ix in the flat space-time become 

the curved coordinates x  in a Riemannian space-time; 

the tensor field 
ij  in the flat space-time becomes the 

metric tensor 
  in the Riemannian space-time. We 

have 
2 ( )dA x dx dx  

  .   (13) 

According to the convention of General Relativity, it 

can be written as 
2ds g dx dx 

 .    (14) 

Here we respectively replace ( )dA x  and 
  by ds 

and g
. In this way, the original flat space-time and 

the tensor field are together deformed into a new Rie-

mannian space-time. We must emphasize that this de-

formation is global or whole space-time, but it is not a 

mapping in a traditional mathematical sense. We call 

this operation as the absorption operation. We will use 
A  to denote the absorption operation. 

  To help us understanding this deformation, we have 

a similar visualized example. Dropping a drop of water 

on a dry plane paper, the paper will absorb the water 

and form an embossment. The plane paper is a flat 

space; the water is similar to the second rank tensor 

field; the surface of the wet embossment looks like the 

2D Riemannian space. Another similar example for 

understanding the concept of the absorption is that 

Schwarzschild had done when he solved Einstein 

equation. He assumed r e r  . The factor e was ab-

sorbed into r . 
  The formula (12) and (14) are completely identical 

with regard to the form and the structure, but they give 

different meanings. We do not even need to change the 

symbols. The only reason we replace above symbols is 

to avoid confusion about its meanings. When
ij and 

2 ( )idA x are respectively regarded as the metric tensor 

and the metric (line element) of the Riemannian 

space-time, the coordinate system ix actually becomes 

the coordinate system of the new Riemannian 

space-time and is not the coordinate system of the flat 

space-time anymore. Normally this change is not been 

aware of by us [3-22], [26], because the formulas are 

not changed and keep the same in form, but their 

meanings are totally changed.  

  From the absorption operation we can see, in form, 

the Minkowski space-time ix with a second rank tensor 

field
ij which is only the function of the space-time is 

equivalent to the Riemannian space-time x with the 

metric tensor
 . This is the geometric theory of 

gravitation that Einstein arrived at by using the equiv-

alence principle and by regarding the gravitation field 

in the Minkowski space-time as a Riemannian 

space-time. The logical essence of General Relativity 

is to let the coordinates of flat space-time absorb the 

second rank tensor field of gravitation and form a 
Riemannian space-time, thereby realizing 

geometrization of gravitation. 

  After taking the absorption operation, the space-time 

is deformed, on which the structural forms of the scalar 

dA, vector idx  and tensor 
ij  remain the same. 

  We can use a mathematical way to express the ab-

sorption operation ( A ) which is 

: RA M T M  ,   (15) 

A denotes the absorption operation; M denotes the 

original space-time; T denotes a second rank tensor 

field in the original space-time; RM  denotes the new 

Riemannian space-time; M T  denotes the coupling 

of the space-time and the tensor field. 

3.2. Desorption Operation (D)  

In opposition to the absorption operation (A), a Rie-

mannian space-time can be deformed to a new flat back-

ground space-time with a second rank tensor field. This 

second rank tensor field is the metric tensor desorbed 

from the original Riemannian space-time. Both tensors 

are identical in form and structure. We call this operation 
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as the desorption operation (D). The selection of the 

background space-time is important. In physics, we 

ought to choose the background space-time that has real 

physical meaning. This relates to the selection of refer-

ence frame and coordinate system. Later we will see that 

Einstein and all the authors who use the de Donder con-

ditions and the asymptotically flat condition is actually to 

desorb the gravitation field (metric tensor field) from the 

coordinate system of the Riemannian space-time, more-

over, to choose the inertial reference frame and the Car-
tesian coordinate system. 

  We can use mathematical way to express the desorp-

tion operation (D) which is 

: RD M M T  .    (16) 

3.3. The Equivalence Principle and the A-D Op-
eration 

Because the gravitational mass is equal to the inertial 

mass, in Dynamics, an accelerated local reference frame 

is equivalent to a local gravitation field. Which is to say, 

a gravitational field is equivalent to an united entity of 

the infinite amount of infinitesimal accelerated local ref-

erence frames. Therefore, we consider that a gravitation-

al field is equivalent to a curved Riemannian space-time. 

This is logical essence of the equivalence principle. We 

have mentioned above, this way is equivalent to the ab-

sorption operation. It is equal to let the coordinates to 

absorb the GGP tensor and the GGP tensor become the 

metric tensor of a new coordinate system, thereby, to 

form a Riemannian space-time. 

  The other way round, a tangent space of the Riemann-

ian space-time can be regarded as an accelerated freely 

falling local frame which takes the geodesic as the coor-

dinate system frame. These local frames are the acceler-

ated infinitesimal local frames relative to an inertial ref-

erence frame. Although their GA line elements are iden-

tical in form with the line element of the space-time in 

the inertial reference frame when there is no gravitation 

field, they still possess the intrinsic characteristic of the 

Riemannian space-time. In other words, the intrinsic 

characteristic of the gravitational field, such as their cur-

vature tensor is non-zero. These accelerated infinitesimal 

local frames exist one to one corresponding coordinate 

transformation relationships with the space-time of the 

inertial reference frame. The coordinate transformation 

relationships are not only one, but infinite. Each local 

frame has one transformation relationship with the iner-

tial reference frame, because every local frame has dif-

ferent acceleration relative to the inertial reference 

frame. Here we cannot find a globally mapping in a tra-

ditional mathematical sense. However, all of scalars and 

tensors in the local frame can be transferred to the iner-

tial reference frame through the coordinate transfor-

mation. The scalars and tensors remain identical in form, 

owing to that the scalars and tensors are covariant with 

respect to arbitrary coordinate transformation. 
  The line element of the tangent space of the Riemann-

ian space-time, namely the GA line element in the accel-

erated freely falling local frame, is the resultant effect of 

the deformation of the background space-time 
 and 

the GGP tensor 
 in the local frame. In an arbitrary 

accelerated frame, the line element of the background 

space-time is 
2ds dx dx 

 ,    (17) 

the GGP tensor is 
  and their GA line element is 

2dA dx dx 

  .    (18) 

If choosing the accelerated freely falling local frame 

moving along with the geodetic and the Cartesian coor-

dinates, we have 
2 i j

ijdA dx dx .    (19) 

In this special case, the i j

ijdx dx dx dx 

   . This is 

completely identical in form with the line element of the 

Minkowski space-time 
2 i j

ijds dx dx .    (20) 

This is the reason that one believe that the freely falling 

local frames are local inertial frame. 

  When we transfer the coordinates between all acceler-

ated freely falling local frames and an inertial reference 

frame, the line element (metric) of the background 

space-time (17) becomes (20), and the GA line element 

(19) remains covariant, namely 
2 i j

ijdA dx dx  .    (21) 

Note, this is different from the formula (18), thereinto, 
ix is the coordinate system of the inertial frame and not 

of the accelerated frame. We have noted that in form the 

ij  in the formula (21) actually is the metric g
 of 

the Riemannian space-time. 

  From the formula (21) we know that the GGP tensor 

field 
ij  can be desorbed from the Riemannian 

space-time. In other words, the metric tensor in a Rie-
mannian space-time can be desorbed to a background 

space-time and becomes to a tensor field. This is the de-

sorption operation (D). 

3.4. Tensor Remains Invariant in Form Under 
A-D Operation 

The space-time can be deformed by taking the absorption 

operation (A) and the desorption operation (D). How will 

the tensors in the space-time vary after the space-time is 

deformed under the two operations A-D? 



 5 

  According to the Equivalence Principle, we know that 

the tensors in the flat space-time remain identical in form 

with in the Riemannian space-time. The other way round 

is also true. The metric tensor g
and the line element 

(metric) ds in the Riemannian space-time respectively 

become the second rank tensor field 
 and the GA 

line element dA  in the flat space-time. By the same 

token, all the tensors in the Riemannian space-time have 

the same form as in the flat space-time. That is to say, 

tensors remain invariant in form under deformation of 

the space-time. Therefore, tensors in form remain invar-

iant under the A-D operation. 

4. The Equations of Gravitation Field 

In chapter 2, we have found the general equations of mo-

tion of a particle in a gravitational field (10) and (11), but 

we do not know the exact forms of the GGP tensor and 
thus cannot solve the equations of motion. How to find 

the GGP tensor
 ? First of all, we have to find the 

equations in respect to
 , namely the equations of the 

gravitational field. These are the questions we will be 

discussing in this chapter. 

4.1. The Tensor that Embodies the Existence of 
Gravitation Field 

First of all, we investigate the gravitation field by taking 

Cartesian coordinates in an inertial reference frame. In 

the formula (5), the GGP tensor 
ij is a second rank 

tensor field of the Minkowski space-time which is rela-

tive to the gravitational field and is only the function of 

space-time. When the gravitational field vanishes, 
ij  

becomes the metric tensor
ij of the Minkowski 

space-time. While the gravitational field exists, regard-

less of which reference frame is chosen and what coor-

dinates are used, we cannot transform
ij to the metric 

tensor 
ij in the whole space-time. Namely, we cannot 

eliminate the gravitational effect in the whole of the 
space-time by choosing reference frames and coordi-

nates. In principle, we can make certain 
ij

 
and its 

equations through a large variety of experiments, like 

Electromagnetism, but we do not have enough experi-
mental results to summarize those equations. Neverthe-

less, we can find the intrinsic structural properties of a 

gravitational field from Riemann geometry, namely find 

out the geometric quantities which embody the intrinsic 

properties of the Riemannian space-time and desorb 

them to the flat space-time. Those geometric quantities 

desorbed are the quantities which embody the intrinsic 

structural properties of the gravitational field. 

  According to the notion of the deformation of 

space-time, we practice the absorption operation (A) to 

the formula (5), 

: ij RA M M  .    (22) 

In this way, ix x , ij g    . We gain a 

Riemannian space-time RM , which has the line element 

2ds g dx dx 

 .    (23) 

  In Riemann geometry, the essential quantity which can 

truly embody the curved characteristic of space is the 

curvature tensor R

 . The tensor R

  
is constructed by 

the first rank and second rank differentiation of g
. In 

my point of view, this curvature tensor is the essential 

quantity which embodies the existence of the gravita-

tional field in the space. If the curvature tensor vanishes, 

the formula (23) can be transformed to the metric of the 

Minkowski space-time and the gravitational effect can be 

eliminated in the whole of the space by choosing the 

reference frame and the coordinates. Therefore, the cur-

vature tensor is the only quantity which embodies the 

existence of a gravitational field. Einstein tensor can be 

constructed by the curvature tensor, 

1

2
G R g R       (24) 

and 

; 0G

   .    (25) 

Here semicolon “;” denotes the covariant derivatives 

with respect to the Riemannian metric. Because the ten-

sors in form remain invariant under the A-D operation, 

we can obtain the tensor in the Minkowski space-time, 

1

2

ij ij ijG R R   .    (26) 

Here we use Cartesian coordinates. 

4.2. The Source of Gravitation Field 

The source of gravitation field in Newton theory is the 

gravitational mass. We can reason and conclude that the 

energy-momentum tensor of matter is the source of grav-

itational field. 
  Because the gravitational mass is equal to the inertial 

mass (WEP), and the inertial mass Im  is equal to the 

rest energy of matter 0E  divided by the square of light 

speed 2c , if we take the units of c = 1, we can clearly see

0Im E . The inertial mass is just the rest energy of 

matter. Therefore, the essence of the gravitational mass 

is the rest energy of matter. The gravitational mass and 

the inertial mass are the different manifestations of the 

rest energy of matter. They are actually one physical 

quantity. The energy of matter is the component of the 

energy-momentum tensor of matter. The more general 

expression ought to be the energy-momentum tensor. 
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The source of gravitational field is the ener-

gy-momentum tensor of matter. 

  We can deduce that the energy-momentum tensor of 

matter is the source of its gravitation field according to 

WEP. The other way round, if supposing the source of 

gravitation field is the energy-momentum tensor of mat-

ter, we can reason and arrive at that the gravitational 

mass is essentially the inertial mass, and both are the 

different manifestations of the rest energy of matter in 

different circumstances. 

4.3. The Relation of the General Gravitation Po-
tential Tensor and the Energy-momentum 
Tensor  

Consider Newton's approximation and Poisson's equation 

4 G   .    (27) 

The right-hand side of the accurate equation of the field 

we are exploring should be the energy-momentum tensor 

of matter, because the general expression of the source of 

gravitational field is the energy-momentum tensor ijT , 

and the tensor ijT  becomes to the mass density   in 

Newtonian approximation. In this way, the left-hand side 
of the equation will be a tensor which involves linearly 

the second order derivatives of the GGP tensor ij . We 
can expect that the Newtonian theory of gravitation can 

be an approximation of these kinds of tensor equations. 

  In Riemann geometry, the tensors which embody its 

intrinsic properties, involves linearly the second order 

derivatives and builds up from g
 and its first and 

second order derivatives is only Riemannian-Christoffel 

tensor R

  and its contraction, moreover g
itself. 

Here appears again the curvature tensor R

 . Previously, 

we have already pointed out that this quantity embodies 

the existence of a gravitational field. By considering the 

factors above, after desorbing to a Minkowski 

space-time, the most general form of the left-hand side of 

the equations can only be 
ij ij ij ijF R R       .  (28) 

Here α, β, and ξ are arbitrary constant. Hence the most 

general form of the equations are 
ij ij ij ijR R T        .  (29) 

Here is constant. The tensor
ijT is the ener-

gy-momentum tensor of all matter in the gravitational 

field which includes the coupling of matter and gravita-

tion, other than the energy-momentum of gravitational 

field. 

  Considering the formula (25) and the conservation law 

of energy-momentum in the Riemannian space-time, 

;( ) 0T  

    .   (30) 

We ought to adopt
1

2
   , namely combine ijR  and 

R  into ijG  and thus arrive at the equations 

 
1

2

ij ij ij ijR R T       .   (31) 

Here /   and /    is the cosmological con-

stant. The term ij  denotes the energy-momentum of 

cosmological vacuum in the gravitational field which 

includes the coupling of vacuum and gravitation. This is 

identical in form with Einstein equations, but it is only in 

form. We have noticed that the equations (31) have dif-

ferent meaning with Einstein equations. In the equations 

(31), ij is the GGP and not a metric tensor now; R is an 
object constructing from the GGP and not a curvature of 

a Riemannian space-time! Later we can see that even the 

divergence of both sides of the equations in terms of the 

Minkowski metric 
ij  do not equal to zero, but Einstein 

equations do in the Riemannian space-time (covariant 

divergence). However, the equations (31) can still be 

called Einstein equations. Just keeping in mind, the 

meaning has been changed. 

4.4. The Essential Significance of the de Donder 
conditions 

The conditions 

1
( ) 0g g

xg

 




    


  (32) 

were introduced by de Donder [27] . This is equivalent to 

0
g

x









,    (33) 

here g


is the contravariant tensor density of the Rie-

mannian metric g
. Putting forward the de Donder con-

ditions (Fock called it the harmonic conditions [28]) is 
only for convenient purposes and the conditions has no 

physical meaning. This is mainly owing to that the coor-

dinates have no physical meaning in General Relativity. 

Therefore, the de Donder conditions also have no physi-

cal meaning. 

  Fock [28] (p.342-349) had proven that the harmonic 

conditions together with the requirement of Euclidean 

behavior at infinity and with the condition ensuring 

uniqueness of a wave type solution can determine the 

harmonic coordinate system uniquely and the most gen-

eral form of transformation from one system of the har-

monic coordinates to another is the Lorentz transfor-

mation. In describing problems of the island type, Fock 

as much as considered the harmonic conditions in terms 

of the global Cartesian coordinates. However, Fock had 

not completely got rid of the fetter of the geometric the-
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ory of gravitation and comprehended its essential signif-

icance. He could not find a global Cartesian coordinate 

system in the Riemannian space-time. He merely called 

the Cartesian coordinates, which he found through the de 

Donder conditions together with the requirement of Eu-

clidean behavior at infinity, the harmonic coordinates. 
  Yi-shi Duan et al. [29] had also proven, for the system 

of the island matter, considering the harmonic conditions 

together with the requirement of Euclidean behavior at 

infinity, 
ijg  , when the gravitational field vanish, 

the coordinates become to the global Cartesian coordi-

nates. 

  In my opinion, by adopting the harmonic conditions 

together with the requirement of Euclidean behavior at 

infinity actually is equal to require Einstein equations to 

be solved in a Minkowski space-time in an inertial ref-

erence frame and to choose a global Cartesian coordinate 

system. Pei-Yuan Chou [26] has clearly proposed that 

putting Einstein equations together with the harmonic 

conditions into a Minkowski space-time to solve gravita-

tional problems is possible. He had found many solu-

tions, such as the static fields of the spherical mass, the 

infinite rod with uniform linear density of matter, and the 

infinite plane with uniform surface distribution of matter. 

It is a pity he did not know why this method works. The 

Cartesian coordinates which Fock found are the global 

Cartesian coordinates and the Lorentz transformation is 

the global Lorentz transformation between two inertial 

reference frames. 

  We can see, Einstein equations and the gravitational 

field equations (31) in form are completely same, and it 

cannot be solved by only using themselves because the 

field equations have four freedom components owing to 

the identical equations. It can be interpreted as the equa-

tions in arbitrary space-time including the Riemannian 

space-time. A solution which satisfies Einstein equations 

after being transferred through any real transformation of 

coordinates is still the solution of the equations. Due to 

this reason, when we face a large number of solutions in 

General Relativity, we often do not know how to deal 

with them and which one is true. Adopting the de Donder 

conditions together with the requirement of Euclidean 

behavior at infinity is equivalent to desorb the Einstein 

equations into a Minkowski space-time and choosing 

Cartesian coordinate system to solve. After using the de 

Donder conditions, the solution of Einstein equations is 

determined and only interpreted as the GGP in the iner-

tial reference frames with Cartesian coordinates. Fur-

thermore, Einstein equations satisfy the global Lorentz 

transformation between inertial reference frames. The 

coordinates called the harmonic coordinates are actually 

not only one, but a series of the inertial reference frames 

with Cartesian coordinate system. When we calculate the 

physical problem, we can choose one of them by using 

some boundary conditions. 

  We adopt the de Donder conditions 

0

ij

ix





 ,    (34) 

together with the requirement of Euclidean behavior at 

infinity to confine the equations (31) in the Minkowski 

space-time, moreover with global Cartesian coordinates. 

After adopting the formula (34), we can absolutely cer-

tain of the meaning of the equations (31) in mathematics, 

because the equations (31) is completely identical in 

mathematical form with Einstein equations in the sense 

of Riemannian space-time. We consider the de Donder 

conditions (34) as the equations appended on the equa-

tions (31). 

4.5. The Equations of Gravitation Field 

According to previous discussion, we can obtain the 

gravitational equations in an inertial reference frame with 

Cartesian coordinates. It can be written down like the 

conventional form ( write ij  as ijg  ), 

1

2

ij ij ij ijR g R g T    ,   (35) 

0

ij

i

g

x





.    (36) 

Here ijg is the inverse GGP tensor; 
ij

g  is the tensor 

density of ijg ; i and j take 0, 1, 2, 3, denote that the ten-

sor is in the Minkowski space-time with Cartesian coor-

dinates. 

  To generalize the equations (35) and (36), we can ob-

tain the general equations of gravitational field in any 

reference frame with arbitrary coordinates. 

1

2
R g R g T       ,   (37) 

; 0g


  .     (38) 

Here the semicolon “;” denotes the covariant derivatives 

with respect to flat space-time with arbitrary coordinate 

systems in any reference frame. 

5. The Energy-momentum Tensor of Gravi-
tational Field and The Another Expres-
sion of The Equations of Gravitational 
Field 

In the Riemannian space-time, we have the conservation 

law of energy-momentum (30). If ignoring the cosmolo-



G. Liu 8 

gy term, we have 
; 0T 

  , Einstein (1915, 1918) [30] 

and Tolman (1930) [31] proposed: 

  (i) In GR, the gravitational field should own the ener-

gy-momentum which should have been included in the 

conservation law 
; 0T

   ; 

  (ii) we may change the covariant divergence equaling 

to zero to the normal divergence equaling to zero. 

; ,0 [ ( )] 0T g T t  

         ,  (39) 

in which t  represent the energy-momentum of gravi-

tational field, the comma “ , ” denotes the normal deriva-
tives. 

  Many authors had tried to get the expression of the 

energy-momentum of gravitational field according to the 

point of view [24]. Now it is well known that it is impos-

sible to find the tensor expression of the ener-

gy-momentum of pure gravitational field, because Ein-

stein's Equivalence Principle ( EEP ) [2], [16]. T

  is 

energy-momentum tensor of the matter except of the 

gravitational field. 
; 0T

    
contain at most the cou-

pling of matter and gravitational field or space-time. The 

gravitational field as a kind of entity of matter should not 

rely on the coordinate systems and the reference frames 

which we choose to describe it. The energy-momentum 
of gravitational field should be expressed by a tensor, 

while this is impossible in all metric theory of gravita-

tion. Actually, this problem is inevitable because in GR 

the gravitational field is not regarded as a kind of entity 

of matter and replaced by the concept of the Riemannian 

space-time. The gravitational field is absorbed by the 

coordinates of space-time. The characteristics of the 

gravitational field are interpreted as the properties of 

space-time. In GR, we calculate the energy-momentum 

of gravitational field essentially is to take account of the 

energy-momentum of Riemannian space-time. Does the 
space-time itself have the energy-momentum? How to 

calculate the energy-momentum of the Minkowski 

space-time? Actually, when we regard the gravitational 

field as the Riemannian space-time, namely 

geometrization of gravitation, the energy-momentum of 

gravitational field vanishes. We cannot express it. Even 

though the tensor of the energy-momentum of gravita-

tional field is found, it must equal to zero due to the EP. 

  If t represent the energy-momentum of gravitational 

field, it should be a tensor and satisfy the coordinate 

transformations between arbitrary real reference frames. 

So T t 

   should satisfy the covariant divergence 

equal zero, namely 

;( ) 0T t 

     ,   (40) 

while not merely satisfy the normal divergence equal to 

zero. 

  Fock [28] (p.328), by adopting the harmonic condi-

tions and Einstein equations, obtained following equa-

tions: 
2

  6 ( ) 1
kl ij ki lj ij

k l
g g g G

x
g U

x



 

 
, (41) 

where 
2

2
( )

8

ij ij ijg c
U T L

Gc 
   ,   (42) 

2

1

2

  
ki lj

ij ij

l k

g g
L N

c x x

 
 

 
,  (43) 

,

2

1 1
( )( )

2 2

ij i kl j i j ij

kl

g
N y y g L

c


     , (44) 

1 1

2

 

2

kl

j j

kl jj

g
L y y

xg


   


, (45) 

and the quantities are defined as follow: 

, 1
( )

2
  

il ik kl
km lm imi kl

m m m
g g

g g g
g

g x x x

  
   

  
, (46) 

,j j in

kl ki lng g   ,   (47) 

log
j j

g
y

x

 



,   (48) 

j ij

iy g y .   (49) 

In the equations (41), on the left, the expression of form 

is the Krutkov tensor [32]; the sum of the derivatives 

with respect to ix  of the left-hand side is identically 

zero. Therefore we have 

0
ij

i

U

x





.    (50) 

  Fock noticed [28] (p.329), the set of quantities ijU  is 

not a generally covariant tensor. It is a tensor only with 

respect to linear transformation; in particular ijU  is a 

tensor in a harmonic coordinate system. The second term 

in (42) multiplied by 2c can be interpreted as the energy 

tensor of the gravitational field and the first term multi-

plied by 2c  as the energy tensor of the material media 

and all fields other than gravitational field. If other than 

harmonic systems of coordinates are also admitted such 

an interpretation will not be completely unique if the 

region of the mass system is considered. But at large 

distances from masses, where the space-time is nearly 

pseudo-Euclidean and the coordinates are, by choice, 

Galilean, the physical meaning of the U  become 

unique in any case. 

  In General Relativity or the geometric theory of gravi-

tation, Fock's above conclusions make people uncom-

fortable and perplexed, because the total ener-

gy-momentum U   should be a tensor with respect to 

arbitrary coordinate transformation between the refer-
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ence frames. It's the other way around, according to my 

point of view, the conclusions rightly exhibit that com-

bining the harmonic conditions and Einstein equations is 

equivalent to desorb the GGP tensor from a Riemannian 

space-time to a Minkowski space-time and choosing the 

global Cartesian coordinates. After adopting the de 

Donder conditions (the harmonic conditions) in Einstein 

equations, the equations (41) that Fock deduced are ex-
actly the equations of gravitational field in the 

Minkowski space-time with a global Cartesian coordi-

nates in an inertial reference frame. That is why the set 

of quantities ijU  is the tensor only with respect to linear 

transformation. If we choose c = 1, it is clearly to see that 
ijU  is the total energy-momentum tensor of the matter 

and the gravitational field except of the vacuum energy; 

/ 8ij ijt L G  is exactly the pure energy-momentum 

tensor of gravitational field; ijT  is the ener-
gy-momentum tensor of the material media and all fields 

other than gravitational field and its coupling with gravi-

tational field. The coupling of matter and gravitation 

field is embodied in that we replace the metric tensor of a 

Minkowski space-time ij  by using the GGP ijg  in 

the expression of ijT . The equations (50) are the con-
servation law in the Minkowski space-time with Carte-

sian coordinate. The equations and tensors all satisfy the 

global Lorentz covariance. We must emphasis that we 

have the equations (25) and (30) in the Riemannian 
space-time , but after being desorbed to the Minkowski 

space-time, 
,

1
( ) 0

2

ij ij

jR g R   and 
,( ) 0ij ij

jT   

, because we have to consider the energy-momentum of 

gravitational field in the conservation law. However, the 
equations (31) desorbed from the Riemannian 

space-time, itself has already contained the ener-

gy-momentum of gravitational field. 

  To generalize the equations (41) to be general covari-

ant (note: this is the different notion from GR ) equations 

with respect to arbitrary coordinate in inertial and 

non-inertial reference frames, and also consider the cos-

mology term ( background vacuum energy ), we obtain 

the general covariant equations of gravitational field 

; ; ( ) 6 1g g Ug Gg
    

    , (51) 

; 0g


  .    (52) 

Here the semicolon “;” denotes the covariant derivatives 

with respect to the space-time metric 
  of an arbi-

trary reference frame. The tensorial de Donder condi-

tions are the component element of whole equations of 

gravitational field. The conservation law of the total en-

ergy-momentum of all of matter, including the material 

media, all field and vacuum energy: 

; 0U 

  ,    (53) 

where 
2

2
( )

8 8

gg c
U T L g

G Gc

   

 


    . (54) 

Here   is the cosmology constant. The equations (51) 

and (52) are equivalent to the equations (37) and (38). 

6. The Space-time of Gravitational Field 

6.1. The Significance of Coordinates 

The coordinates are only introduced as the parameters in 

General Relativity. They hold no physical significance. 

This is inconceivable. The coordinates which we used to 

describe the motion of matter have no meaning! How is 

the motion of matter described? In my point of view, the 

coordinates have clearly physical significance. 

  For the formula 
2ds g dx dx 

 ,    (55) 

can be understood by two ways: firstly, ds can be under-

stood as the GA line element consisting of a GGP tensor 

g
 and a background space-time x ; secondly, ds can 

be regarded as the line element of Riemannian 

space-time that is formed after the coordinates x  ab-

sorb the GGP tensor g
 and the GGP tensor g

 

becomes the metric tensor. In the first situation, the co-

ordinates have clear and practical measurable meaning; 

while in the second situation, the coordinates have lost 

its practical measurable meaning. In my point of view, 

the coordinates x  can be the Cartesian coordinates in a 

Minkowski space-time or the coordinates of background 

space-time in a non-inertial reference frame. According 

to the notion of the absorption operation, the coordinates 

in GR are merely the coordinate parameters, after the 

GGP tensor is absorbed by the coordinates of back-

ground space-time and become a metric tensor of a Rie-

mannian space-time in Mathematics. Here the signifi-

cance of the coordinates is completely different from that 

before absorbing. 

  Formerly, when we solve Einstein equations, adopt the 

harmonic conditions and consider the Newton approxi-

mation in General Relativity, we are actually desorbing 

the gravitational field from the coordinates of the Rie-

mannian space-time and are endowing the coordinates 

with the meaning of the coordinates of the flat 

space-time in the inertial reference frame. It is being rou-

tinely used in relativistic astrometry and relativistic ce-

lestial mechanics. People are well aware of the action of 

the gravitational field and are for more convenient and 

informative to store and analyze the data in terms of the 

flat space-time quantities after subtraction of the theoret-

ically calculated gravitational corrections! rather than in 
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terms of directly measured quantities. This is one of the 

reasons that Einstein equations can give a description of 

gravitational phenomena in agreement with observation! 

6.2. The Meaning of the Line Element of Gravi-
tational Action (GA) dA 

In chapter 2, we have obtained the motion equations of a 

freely falling particle in a gravitational field (8) and (9) 

by using the variation 

0I dA   .    (56) 

Here we can see that dA  represent the length of the 

trajectory of a freely falling particle in a gravitational 

field. Therefore, dA is the differential element of the 

length of a four dimensional trajectory. The trajectory is 
not a straight line, but a curve, due to the action of gravi-

tation. Like an electron in an electromagnetic field, its 

trajectory has been deformed. dA is the differential ele-

ment of the length of the curved four dimensional trajec-

tory. 

  Now we analyze the formula of the GA line element 
2 0 2 0

00 0( ) 2dA dx dx dx dx dx  

      . (57) 

In the static gravitational field, 0 0  , then 

2 0 2

00 ( )dA dx dx dx 

   .  (58) 

Therefore dx dx 

  exactly represents the distance 

between two infinitely close points of a three dimension-

al trajectory in a gravitational field, using 2dl  to de-

note, we have 
2dl dx dx 

  .    (59) 

This is easy to understand that the freely falling particle 

is acted on by the gravitational force, its trajectory has 

been changed and is related to the gravitational field. 

Generally, its trajectory is no longer straight, but curved. 
  When a particle is at rest in a gravitational field, fol-

low (58), takes 0dx  , then we have 
2 0 2

00 ( )dA dx ,   (60) 

thereby, obtain 

00

dA
dt

c
  .    (61) 

Take 

dA
d

c
  ,     (62) 

so 

00d dt   .    (63) 

d is called proper time in General Relativity and equal 

to the coordinate time in the freely falling local reference 

frame [24] (p26). What is the meaning of d  in my 

point of view? It is the pure time component of the 

curved trajectory in a four dimensional space-time. It 

represents the period of the motion of matter in the grav-

itational field. Once a particle enters into a gravitational 

field, it obtains gravitational potential and its kinetic en-

ergy is changed. The change of its energy also reflects in 

the variation of its time. We call this quantity as Effec-

tive Time. Using the effective time d  to replace the 

background coordinate time is equivalent to take account 

of the gravitational potential when we calculate the mo-

tion of a particle under the presence of gravitation. The 

effective time d  is the time of the real clock which is 

at rest in the gravitational field and affected by the 

gravitational field. The coordinate time dt is the time of 

the clock which is at rest in the space with no gravita-

tional field or at infinity from the gravitational source. It 

can be measured by the freely falling clock, because 

d dt   in the freely falling frame. 

  The energy of a freely falling particle in a steady grav-

itational field can be written as 
2

00

00
2

2
1

k

mc
E E

v

c


  



.  (64) 

Here E is the total energy of the particle in the gravita-

tional field; kE  is the Relativistic Kinetic energy of the 

particle in the gravitational field. From the formula (63) 

and (64), we obtain 

k

d E

dt E


 .     (65) 

We see the relationship of energy and time. One step 

further, we gain 

k

E
d dt

E
  .    (66) 

This indicates that the effective time d  is caused by 

the variation of the gravitational potential energy. While 

the gravitational potential energy varies accompany with 

the variation of its kinetic energy. In Special Relativity, 

we know that the energy is the time component of the 

energy-momentum Tensor. The variation of energy re-

flects in the variation of time. 

6.3. The Essence of the Gravitational Red shift 

For a photon, according to the formula (64), its energy in 

a static gravitational field is 

00 ( )E h x  .    (67) 

Here   is the frequency of the photon, h is Plank con-

stant. The formula (67) also can be derived from the 

formula (63). From the formula (63), we have  

0 00 ( )E h h x    ,   (68) 
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where 1/ d  , 
0 1/ dt  .   is the frequency of the 

photon at the point x  of the gravitational field. 
0  

equals to the frequency of the same photon at infinity 

from the gravitational source or at the place with no 

gravitational field. The formula (68) tells us that the 

photon's energy is conserved when the photon moves 

from infinity to the point x  in the static gravitational 

field. 
  Therefore, at the point A of the gravitational field, a 

photon which has the frequency A  is transmitted, its 

total energy is 

00 ( )AE h A  .    (69) 

When the photon moves to point B, it has 

00 ( )BE h B  .    (70) 

Even though the photon's kinetic and potential energy 

has been changed during the motion in the gravitational 

field, the total energy conserved, namely 

00 00( ) ( )A BE h A h B     ,  (71) 

thereby 

00

00

( )

( )

B

A

A

B









.    (72) 

Considering Newton's approximation (4), adopt the Tay-

lor spread and take the first level approximate, we arrive 

at 

2

1
( )B A A B A

c
          .   (73) 

While | | |A B  , 0  , This indicates that the spec-

trum observed at the point of weak gravitational field 

shifts to the red end of the spectrum when the light 

transmits from a point of strong gravitational field to a 

point of weak gravitational field. This is called the grav-

itational red shift [24]. 

  From the analysis above, we can conclude that the red 

shift of light is owing to the energy conservation of the 

photon and the transformations between the potential and 

kinetic energy during the motion in the gravitational 

field. As a photon moves from a strong gravitational 

field to a weak gravitational field, its potential energy 

increases whiles its kinetic energy decrease. Therefore, 

the frequency becomes slower and the wave length be-

comes longer, which is the gravitational red shift. This is 

the essence of the gravitational red shift. This compre-

hension is different with the geometric explanation. 

7. Summary 

So far, we have analyzed and elaborated the relationships 

of the Riemannian space-time, the de Donder conditions 

and the gravitational field in flat space-time through es-

tablishing the concepts of the absorption operation and 

the desorption operation. The A-D Operation completely 

adapt to the Equivalence Principle. The tensors are in-

variant under the A-D Operations. In the discussion, we 

have answered why the structural form of Einstein equa-

tions is correct even if it is obtained from the geometric 

interpretation that people feel uncomfortable. It is clear 

that Einstein equations and the de Dondle conditions as 

the equations of gravitational field can be used in a flat 

space-time to solve. The essential significance of the de 

Donder conditions is to desorb the tensor field of gravi-

tation from the Riemannian space-time to the Minkowski 

space-time with the Cartesian coordinates. The gravita-

tional field is true physical field like the electromagnetic 

field. Einstein geometric interpretation is a special case. 

The source of gravitational field is the ener-

gy-momentum of matter. This can be deduced from the 

fact that the gravitational mass and inertial mass are 

equal. The inverse of this deduction is also true. In this 

paper, the motion equations of particle and the equations 

of gravitational field in the inertial and non-inertial ref-

erence frames are established. The tensor expression of 

the gravitational field is found. It satisfied the global 

Lorentz Covariance and is also covariance with respect 

to the coordinate transformations between arbitrary iner-

tial and non-inertial reference frames. It is clear that the 

problems of gravitation and of space-time in a 

non-inertial frame can be solved respectively. The gravi-

tation field can be described by using Riemann geome-

try, but as we know, it is quite complicated and confus-

ing, even can deduce some wrong conclusions. Gravita-

tion can affect the motion of matter and change the en-

ergy-momentum of matter, thereby affect the period of 

matter's motion, but these changes can be aware of by 

comparing with the background space-time. Just like 

usual, it is being routinely used in relativistic astrometry 

and relativistic celestial mechanics. People can store and 

analyze the data in terms of the flat space-time quantities 

after subtraction of the theoretically calculated gravita-

tional corrections, rather than in terms of directly meas-

ured quantities. The effective time ( or proper time ) d  

is the reflection of the change of particle energy in the 

gravitational field. The gravitational red-shift of light is 

due to the photon obeying the conservation law of energy 

and the potential and kinetic energy transforming be-

tween each other when it is moving in a gravitational 

field. 

  We know the GGP tensor 
  should be the func-

tion with respect to the metric tensor of space-time 

and real gravitational potential (GP) tensor h . Its rela-

tionship should be found through some empirical evi-

dences or physical requirements. 
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