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A novel daemon-based architecture is introduced to elucidate some brain functions, such as pattern recognition during
human perception and mental interpretation of visual scenes.  By taking into account the concepts of invariance and
persistence in topology, we introduce a Selfridge pandemonium variant of brain activity that takes into account a novel
feature, namely, extended feature daemons that, in addition to the usual recognition of short straight as well as curved
lines, recognize topological features of visual scene shapes, such as shape interior, density and texture. A series of
transformations can be gradually applied to a pattern, in particular to the shape of an object, without affecting its invariant
properties, such as its boundedness and connectedness of the parts of a visual scene.  We also introduce another
Pandemonium implementation: low-level representations of objects can be mapped to higher-level views (our mental
interpretations), making it possible to construct a symbolic multidimensional representation of the environment.  The
representations can be projected continuously to an object that we have seen and continue to see, thanks to the mapping
from shapes in our memory to shapes in Euclidean space. A multidimensional vista detectable by the brain (brainscapes)
results from the presence of daemons (mind channels) that detect not only ordinary views of the shapes in visual scenes,
but also the features of the shapes.  Although perceived shapes are 3-dimensional (3+1 dimensional, if we include time),
shape features (volume, colour, contour, closeness, texture, and so on) lead to n-dimensional brainscapes, 5.n ³    We
arrive at 5 as a minimum shape feature space, since every visual shape has at least a contour in space-time.  We discuss
the advantages of our parallel, hierarchical model in pattern recognition, computer vision and biological nervous system’s
evolution.

Pandemonium, initially introduced by Selfridge (1957) for Morse translation purposes, is a hierarchical, parallel
processing, adaptive, self-improving model, where “computational demons” perform non-trivial binary functions on two
variables.  A Pandemonium architecture has been proposed also in order to elucidate some brain functions, such as pattern
recognition by human perception.  The entire process resembles a kind of natural evolution, by selecting the “best”
processing daemons and eliminating the relatively poor ones. Indeed, we are in front of a mechanism of “the-winner-
takes-all”: the cognition demon whose output far outshines the rest activates the so-called “decision demon”, responsible
for the final output of Pandemonium.   The model is able to recognize, with no direct supervision, patterns which have
not been specified, by using a feature weighting that can be described as a hill-climbing problem.  In touch with the issue
of “neural darwinism” (Edelman, 1978, 2004, 2017; McDowell 2010; Rosenbaum, 2014), cognitive demons’ selection
generates new subdemons for trial and eliminates inefficient ones with low worths, every time reweighting the assembly.
The brain is a selection system that put things together via pattern recognition (Edelman, 2017) leading to perceptual
categorization (McDowell, 2010).  For the philosopher Hume, ought does not come from is (MacIntyre, 1959).  Instead,
we build our thoughts on the basis of the brain’s activity (Edelman, 2017, 2014).
Here we introduce a novel version of Pandemonium, BUT-Pandemonium, equipped two novel features (Figure 1) that
take into account recent claims from the neuroscientific literature.
The first way to improve the Pandemonium is to allow its cognitive demons to perform not non-trivial binary functions
on two variables, but operations of computational proximity. The feature demons in “classical” Pandemonium are built
in order to perceive image features, such as, e.g., short straight lines or curved lines of the letter A.  However, when we
watch a segment in a visual scene in the environment, we perceive elements seemingly melted together in a single, in
Mach’s terms, “complex of sensations” (Mach 1885).   To make an example, we are able to detect, in the indistinctness
of a rural scene at sunrise time, an increasingly distinct world of trees, hills and moving particles, e.g., birds flying from
one tree to another.    In effect, we appear to be sewing pieces of a changing scene together.   In touch with these
observations, recent findings suggest that nervous structures process information through topological as well as spatial
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mechanisms.  For example, it has been hypothesized that hippocampal place cells create topological templates to represent
spatial information (Dabaghian, 2014; Arai, 1014; Chen, 2014).  Therefore, our novel cognitive daemons will process
topological, as well as spatial, image invariants.
The second feature of our novel Pandemonium is based on the recent claims that brain activities lie in functional
dimensions higher than the 4D spacetime environment (Tozzi and Peters, 2016a; Tozzi et al., 2017).  If such claims hold
true, what happens to 3D (plus time) inputs (say a visual scene) when they are projected onto functional higher brain
dimensions?  In our BUT-Pandemonium, the final brain output, i.e., the motor response, dictated by a single dominant
cognitive daemon, stands for TWO, instead of ONE, decision daemons with matching description.  We show how, in
touch with the Borsuk-Ulam theorem, where two matching descriptions in higher dimensions (in this case, the level of
the cognitive daemons), give rise to a single description in lower dimensions (in this case, the final output of the decision
demon).   Note that we used the term “daemons” instead of “demons”, to call the attention to the advent of new actors
that hand feature extraction and projections to various inter-dimensional spaces.
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Figure 1.  Differences between the classical Pandemonium and the novel model.
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IMAGE AND FEATURE DAEMONS RECOGNIZE TOPOLOGICAL FEATURES FROM VISUAL IMAGES

Here we show how to build image, feature and cognitive daemons that recognize topological, instead of spatial cues, in
visual images. There is a straightforward bridge between the polygonal partition of plane regions (Alexanadroff, 1932)
and visual perception of proximities of shapes in nerve complexes in polygonal-partitioned visual images (Peters, 2017a;
Peters, 2017b; Peters JF, 2015; Peters, İnan, 2016).  See Figure 2 for an example: the conjecture here is that features
daemon, in touch with dynamical systems accounts of random paths (Friston 2010), would first hunt for features of the
shapes of the scene nuclei, before moving outwards in the hunt for features of shapes in the larger picture.
An approximation of personal points-of-interest are shown as the vertices of a point cloud in Figure 2(B).  This is an
example of a Vietoris-Rips complex (Peters, 2017b; Ghrist, 2014).  In lockstep with visual perception, triangular regions
that  overlay  shapes  in  a  visual  scene  are  formed  by  joining  neighboring  pairs  of  points-of-interest  with  straight  line
segments.  Imagine a video that records the continuous changes in lighting conditions in the daytime shop window display
in Figure 2(A).  As the sun changes its position and radiation reflected off the shop window flower shapes, the points-of-
interest gradually change, resulting in changing triangulations of the visual scene shapes.   Mimicking the narrowing of a
human viewer of visual scene shapes, clusters of triangles with common vertices are shown in Figure 2(C).    Shapes
become easier to measure and compare whenever they are covered with known shapes such as triangles. Figures 2(D),
2(E), 2(F) provide a polygonal view of the visual scene in Figure 2(A).   This polygonal view, called a Voronoī complex
(Peters, 2017a), provides larger, rounder regional views of the visual scene shapes.   For example, a Vietoris-Rips complex
covering a visual scene makes it easier for feature daemons to detect shape features in higher-dimensional spaces.   Smaller
triangles in a Vietoris-Rips complex covering visual scene shapes make it easier to detect regional shapes.   In Figure
3(A), quite a number shapes features are displayed inside fairly small triangular regions, such as the triangles enclosing
flower petals with convex regions.   The actions of a feature daemon are approximated with mappings in Figure 3(B),
leading to shape feature spaces and shape proximities.  In effect, the cognitive daemons recognize not only shape features
(such as short straight lines or curved lines of the letter A), but also shape topological invariants (such as, for example,
the donut-like shape of a coffee cup, or a flower pot, or the proximities of convex flower petals in Figure 3(A).
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2(A) Visual Scene 2(B) Triangulated Scene 2(C) Triangle Nerve Complex

2(D) Scene Polygons 2(E) Scene Dual Nuclei 2(F) Dual Nerve Complexes

Figure 2. 2(A) A visual scene containing a shop window flower display. Figure 2(B) suggests the focus of attention
with a triangulation, facilitating a description of the shapes in the visual scene, e.g., flower petal shapes. 2(C) Refinement
of the focus of attention is provided by highlighted filled triangles in a collection of what is known as a Alexandroff nerve
complex. 2(D) suggests a more refined view of the visual scene in terms of a decomposition into a collection of polygons
with varying numbers of sides that reflects greater or lesser importance in the perception of scene. 2(E) gives a further
refinement of the focus of attention in terms of shapes of interest, encapsulated in highlighted polygons called scene
nuclei.   Notice that the dual nuclei polygons have a common edge.  In effect, proximal nuclei are the center of attention
in the inspection of the flower display. 2(F) shows highlight polygons that are satellites of the scene nuclei.  Notice that
only triangles adjacent to the nuclei qualify as nuclei satellites.   Also notice that nuclei satellite polygons spread upward
and downwards, possibly reflecting the wandering of our attention from the initial scene focal points.
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3(A) 3(B)

Figure 3.    Feature Daemon Mappings on Triangular Shapes in a Vietoris-Rips Complex. 3(A) Triangular regions of
interest to an exploring feature daemon.   This triangulation is a refinement of the initial Vietoris-Rips complex covering
a visual scene in Figure 2(B).   Smaller triangular regions make it easier to discern individual shape features such as
color, contour, convexity. 3(B) Actions of a feature daemon are represented as sequences of mappings in what is known
as  a  fibre  bundle.   The  fibres  are  points-of-interest  in  a  point  cloud,  obtained as  a  slice  of  shape  (this  is  map g).    A
projection mapping p on the point cloud onto a set of shape triangles in a Vietoris-Rips complex (covering the shapes in
a visual scene) sets up the playground for a feature daemon.   Then projections are a pair of feature mappings (also called
projection mappings) from the Vietoris-Rips complex into color and contour features spaces, leading to characterizations
of particular shapes, such as the flower petals in Figure 3(A).   A proximity map a  on the triangulated shapes in the
Vietoris-Rips complex onto a set of proximities between shapes provides a cognition daemon with bases for comparisons
between shapes.

DECISION DAEMONS ALLOW HIGHER-DIMENSIONAL TOPOLOGICAL CORRELATIONS BETWEEN
STIMULI AND BRAIN ENERGETIC RESPONSES

Here we show how to build multi-dimensional decision daemons, starting from lower-dimensional cognitive daemons.
We also show how decision daemons embedded in higher functional brain dimensions are able to produce lower-
dimensional bodily motor responses.

The Borsuk-Ulam theorem and its variants.  In such a theoretical context of perception, the Borsuk-Ulam theorem
elucidates how we see an object and how we imagine it (Tozzi and Peters, 2016a).
The Borsuk-Ulam Theorem (Borsuk 1933) is given in the following form:
Let : n nf S R® be a continuous map.   Then there exists 1n nx S R +Î Í such that ( ) ( ).f x f x= -
This means that antipodal points on n-sphere nS map to ,nR which is then-dimensional Euclidean space (Matoušek 2003).

Points on an n-sphere nS are antipodal, provided the points are diametrically opposite.  The original formulation of BUT
displays versatile ingredients which can be modified, resulting in BUT with different guises: continuous mappings are
replaced by piecewise continuous mappings, antipodal points are replaced antipodal regions with matching descriptions
and mappings are from nS to , 1 k n or k n,kR £ £ ³ which is the k-dimensional Euclidean space.  See Tozzi and
Peters (2016b) for further details.
In other words, the sphere Sn maps to the euclidean space Rn, which stands for an n-dimensional Euclidean space.  Note
that the function needs to be continuous and that n must be a natural number (although we will see that it is not completely
true) (Matoušek 2003; Tozzi 2016a; Tozzi 2016b).
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The notation Sn denotes an n-sphere, which is a generalization of the circle (Weeks).  A n-sphere is a n-dimensional
structure embedded in a n+1 space.  For example, a 2-sphere (S2) is the 2-dimensional surface of a 3-dimensional ball (a
beach ball is a good example).  An n-sphere is formed by points which are constant distance from the origin in (n+1)-
dimensions (Marsaglia 1972).  For example, a 3-sphere (also called glome or hypersphere) of radius r (where r may be
any positive real number) is defined as the set of points in 4D Euclidean space at distance r from some fixed center point
c (which may be any point in the 4D space) (Henderson 1996).  A3-sphere is a simply connected 3-dimensional manifold
of constant, positive curvature, which is enclosed in an Euclidean 4-dimensional space called a 4-ball.  A 3-sphere is thus
the surface or boundary of a 4-dimensional ball, while a 4-dimensional ball is the interior of a 3-sphere.  From a geometer’s
perspective, we have different n-spheres, starting with the perimeter of a circle (S1) and advancing to S3, which is the
smallest hypersphere, embedded in a 4-ball (Figure 4).   Points  on  Sn are antipodal, provided they are diametrically
opposite.  Examples of antipodal points are the poles of a sphere.  Further, every continuous function from an n-sphere
Sn into Euclidean n-space Rn maps some pair of antipodal points of Sn to the same point of Rn.  To make an example, if
we use the mapping f: S3→  R3, then f(x) in R3 is just a signal value (a real number associated with x in S3) and f(x) = f(-
x) in R3.  Furthermore, when g: S2 → R2, the g(x) in R2 is a vector in R2 that describes the x embedded in S2.  In other
words, a point embedded in a Rn manifold is projected to two opposite points on a Sn+1-sphere, and vice versa.

BUT might explain how representations of objects in our environment are mapped to higher-dimensional views (our
interpretations and coalescences), in order to achieve a form of pullback from descriptions to sources of descriptions,
from a simplified view to multiple views of the same object.  Indeed, a new form of shape theory (called homotopy)
discovered by K. Borsuk makes it possible to assess the properties that are preserved through deformation, stretching and
twisting of objects (Beyer and Zardecki 2004; Manetti 2015).  Homotopy is a theory of shape deformation (Borsuk, 1971;
Borsuk and Dydak, 1980), e.g., how some shapes can be deformed into other shapes.  In this context, the term “shape”
means “exterior form” and a “deformation” is a mapping from shape into another one.  A classic example is the
deformation of a coffee cup into a torus.  The combination of various forms of BUT and homotopy theory provides a
methodological approach with countless possible applications, especially in helping us understand perception and how
we acquire visual imagination. The theory of shape, in simple terms, focuses on the global properties of geometric objects
such as polyhedra and tori, neglecting the complications of the local structures of the objects (Borsuk and Dydak, 1980).
What shape theory and BUT tell us is that cognitive processes relating to perception, storage, retrieval and reorganization
interact with memory structures and construct a symbolic representation of the environment.  For example, mesh view in
Figure 5 can be viewed as visualization of one among many symbolic views of Leonardo Da Vinci’s Mona Lisa painting.
In effect, an individual perceives [constructs] the features and events of the environment specified by this [pickup]
information from the environment (Heft 1997).

Figure 4.  The Borsuk-Ulam theorem for different values of Sn.   Two antipodal points in Sn project to a single point in
Rn, and vice versa.  Every Sn is embedded in a n+1-ball, and thus every Sn is one-dimension higher than the corresponding
Rn.
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Figure 5.   Mona Lisa shape deformably mapped to Mona Lisa Exterior Mesh Shapes.  This mapping illustrates nascent
persistence perception: we abstract away from the very complex structures in Da Vinci’s painting to arrive a simpler,
geometric view of the image as a collection of familiar convex polygons.

From cognitive to decision daemons.  In the sequel, the notion antipodal point is extended to non-intersecting brain
regions (standing for different decision daemons).   A region on the surface of an n-sphere nS  is a part (subset) of .nS A
surface region xØ  is the antipode of x, provided x x¹ Ø  and x has the same feature values (characteristics) as .xØ For
more about this, see Peters (2016).  From a physics perspective, a cortical region (containing a decision daemon) is a
relativistic mass in a slice of space swept out by the region.   The particles on a n-sphere are moving at a velocity as the
velocity v, which less or equal to the velocity of the planet.   For every cortical region with mass ,nx SÎ we can always

find xØ (the analog of the antipode -x of a point on the surface of )nS  with the same characteristics of velocity and
mass.  In BUT-Pandemonium terms, we can always find two cortical decision daemons with matching description). In
effect, for the cortical energy 2 ,x xe m v= we can find its antipodal energy xeØ  for .nx SØ Î To be an antipodal energy

,xeØ  we weaken the original notion to antipodes, with xØ being a particle on nS that has characteristics that match those

of .nx SÎ Let , reBreA  be  regions  on .nS    A  function : n kf S R® is piecewise continuous on ,nS provided
 close to reBreA implies that ( )f reA  is close to ( ).f reB This leads to an energetic form of BUT (energy-BUT) for

antipodal particles , :nx x SØ Î

Energy-Borsuk-Ulam theorem.
Let : n kf S R® be a piecewise continuous map.   Then there exists 1n nx S R +Î Í such that ( ) ( )f x f x= Ø and

.x xe eØ=

Proof: ( ), ( )f x f xØ  a feature vectors in 1.nR + Since, for each nx SÎ there is nx SØ Î with the same velocity and

mass, the result follows, i.e., ( ) ( )f x f x= Ø and .x xe eØ=
This means that two cortical decision daemons with matching description display the same energetic level.  As shown by
Tozzi and Peters (2017), such energetic levels are experimentally assessable and quantifiable, in terms of entropy detected
in fMRI images.
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Another variant of BUT is the region-based BUT.  This is a straightforward extension of what is known as region-BUT
(briefly, reBUT).

Region-Energy Based Borsuk-Ulam Theorem (ReEnergyBUT).
Let 2X be a collection of nonempty physical surface regions (a collection of decision daemons) of an n-dimensional space
X  and let be a piecewise continuous map.   Then there exists 12X nx R +Î Í such that ( ) ( ).f x f x= Ø

Proof: Let ( ), ( )f x f xØ be feature vectors in 1.nR + We can always find a region 2XxØ Î  (a decision daemon) that is

antipodal to 2 ,XxÎ i.e., x xØ Ç =Æ  and , ,x xØ (standing for two antipodal decision daemons) have matching

descriptions in 1,nR + minimally, equal velocity and mass while moving through space.   Hence, ( ) ( )f x f x= Ø and

.x xe eØ=

Cortical Response Fibres. This section introduces cortical response fibre bundles. They stand, in BUT-Pandemonium
terms, for the decision daemons’ outputs that produce a bodily motor response to the original environmental stimuli.   In
general, a continuous mapping : E Bp ® is called a projection on a set of fibres E to B.  Every element e EÎ  is called
a fibre, B is called a fibre bundle base and the collection of all mappings ( )ep  is called a fibre bundle.   The set E is

class of objects so each e EÎ has the same properties as every other member of E.   The members of the class E are the
result of a mapping : .f X E®

In our BUT-Pandemonium framework, X is a set of visual objects (cognitive daemons) that are mapped by f to  a  set

reCl E of composite responses by the brain (a set of decision daemons).  Each object is a topological region of visual

field, making X a set of topological regions.  Members of reCl E  are cortical cells (i.e., decision daemons in cortical

regions) found on the surface of an n-sphere .nS  The set reCl E  is a class of elements, since the members of this set
have similar properties.  Such properties can be easily assessed in terms of available experimental procedures, such as,
for example, Visual Evoked Potential response amplitude.
To complete the picture, we introduce the projection : ,reCl E Bp ® which is a piecewise continuous map on reCl E
to B, which is a set of response feature vectors in .kR For simplicity, we assume that each feature vecture

1( ) ( ) ,e response Rp = Î where e is a fibre (cortical cell).

The cortical fibre bundle framework in Figure 6(b) provides a platform for the application of energyBUT.   From Figure
6(a), each visual region response 1 ree Cl EÎ (class of cortical regions) will have at least one other matching cortical

region response 2 .ree Cl EÎ (Figure 6(c)).   The piecewise continuous mapping p on reCl E to ,  1kB R k= = is also

represented in Figure 6(c).  The assumption made here is that reCl E and B are topological spaces and p is a homotopic

mapping.   In that case, the mapping p is an example of a fibration.  That is, ( )1ep is piecewise continuously transformed

into ( )2 .ep  In effect, there is always a path between the two shapes in B.  The shapes in the situation in Figure 6(c) are

just points (1-dimensional vectors) in 1R that represent visual responses. The set 1( ) reB Cl Ep - = (cortical fibre bundle)
is an example of a region-based fibre bundle (Peters 2016). EnergyBUT viewed in the context of cortical fibre bundles is
represented in Figure 7.

BUT variants and Borsuk’s theory of shapes are closely allied to the concept of “persistence of perception”.   That is, our
perception of an object continues, even when the object is out of sight.  This can concisely be explained by viewing
regions on the surface of a hypersphere as multiple representations of object shapes, mapped continuously to an object
that have seen and continue to see.  It occurs thanks to the continuous mapping from shapes in our memory to shapes in
Euclidean space.  In effect, persistence perception can be viewed as signals matching, real-scene visual signals that are
collectively the umbra of physical shapes.  To make an example, Figure 5 displays the Mona Lisa painting impinging on
the optic nerves: we map it to similar shape representations, such as the Mona Lisa mesh.  Therefore, the use of
“topological” feature daemons might account for our knowledge of world objects by borrowing a concept of invariance
in topology.  In touch with the concepts of perception of shapes and perception as shape mapping,
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 a series of transformations can be endlessly and gradually applied to a pattern without affecting its invariant properties.
And, principal among the properties of world objects, is shape and the acquisition of persistent perception of object
shapes, which we nicely explain with BUT variants.

Figure 6.   Framework for Cortical Fibre Bundles. Figure (6a) General fibre map p . Figure (6b) Region-based fibre
map p . Figure (6c) VEP fibre map p . In this figure, x represents a set of trajectories on a random network and ClreE
represents a class of small-world networks n

reCl E SÌ  that have been achieved with a change in lattices’ dimensions

The mapping : k
reCl E Rp ® is piecewise continuous from reCl E to cortical energy amplitudes.   For

1,  ( ) ( ) .ree Cl E e response RpÎ = Î
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Figure 7. A pair of fibrations, denoted with π,  are represented.  It  is also the case that π(e1) = π(e2) = -1.1, which is
predicted by energyBUT.

CONCLUSIONS

We proposed a novel model of Pandemonium, based on “the-(topological)-winner-takes-all-(the-brain-
multidimensions)”, that is able to solve some of the concerns raised by this otherwise very powerful computational
method.  Pandemonium, contrary to the template matching models (Hirai 1980) and the gestaltic accounts of perception
(Pastukhov 2017), postulates that an image is first perceived in its basic individual elements and features, before it is
recognized as a whole object.  The apparently unsolvable dichotomy between different models of pattern recognition
could be just apparent.  Indeed, if we build a Pandemonium equipped with feature daemons able to firstly recognize
topological invariants and global patterns instead of straight or curved lines, the two models are automatically melted: in
this novel Pandemonium, a global topological pattern is recognized at the very first stages of sensation/perception.
Why to allow TWO decision daemons, instead of one, to respond to the activation of the loudest cognitive demon? The
main limit of the Pandemonium is the need, in order to achieve unequivocal, correct decisions, to have one, and just one,
cognitive demon, whose output far outshines the rest and that projects to a single decision daemon.   Despite our BUT-
Pandemonium seems to be more computational expensive at the higher levels of the hierarchical system, because it
requires a larger amount of stored information and pattern memory inside the calculator, nevertheless it allows a more
accurate feature detection, improves image constancy (e.g., if you rotate a letter, you recognize it the same), is able to
explain pareidolia (i.e., it is more difficult to identify a letter in isolation than when it is part of a word).  Furthermore,
our model explains also a typical feature of our own perception, e.g., error predictions based on overlapping features (for
example, R and P, that are topologically equivalent, can be confused more frequently than R and B, or R and I). If the
final output of the machine stands for TWO, instead of ONE, decision daemons with matching description, this means
that another criticism of the Pandemonium architecture is solved, i.e., the latter adopts a completely bottom-up approach,
forgetting the predictive top-down code.  Indeed, the presence of two instead of one decision daemons could be dictated
by top-down constraints in the brain.
According to this novel conception, during the processes of sensation and perception, the individual’s brain is forced to
coalesce together some components of the environment, in a complex interaction between external affordances and the
motivated humans who perceive them.  The melting of parts of the environment into a single perception is thus compelled,
and is not a free choice made by the individual.  The brain needs to perceive different elements together and cannot split
them, because the perception may occur and operate just in this way.
The evolutionary advantage is self-evident: the perception of different elements is useless by itself, while the perception
of a complete object, or of a concept or an idea, is mandatory in order to survive in an explorable environment, full of
possibilities, but also of dangers.  In sum, the need to join things together in a single perception is mandatory for our
brain.  It is important to emphasize that the antipodal points with matching description do not need to be causally
correlated: their relationship is a topological one, meaning that the surface features of an object are “linked” together in a
single complex of sensations by projections, affine connexions and proximity.  In other words, the concept of connexion
means that the joined parts if the environment are not necessarily in causal relationship, rather they are simply functionally
correlated. The individual, with the habituation, learns, from childhood forward, to join together the elements which are
more useful for his surviving.  Avenarius was the first to suggest that a Darwinian fight among different organs might
take place in our bodies, and the brain exerts his prevalence among the other sub-systems (Russo Krauss 2015).  In the
BUT-Pandemonium, the highest dimensional brain is able to control the anatomical/physiological levels equipped with
lower dimensions (where higher dimension stands for higher complexity).   This means that the influence on the central
nervous system of inputs from different organs (such as the intestinal bacteria) is more limited than thought, because the
brain, located at higher levels of complexity, is able to dictate his own laws of preservation.  The whole brain prevails,
dictating behaviors, sometimes at the expenses of other organs: think to a smoker, where the brain demands prevail over
the preservation of other systems.
“Perception is based on information, not on sensations” (Gibson, 1979). This means that the BUT-Pandemonium, rather
than sensation-based, is information-based, because it emphasizes an analysis of the environment, and the concomitant
information that the organism detects. The human behavior is radically situated.  In other words, you cannot make
predictions about human behavior unless you know what situation or context or environment the human in question was
in.   Individuals stand in an ecological relation to the environment, such that to adequately explain some behavior it is
necessary to study the environment or niche in which it took place and, especially, the information that “epistemically
connects” the organism to the environment.  Thus, an appropriate analysis of the environment, made in terms of BUT-
Pandemonium, becomes crucial for an explanation of perceptually guided behavior.
Our work strengthens and brings to the front the primary question of “what” is perceived, before questions of mechanisms
and material implementation are introduced (Rao et al., 1997). Together with a contemporary emphasis on dynamical
systems theory as a necessary methodology for investigating the structure of ecological information, our approach is
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framed in the light of the modern tools of algebraic topology.  Future work will be devoted to assess whether other
sensations, such as hearing, display topological invariants that can be evaluated.  Such invariants would encompass
topological changes that occur not just in space, but also in time, as it occurs for our perception of sounds.
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