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Abstract

We study the geometry of a simplicial complexes from an algebraic
point of view and devise general quantization rules; the rules emerging in
spin foam theory are shown to comprise a particular subcase.

1 Introduction.

It is currently unknown what a quantum geometry really is starting from a clas-
sical one. The answer relies, as we shall see, upon the concept of algebrization
as is usually the case and we indicate how spin foam theory fits nicely into this
picture. Ours is however much larger as different rules are allowed for regarding
lower dimensional objects. The simplicity of the construction invites for further
investigations.

2 Classical configuration space C and determi-
nation of the phase space of gravity.

We shall work out in full detail the configuration space and phase space of
Euclidean and Lorentzian simplicial geometry; those are generated by simplices
(v1, . . . , vk, Ak) where Ak is a symmetric matrix of Euclidean or Lorentzian
signature meaning the points are embedded in a Euclidean or Lorentzian space,
supplemented with a time orientation τk in the Lorentzian case on the timelike
edges so that a partial ordering exists locally on the simplex. The field for
the matrixalgebra chosen is the one of the real numbers. One can define the
configuration space of one single, n − 1 dimensional universe, as a subspace of
the linear space

Vn = {
∑
α

rα(v1, . . . , vk, Ak, τk)|k ∈ N0}

where rα is part of a discrete commutative ring or field which is a subset of the in-
teger numbers, determining the statistics of the geometric building blocks. More
precisely, Cn is the subspace where each (v1, . . . , vk) appears only once or not and
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moreover, if (v1, . . . , vk) and (w1, . . . , wl) share a subsimplex (u1, . . . , ur) then
both matrices Ak and Bl as well as possibly the orientations need to coincide
on these subsets. The plus operatation can be interpreted as gluing (possibly
with opposite orientation), in case the coefficient ring R equals Z2 then each
simplex equals its inverse and the translation or gluing

a(v1,...,vk,Ak,τk) : Vn → Vn : z → z + (v1, . . . , vk, Ak, τk)

with k ≤ n satisfies (a(v1,...,vk,Ak,τk))
2 = 0 giving rise to Fermionic statistics

whereas in case R = Z the statistics is Bose; everything in between gives rise to
parastatistics.

There is some interesting algebra to be performed here, clearly, the rules for
the topological complex (v1, . . . , vk) are antisymmetric giving rise to a wedge
product of the point space V1 where the point measures have been erased. In
either (v1, . . . , vk) ∈ V1 ∧ . . . ∧ V1 where the ∧ product has been taken k − 1
times. Therefore, in general, we can write

(v1, . . . , vk, Ak, τk).(w1 . . . , wl, Bl, σl) =∑
i1<...<is;j1<...<jr;s≤k,r≤l

Sign shift Gk−s,l−r(vi, wh; i 6= ip, j 6= jq; p : 1 . . . s, q : 1 . . . r, Ak, Bl)bcα
c

(vi1 , . . . , vis , wj1 , . . . wjr , (Ak ∪Bl)i1...isj1...jr , (τk ∪ σl)i1...isj1...jr )

where identical points are identified as one using the appropriate antisymmetri-
cal rules and c = |{vip ; p : 1 . . . s} ∩ {wjq ; q : 1 . . . r}|. The number α has dimen-
sion of length and bc is a dimensionless constant; finally, it is assumed that Ak
and Bk are the same on the common vertices {vip ; p : 1 . . . s} ∩ {wjq ; q : 1 . . . r}
and (Ak ∪ Bl)i1...isj1...jr is the zero extension of Ak, Bl to {i1 . . . isj1 . . . jr}
where the new cross matrix elements are all put to zero. A similar defini-
tion holds for (τk ∪ σl)i1...isj1...jr which is the transitive closure and zero exten-
sion of both. Gt,r is a geometrical invariant of the t and r vector arguments
defined by means of the matrices Ak, Bl. One can make this definition con-
tinuous or smooth be relaxing the definition of Ak ∪ Bl on the common ver-
tices whereas now a total match of the weights is assumed. The general prod-
uct between elements of Vn is henceforth defined by linearity from the above.
The “Sign shift” is a function of the permutation needed to bring (vi, wj) to
(vi, wh; i 6= ip, j 6= jq; p : 1 . . . s, q : 1 . . . r)(vi1 , . . . , vis , wj1 , . . . wjr ) and ignoring
it results in a mixed Bose-Fermi rule. This product is in general not associative
as the Gt,r functions have to satisfy quadratic identities. Moreover, these func-
tions are assumed to depend upon relative properties wi−wj of their arguments
wi, wj so that no masses enter the product formula.

The latter formula is a very general one and to get down to the quantization
rules akin of spin foam, we need further restrictions originating from the fact
that the n−1 simplices are embedded in n dimensional Euclidean or Minkowski
spacetime. In particular, this gives us the Hodge dual which we will use now. As
an example, let us treat the Euclidean case of a three dimensional simplex; its
boundary consists out of four three simplices (v1v2v3, A3), each spanning a two
dimensional surface given by (v1v2) ∧ (v1v3) and surface given by the absolute
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value of

1

2
Det

(
−2a12 + a11 + a22 a23 + a11 − a13 − a21

a23 + a11 − a13 − a21 −2a13 + a11 + a33

)
which is nothing but the length of the Hodge dual vector

1

2
εijk(vj2 − v

j
1)(vk3 − vk1 ) ≡ 1

2
ε(·, v2 − v1, v3 − v1).

The algebra of adjacent edges (v1v2) and (v1v3) then becomes

(v1v2).(v1v3) = G2,2(v1, v2; v1, v3)1−αG0,0(v1v2v3)−βb13(v1v2)+βb21(v1v3) + contributions over points

where G1,1(vi; vj) = (vj − vi)2 = ajj + aii − 2aij := bij and β is dimension-
less. One can argue that the contributions over the points should vanish as
they are given by (v1)(G1,2(v2, v1v3) + G1,1(v1v2, v3)) + (v2)G1,2(v1, v1v3) +
G2,1(v1v2, v1)(v3) where we have ignored the “Sign” factors and logicallyG1,2(v1, v1v3) =
G2,1(v1v2, v1) = 0 and we assume G1,2(v2, v1v3) + G1,1(v1v2, v3) to vanish. Fi-
nally, using symmetry assumptions, we can posit on dimensional grounds that

G2,2(v1, v2; v1, v3) = δα2(b12 + b13 ± b23) + κb12b13.

Therefore we have that

(v1v2).(v1v3) = (δα2(b12+b13±b23)+κb12b13)1−βb13(v1v2)+βb21(v1v3)−αζ(v1v2v3)

and we now make the following linear extension

~v.~w = δα2~v · ~w1− αζ 1

2
ε(·, ~v, ~w)

where we have only retained the terms linear in ~v, ~w as it should for a real
product of free vectors gripping in the same point. Similarly, for faces

(v1v2v3).(v1v2v4) = −γαb14(v1v2v3)+γαb13(v1v2v4)+γαb24(v1v2v3)−γαb23(v1v3v4)+

contributions over lines and points +G3,3(v1v2v3; v1v2v4)1.

Replacing planes (v1v2v3) by bivectors (v2 − v1) ∧ (v3 − v1) and demanding
linearity when regarding them as free vectors results in a formula which is Hodge
dual to the one for the perpendicular vectors 1

2ε(·, v2−v1, v3−v1). Hence, we are
left with one algebra for free edges, which can be mapped by means of Hodge
duality to the one for the planes which is

~v.~w = δα2~v · ~w1− αζ 1

2
ε(·, ~v, ~w).

All this can be thought of as classical considerations; the quantal aspect emerges
through “loss of information”, that is concentating upon the Lie brackets

[~v, ~w] = ~v.~w − ~w.~v = αζ
1

2
(ε(·, ~w,~v)− ε(·, ~v, ~w))

instead of on the products. We shall construct the canonical momentum in
a while though. Therefore, denoting by ~L = (Lx, Ly, Lz) the normal vector
associated to a plane, we have that

~L.~L = δArea face.1 +
1

2
α2ζ~L× ~L = δArea face.1 +

1

2
l2pζ~L
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where the last equality comes from the fact that the “vectorvalued product”
generated by ~L with itself must be proportional to itself. Demanding, moreover,

that all vectors ~v must be self adjoint v†i = vi leads to ~L =
l2p
2 ~σ and

~L.~L =
3

4
l4p +

1

2
il2p~L.

Therefore, we have that [
~Lj , ~Lk

]
= il2pε

l
jkLl

which is nothing but the SU(2) Lie algebra and our quantal starting point.

The reader notices that the three dimensional case is rather exceptional given
that a bivector can be seen as a vector by means of Hodge duality making use
of the element σ1σ2σ3. This is not the case in four dimensions and therefore,
the entire real Clifford algebra Cl(1, 3) needs to be taken into account, going
beyond the Lie algebra of the Lorentz group SO(1, 3). This point seems to have
been missed by many researchers.

3 The boundary operator and conjugate momen-
tum.

As is usual, the boundary operator is defined by means of its action on a simplex
(v0v1 . . . vn); it is given by

∂(v0v1 . . . vn) =

n∑
i=0

(−1)i(v0 . . . vi−1vi+1 . . . vn)

and the reader extends this definition by linearity to Vn. Obviously ∂2 = 0
which is the defining property of homology theory. Given that in the framework
above, no coordinates exist, and given that the entire edifice of Heisenbergian
quantum theory is grounded in the language of symplectic manifolds, there is
no obvious substitute for the canonical commutation relations. Also, in the
above SU(2) non-abelian geometry, the “inertial” coordinates of the surface
vector of the boundary triangle of a quantal tetrahedron did not commute.
Hodge duality therefore subtely mixes “traditional” canonical and conjugate
coordinates. There are a few other operators which are worthwhile studying
and which reproduce a kind of Heisenberg commutation relations taken together
with the configuration space variables. One of them is the boundary operator
∂, the others constitute refinements of the operator

δz = {sum of all simplices in z whose vertices are at least one edge removed from ∂z}

which effectively removes one “top” slice from the simplicial complex. For ex-
ample, define the multiplication operator xw on Vn as sending every simplex
(v0v1 . . . vn) to (wv0v1 . . . vn) linearly extended to sums and ∂w as the operator
removing the w vertex. Given now any simplicial complex z which does not
contain the w vertex, then

∂wxw(z)− xw∂w(z) = z
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which is the necessary Heisenberg relation. One can extend this formalism to
multiple vertices w1, . . . , wk given that the operator xw is a projection x2w = xw
in contrast to ordinary real numbers.

This constitutes a rather important distinction with usual quantization proce-
dures in the sense that there fundamental multiplication operators are R valued.
Those operators can be retrieved from ours by means of identifying xw for differ-
ent w which is a method for ressurecting the continuum by means of considering
infinite “time-dimensions”. The reader may enjoy defining different “multipli-
cation operators” canonically conjugate to δα. This is sufficient to construct a
theory of quantum gravity which shall necessarily contain a homological flavour
due to the presence of the boundary operator.
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