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Abstract

Using an extension of the idea of the radical of a number, as well as a few other ideas, it
is indicated as to why one might expect the Oesterle-Masser conjecture to be true. Based
on structural elements arising from this proof, a criterion is then developed and shown to

be potentially sufficient to resolve two relatively deep conjectures about the structure of
the prime numbers. A sketch is consequently provided as to how it might be possible to
demonstrate this criterion, borrowing ideas from information theory and cybernetics.

1 Forward

1.1 A generalised zeta function, and some notions regarding
radicals

Definition 1. Define

ζ
(2)
a (z, u) :=

∑
anmn

−z2m−u
2
(n+m)−uz

as the generalised Riemann Zeta function, where n,m are taken over the natural
numbers.

Remark. As an interesting curiosity, associated broadly within the remit of M -
theory, much as the previous can be associated with concepts from L-theory, note
that we can extend this further:

ζ
(3)
a (u, v, w) :=

∑
anmpn

−u3m−v
3
p−w

3
(nmp)−uvw(nm+ p)−(u+v)w(mp+

n)−(v+w)u(pn+m)−(w+u)v(n+m+ p)−uvw

The following is a standard definition.

Definition 2. (Radical). The radical of an integer is the product of its prime factors
without multiplicity.
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We now would like to extend this idea to the real numbers. We do this by
observing that the radical of an integer can be equivalently computed by viewing it
as an ideal in the ring of integers, and then computing its corresponding radical, as
the intersection of its prime ideals.

Now consider the mapping between the ideals of the reals and the real numbers
as K : Ideals(R) → R. But ideals under multiplication in the reals encompass
all the reals, so these are trivial. So in order to proceed, we must take a slightly
different approach.

So let us consider instead the rational numbers. Suppose that p
q

is the reduced
representation of a rational, k, such that p and q are coprime. Then we might, for
instance, define the radical of k to be the tuple (rad(p), rad(q)).

To extend this general premise to the real numbers, we consider the continued
fraction expansion for a real number, a. Then this will be of the form (a0, a1, ..., an, ...)
where the ai are integers.

Consequently we can now define a sensible notion for the radical of a real number.

Definition 3. (Radical of a real number). Suppose that a is a real number with
continued fraction expansion {ai}i∈N . Then its associated radical sequence is given
by the tuple {rad(ai)}i∈N . Define then the radical of a to be the real number
represented as a continued fraction expansion by its radical sequence.

Note that rad(rad(x)rad(y)) = rad(xy). This follows when we observe that any
term in the product of x = (u0, ..., uk, ...) and y = (v0, .., vk, ...) will be of the form∑
aijkuivj on the left hand side, and

∑
bijkrad(ui)rad(vj) on the right hand side,

i.e.

xy = (Σaij0uivj,Σaij1uivj, ...) and rad(x)rad(y) = (Σbij0rad(ui)rad(vj), ...).

Then suppose by an inductive hypothesis we have that rad(ΣaijNuivj) = rad(ΣbijNrad(ui)rad(vj)).
Then I claim that it is possible to extend this to N + 1 if the aijk and bijk are in
reduced form, i.e., no extraneous factors - and using the property of the radical over
the integers.

Theorem 1.1. In particular, we have that this is the unique function that has the
properties that 1) that rad(n) is the radical of n for n an integer, and 2) that

rad(rad(x)rad(y)) = rad(xy), rad(xrad(x)) = rad(x), and rad(rad(x)) = rad(x)

Proof. Existence is clear from the above. We prove uniqueness.
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Suppose we had a continuous function P : R→ R such that P (n) = rad(n) for
n an integer, and such that P (P (x)P (y)) = P (xy) for all x, y in R. Suppose that
Q is another such function. If P and Q are not the same function, there is a t for
which P (t) 6= Q(t).

Note furthermore that [P,Q] = 0, since by minor abuse of pre-image notation,
PPQ = PQQ or PQ = QQ, and also PQQ = PPQ, or PQ = PP .

Similarly QP = QQ, hence [P,Q] = 0.

We would like to construct an integer T such that P (T ) 6= Q(T ), contradiction
since P , Q should match on all integers.

Certainly 1 = P (1) = P (P (t)P (1/t)), and 1 = Q(1) = Q(Q(t)Q(1/t)). By sym-
metry it is clear that Q(1/t) 6= P (1/t). Also P (tP (t)) 6= Q(tP (t)), and P (tQ(t)) 6=
Q(tQ(t)).

This follows since P (tP (t)) = P (P (t)P (P (t))) = P (P (t)P (t)) = P (t), so if
P (t) = P (tP (t)) = Q(tP (t)), then PP (t) = PQ(tP (t)) = QP (tP (t)) = QP (t).
Hence then P (P (t)) = Q(P (t)) = PQ(t). Then taking the pre-image of both sides
we have that P (t) = Q(t), contradiction.

We hence have two operations on our original number t we can perform: we can
multiply by P (t), or we can invert the number and calculate the reciprocal. This
generates a set of numbers S that has the property that P (s) 6= Q(s) for all s in
this set. ie.

S = {s|P (s) 6= Q(s)}

and we have that if s ∈ S, then P (t)s ∈ S and s−1 ∈ S.

Therefore we can construct a sequence {si} such that si converges to some
integer T .

But then by continuity we have that P (T ) = limP (si) 6= limQ(si) = Q(T ),
contradiction.

Note that the mapping rad : R → R is smooth, as this trivially follows from
the convergence properties of the continued fraction expansion to a real number -
i.e., as one gets closer and closer to the number in question, there will be more and
more terms of the expansion in a neighbourhood about it that become fixed with
increasing proximity.
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1.2 Extending the Euler product formula to pseudo-primes

Theorem 1.2. Let

S(x) := {(a, b)|a+ b = x, gcd(a, b) = 1 and rad(ab(a+ b)) < x}

where all numbers are understood to be naturals.

With

ζ(2)(z, u) := 1
2−uz

∑
n−u

2
m−z

2
(n+m)−uz

we have that ζ(2) satisfies the identity

ζ(2)(z, u) = Πp primeΠ(a,b)∈S(p)(1− 2F1

[
B(a, u), B(b, z)

B(a+ b, u+ z)
;−(u+ z)

]
)−1 (1)

= Πx∈NΠ(a,b)∈S(x)(1− ◦(Γ;u+ z){B(a, b)u+z})−1 (2)

where B(a, b) is the ath Bernoulli polynomial evaluated at b and ◦(Γ;u+ z), the
iterated composition of Γ, can be computed as I◦(?(σ; τ)), with I◦ the information for
a particular type of exotic geometry [ref Go2, pp ...], with Γ = I(σ), and u+z = I(τ)
for metrics σ, τ and the fisher information I over a Riemannian manifold.

Remark. (Aside). For tetration, ∧(f ; g) := f ∧ f ∧ · · · ∧ f (g times), we have that
∧(f ; g) = I∧(?(σ; τ)). Here I∧ is another information for a different exotic geometry
[ref Go2, pp ...].

Remark. (Euler’s Product Formula). Note that this is in a way a natural extension
/ generalisation of an analogous identity for ζ(1)(z) :=

∑
n−z:

ζ(1)(z) = Πp∈P(1− p−z)−1

where P is the set of primes.

Remark. This also relates to the formula for the Selberg zeta function on page 28
of Daniel Bump’s notes [ref] regarding the Selberg trace formula:

Z(s) = Π{N0}Π
∞
k=0(1−N−s−k0 )
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where the first product is indexed by the geodesics γ over the complex numbers
that are prime with respect to some natural choice of hyperbolic group, so that in
essence the numbers traced by each geodesic form prime ideals with respect to the
global group. N0(γ) is the length of said geodesic.

Proof. (sketch).

The general idea is to note that

Πp primeΠ(a,b)∈S(p)(1− 2F1

[
B(a, u), B(b, z)

B(a+ b, u+ z)
;−(u+ z)

]
)−1 (3)

expands to a sum of expressions of the form

2F1

[
B(ap1 , u), B(bp1 , z)

B(p1, u+ z)
;−(u+ z)

]m1

× ...× 2F1

[
B(apn , u), B(bpn , z)

B(pn, u+ z)
;−(u+ z)

]mn
(4)

If we write

Πi{Π(a,b)∈S(api )
{Γ(a+ b)B(a, b)}mi} = n, and (5)

Πi{Π(a,b)∈S(bpi )
{Γ(a+ b)B(a, b)}mi} = m (6)

where (api , bpi) ∈ S(pi), then

Πi{Π(a,b)∈S(api+bpi=pi)
{Γ(a+ b)B(a, b)}mi} = n+m.

Furthermore, since B(a, b) = Γ(a)Γ(b)
Γ(a+b)

, these are all integers.

I then claim that the above product reduces to an expression of the form

n−u
2
m−z

2
(n+m)−uz

with n,m defined as above.

Using the nature of the set S(p), I claim moreover that this factorisation of the
above expression is unique, and always exists for any (n,m) ∈ N ×N . We are then
done.

5



1.3 Estimating the size of |S(x)|

We are now ready to state the main claim of this section.

Theorem 1.3. (Growth of the size of S(x) with x). Let x be a natural number.
Then

|S(x)| ∼ ln(x)

|ln(2F1

[
B(x/2,x/2),B(x/2,x/2)

B(x,x)
;−x

]
)|
as x→∞. (7)

In particular, limx→∞|S(x)| = 0, since if x is large, 2F1

[
B(x/2 x/2) B(x/2 x/2)

B(x x)
;−x

]
is very small, and therefore ln(2F1

[
B(x/2 x/2) B(x/2 x/2)

B(x x)
;−x

]
) is very large and neg-

ative.

Remark. This can be viewed as a form of generalisation of a well known result
regarding the size of the prime counting function, originally a conjecture due to
Gauss and Legendre, and demonstrated by Hadamard and Poisson. This can be
stated as follows:

”Denote the number of primes less than n as π(x). Then π(x) ∼ x
ln(x)

.”

Proof. (Sketch). The proof is similar to that for the prime number theorem above,
but instead of using Euler’s identity for the zeta function, we use the extension of
this identity demonstrated in the previous theorem for ζ(2), together with our lift
of the concept of the radical of a natural number to the complex line - which was
defined at the start of this paper.

I follow Newman’s short proof of the prime number theorem.

The key quantities we are interested in are:

ζ(2)(u, z) = Σn,mn
−u2m−z

2

(n+m)−uz, (8)

Φ(u, z) = Σp,qln(2F1

[
B(p, u), B(q, z)

B(p+ q, u+ z)
;−(u+ z)

]
)p−u

2

q−z
2

(p+ q)−uz, (9)

Θ(x) = Σp≤xΣ(a,b)∈S(p)ln(2F1

[
B(a), B(b)

B(a+ b)
;−p

]
) (10)

The goal of the first part of the proof will be to demonstrate that Θ(x) ∼ x.

6



Lemma 1.4. (Euler’s product formula for the zeta function ζ(2)) As above.

Lemma 1.5. (Holomorphicity of ζ(2) minus correction term)

Proof. Uses an argument similar to that in Newman’s short proof of the prime
number theorem.

Lemma 1.6. (First estimate of Θ) Θ(x) ∼ O(x) .

Proof. Follows from the fact that

Σ(a,b)∈S(p)ln(2F1

[
B(a) B(b)
B(a+b)

;−p
]
) ∼ ln(p)

Then this lemma follows from the equivalent lemma in Newman’s short proof of
the prime number theorem.

Lemma 1.7. (Holomorphicity of Φ minus correction term) Φ(u, z) minus correction
term is holomorphic for an appropriate u, z region (eg Re(u + z) ≥ 1). Also ζ(2) is
nonzero in this interval.

Proof. Uses 1.5, 1.4 and an argument similar to Newman’s short proof of the prime
number theorem.

Lemma 1.8. (Convergence of an integral involving Θ)
∫∞

1
Θ(x)−x
x2

dx is a convergent
integral.

Proof. Follows from the fact that Θ here is the same theta as in Newman’s short
proof of the prime number theorem per 1.6. We also need to use 1.7 to ensure that
the integral exists.

Lemma 1.9. (Sharpened estimate of Θ) Θ(x) ∼ x.

Proof. Follows from 1.8 and Newman’s short proof of the prime number theorem.

Now we can use our sharpened estimate of Θ to understand |S(x)|. In particular,
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Θ(x) ≤ Π(x)|S(x)||ln(2F1

[
B(x/2 x/2) B(x/2 x/2)

B(x x)
;−x

]
)|

So, if Θ(x) ∼ x
Π(x)

, then |S(x)| ≤ ln(x)

|ln(2F1

[
B(x/2,x/2),B(x/2,x/2)

B(x,x)
;−x

]
)|

as to first order

we know that Π(x) ∼ x
ln(x)

.

The inequality also extends in the other direction, since for any ε > 0,

Θ(x) ≥ Σx(1−ε)≤p≤xxΣ(a,b)∈S(p)ln(2F1

[
B(a), B(b)

B(a+ b)
;−p

]
) (11)

≥ Σx(1−ε)≤p≤xΣ(a,b)∈S(p)(1− ε)|ln(2F1

[
B(x/2, x/2), B(x/2, x/2)

B(x, x)
;−x

]
)| (12)

= (1− ε)|ln(2F1

[
B(x/2, x/2), B(x/2, x/2)

B(x, x)
;−x

]
)|[Π(x)|S(x)|+O(x1−ε)]

(13)

Hence by elementary application of the sandwich inequality theorem we are
done.

Corollary 1.10. (Oesterle-Masser conjecture). There are finitely many naturals
a, b, and c such that a, b coprime satisfy a+ b = c, and c > rad(abc).

Proof. We are done if we can demonstrate that Σn∈N |S(n)| is finite. But this clearly
follows from the estimate above.

1.4 Estimating the first order correction term for |S(x)|

Now things start to get interesting. In particular, we might ask ourselves in an
analogous manner to the question that Riemann posed in his original paper [10]
(regarding the prime counting function π(x)), what is the structure of the first
order correction term in estimating the size of S(x) with x? And this leads us to
posit the following conjecture, based on structure hinted at in the resolution of the
previous proof:
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Conjecture 1.11. (Generalised Zeta Criterion). ζ
(2)
a (z, u) has no zeroes on the

critical plane 2(z + u) = 1.

Corollary 1.12. (GC). The Goldbach conjecture follows from the Generalised Zeta
Criterion.

Proof. (Sketch). Given the veracity of this statement, it is incumbent upon us to
demonstrate that there is no even number n such that there does not exist a pair
of primes p, q, with p + q = n (the Goldbach conjecture) if we wish to prove this
claim.

We demonstrate this by recalling the Hardy Littlewood circle method.

Let S(x, α) = Σp≤xexp(αp), where the sum is understood to be over primes p
less than x.

Let f2(x) be the number of ways to add n primes to get x.

Then fn(x) =
∮
S1 S(x, α)nexp(αx)dα. If this is greater than zero for n = 2, we

have demonstrated the Goldbach conjecture. Assuming GRH, Hardy and Littlewood
were able to demonstrate this for n = 3. Later, Vinogradov was able to relax
this requirement on the GRH. I would contend, however, that one still requires an
inequality based on an information.

So, let S(x, y|A) = Σ(p,q)=p≤(x,y)=xexp(pAp
T ), where the sum is over primes

p ≤ x and q ≤ y.

We have that f(x) =
∮
τ∈T

∮
A∈Σ(T)

S(x|A(τ))exp(−xA(τ)xT )dA(τ)dτ is the

number of ways to add two primes together to get x + y, where T is the Torus
and Σ(T) is the set of analytic metrics on said space. Note then that if we can
prove this is positive in general, the Goldbach conjecture follows as a corollary, by
setting x = y.

Also intriguingly note that S(x|A) is very similar to ζ(2)(x), since both have
sums that are quadratic in x.

Therefore, there are two naive pieces of intuition we could use. The first is that
f(x) could be the information of a symmetric or antisymmetric A. Or alternatively
it could be the information of a subset of the reals, wherein then it would suffice to
show that the complement is also an information.

But neither of these gives us what we need, which is to demonstrate that f(x) is
positive. Well, certainly, by the Cramer-Rao inequality, if we have an information,
we know that it is greater than or equal to zero. So, consequently, if we can show that
this is somehow a ’noise’ of a higher order information on top of a base information,
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with the base optimised by the higher order not, then we will have that the inequality
is not critical and we will be done.

But this should follow if we can demonstrate that, assuming criticality of the
information associated to ζ(2)(x), that the information corresponding to S(x|A) will
not be critical. But it is clear that these are mutually exclusive conditions. We
know that the former is true since the primes are a critical set (and such will be
covered in more detail later).

We also know that f(x) ≥ 0.

So it remains to construct a functional such that we have f(x) is an information
of a biased estimator, since then we have that it will always be positive definite.

I would argue that whereas the signal function for ζ(2) is of the form

f̂(m,n, a) =
∫
Cyb(M)

F (m,n, b)δ(κ(m,n, b)− a)db

we have for f that it is of the form

g(m,n, a) = F(
∫
U⊂Cyb(M)

F (m,n, b)δ(κ(m,n, b)− a)db)

for some set U , F the Fourier transform operator, since S is essentially the
same of ζ(2), but has missing information (it is a sum over primes, rather than over
naturals). To understand this more clearly, note that xiAijx

T
j ∼ anmn

−z2m−u
2
(n +

m)−uz with xi = (u, z). In other words, f is almost a distorted discrete Fourier
transform with missing information of ζ(2).

But note that if f̂ is the signal function for ζ(2), then F(ζ(2)) will have a
signal function g = F(f̂) which will also form an information. If this is taken
over a restricted set, then the estimator will be biased. I moreover claim that
f = I(F(f̂)|primes)

So since I(f̂) ≥ 0 and I(g) ≥ 0, and f 6= g a.e., then I(f̂) = 0 implies I(g) > 0,
QED.

Corollary 1.13. (TPC). The twin prime conjecture follows from the Generalised
Zeta Criterion.

Proof. (Sketch). We seek to demonstrate that, if the above holds, that we can
establish that for every prime p there will always exist a prime q with p = q + 2, or
p = q − 2 (in other words, that the twin prime conjecture holds).

Consider as before the relation
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f(x) =
∮
τ∈T

∮
A∈Σ(T)

S(x|A(τ))exp(−xA(τ)xT )dA(τ)dτ

being the number of ways to add two primes p and q to equal x + y, for any
natural numbers x, y. From the previous result, we know that this is positive.

Let

Ŝ(x, α) = Σp≤xexp(pα),

where the sum is over primes. Following Tao, we know that

f̂2(x) =
∮
α∈S1 |Ŝ(x, α)|2exp(−2α)dα

will give the number of ways to represent 2 as the difference p1−p2 of two primes
with p1, p2 ≤ x, and that if we can prove that this is positive definite for all x ≥ 2,
we will have demonstrated TPC.

Suppose then that we consider once again f(x), but restrict to metrics A on T
such that S((x, x)|A(τ)) ≥ 0 for all τ ∈ T. Call this set Σ≥(T) ⊂ Σ(T). But these
sets are the same if A is Kähler, which is naturally what we would study (note that
we can view (x, y)A(x, y)T := 〈x, y〉A(τ) as an inner product of x and y with respect
to A).

Then we have an integral relation

f≥0(x) =
∮
τ∈T

∮
A∈Σ(T)

S(x|A(τ))exp(−trA(τ))dA(τ)dτ

By similar arguments to before, we can conclude that this dominates an in-
formation, and hence must be positive definite. It is moreover clear that f̂2(x) is
positive definite follows as a corollary, since dim(A) = 2, QED.

Note that the integrand of f(x), S(x|A(τ))exp(−〈x, y〉A(τ)), is quite analogous
to the Perelman entropy (Rσ + (∇σF )2)exp(−F ), with F = 〈x, y〉A(τ).

Indeed, per [13], we have that, for{
∂
∂t
g = 2Ric

∂
∂t
u+ ∆u = 0

then if Xt(x) is a g(t)-Brownian motion on M starting from x, and p(t, x, y) is
the density of Xt(x) with respect to volg(t), then for

mt(dy) := p(t, x, y)volg(t)(dy) = P{Xt(x) ∈ dy}
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being the heat kernel measure, we have that∫
M
u(t, y)mt(dy) =

∫
M
u(t, y)p(t, x, y)volg(t)(dy) = E[u(t,Xt(x))]

is constant under the flow, since u(t,Xt(x)) is a martingale.

We have moreover that the entropy of µt := u(t, .)dmt = u(t,Xt(x))dP is

ε(t) =

∫
M

(uln(u))(t, y)p(t, x, y)volg(t)(dy) (14)

= E[(uln(u))(t,Xt(x))] (15)

Finally we have that the first derivative of the entropy is

ε′(t) = E[(|∇ln(u)|2u)(t,Xt(x))] (16)

= E[I(u)(t,Xt(x))] (17)

Moreover, if we denote Et,x := EPt(x) as the expectation wrt Pt(x), we have that

ε′(t) = Et,x[((R + |∇ln(u)|2)u)(t,Xt(x))] (18)

where I(u) is the Fisher information of u.

Suppose ε′(t) = 0 as it will be when a point of stability is reached (the entropy
no longer changes). We know, for instance, that this must be true for the primes.
Then we have that

∫
M

Rumt(dy) = −
∫
|∇ln(u)|2umt(dy) (19)

If we set u(τ |x, y) = exp(−〈x, y〉A(τ)), then if we can demonstrate that S(x, y|A(τ))
can be a curvature of a metric then we are done. But this is quite easy to see.

Hence we roughly have that f≥0(x), or at least its negative, is an Information -
as is f(x).
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Corollary 1.14. (RH). If the Generalised Zeta Criterion is true, the Riemann
Hypothesis follows.

Proof. Suppose that u = 0. Then ζ
(2)
a (z, 0) = ζa(z

2) and the previous statement
reduces to

ζb(z
2) has no zeroes on the critical line 2Re(z2) = 1, or Re(z2) = 1/2.

But this is trivially equivalent to the statement

ζb(z) has no zeroes on the critical line 2Re(z) = 1, or Re(z) = 1/2.

as z 7→ z2 is a bijection.

The remainder of this paper will focus on sketching why one might believe
this criterion to hold, and thereby attempt to upgrade it from a conjecture to a
theorem. The main approach used to seek a sufficient proof in this instance will
be to construct an appropriate information functional over an exotic geometry of
adequate complexity, and apply the Cramer-Rao inequality to same. Hence, in
essence, this mirrors (or, rather, extends) the approach taken in [5] towards an
investigation of why one might expect the Riemann Hypothesis to be true.

2 Towards the delivery of a sharper estimate for

the size of |S(x)|

2.1 Naive approach

f(m, a) =
∫
C×C→C F (m, b, c)δ(σ(m, b, c)− a)δ(τ(m, c)− b)dcdb

is a natural signal function, where σ is a Riemann-Cartan metric.

It then follows that:

I(f) =
∫
M

∫
C×C ‖∂f‖

3/f 2 =
∫
M

∫
C×C f‖∂lnf‖

3

is a natural information, where ψ = gradΛf .

I(f) ≥ 0
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by the Cramer-Rao inequality for this information.

Now, by abuse of notation, if we think of f roughly represented as Fδ, and
that the statistical distributive terms will take care of themselves, then the above
information is essentially:

I(f) =
∫
M

∫
C×C((∂3F )δ + F (∂3δ)) +

∫
M

∫
C×C(cross terms)

It can be demonstrated that, if one assumes that F is asymptotically flat that
the boundary terms vanish due to the holographic principle. So then

I(f) =
∫
M

∫
C×C((∂3F ) +R(2)(σ))δ =

∫
M

∫
C

(h′′′ +R(2)(σ)δ)eh

where F = eh, and R(2)(σ) is some appropriate geometric invariant. But is this
the right invariant, or how things should be defined? Perhaps not.

2.2 Slightly less naive approach

So instead let us consider a more general approach to the matter or triumvirate
structures, following on from the consequences of the paper [7].

f(m, a) =
∫
Cyb(M)

F (m, b)δ(κ(m, b)− a)db

is a natural signal function, where κ is the 6-tensor associated to a first order
cybernetic structure, and Cyb(M) := {(JM)3 → JM} is the natural space of
distributions, for JM being the first jet bundle for M .

The corresponding information is:

I =
∫
M

∫
Cyb(M)×Cyb(M)

f(∂logf)3dmdV dW

with Cyb(M) = {f |f : C × C → C}.
This invariant is positive as a consequence of the Cramer-Rao inequality for a

first order cybernetic statistical structure.

Following an analogous argument to the naive approach and eliminating cross
terms due to the holographic principle, we have that

I =
∫
M

∫
Cyb(M)×Cyb(M)

((∂3F ) + S(κ))δ =
∫
M

∫
Cyb(M)

(h′′′ + S(κ)δ)eh
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where

S = κijklmnΓijabcdeΓklfgabcΓmndefg

where

Γpijklmn := 〈Eij, ∂pEkl, Emn〉

Then we have that for the information to be critical,

h′′′ + Sδ = 0

Hence, h(z, a) = A(a)z2 +B(a)z + C +G(z, a)H H
δ

. This follows since δ = H′′

δ
.

Therefore eh = H(γ)F̂ , where F̂ = eAz
2+Bz+C as eH/δ = H.

We can furthermore demonstrate that γ = γ(rad(2z)− ln(ζa(z))), where rad(z)
is the extension of the idea of the radical of an integer to a general number.

We can then show via a generalisation of the Riemann-Roch theorem that

γ = C(rad(2z2)− ln(ζa(z))).

Consequently, if the information is critical (as it will be for the prime numbers),

0 =
∫
M

∫
Cyb(M)

F (z, a) =
∫
M

∫
A
H(ln(ζa(u))− rad(2z2))eA(a)z2+B(a)z+C(a)

=
∫
M

∫
A
H(ln(ζa(z))− rad(2z2))(ζ

(2)
a (z, z))

It then follows that

0 =
∫
Re(rad(2z2))≥Re(ln(ζa(z)))

(ζ
(2)
a (z, z))dzdu

which provides what appears to be a partial result.
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2.3 Demonstration of the second order zeta criterion

We wish to construct an information that is multi variable in our ’physical space’,
but is not too high order.

Consider then the following signal function:

f(m,n, a) =
∫
Cyb(M)

F (m,n, b)δ(κ(m,n, b)− a)db

Then we have that for the information to be critical, for F = eh,

h′′′ + Sδ = 0

Hence, h(z, u, a) = E(a, u)z2 +F (a, z)u2 +A(a)zu+B(a, u)z+C(a, z)u+D(a)+
G(z, u, a)H H

δ
. This follows since δ = H′′

δ
.

Therefore eh = H(γ)F̂ , where F̂ = eAz
2+Bzu+Cu2+Dz+Eu+F as eH/δ = H.

Lemma 2.1. (Form of the Heaviside argument, part 1)

We can demonstrate that

γ = γ(2(z + u)− b)

where rad(z) is the extension of the idea of the radical of an integer to a general
number.

Proof. This relies on a generalisation of the analogous part of the proof in [5].

Basically, we have that H
1/3
b ψ̂ = H1/3ψ̂b, and also from δI = 0 for

I =
∫
H(γ)‖ψ̂‖3

and ∂ = ∂
∂z

+ ∂
∂u

+ ∂
∂b

we conclude that∫
(H

1/3
u +H

1/3
z + 2H

1/3
a )(∂γ)−1ψ2(H1/3ψ̂) = 0

which clearly implies that

γz + γu + 2γb = 0
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which completes the proof.

Lemma 2.2. (Form of the Heaviside argument, part 2)

We can then show again via a generalisation of the arguments in [Go] that for
t = 2(z + u) − a, we can demonstrate that γ = Ct + D for constants C and D. It
then follows via the Riemann mapping theorem that WLOG we can have γ = Ct.

Proof. The information is

I =
∫
H(γ)‖ψ‖3

Computing the first variation with respect to γ and setting this to zero gives

δ(γ(t))dγ
′

dγ
|t=a−2z−2u‖ψ̂‖3 = 0

But this implies that dγ′

dγ
= 0, or γ′ is constant, hence γ = Ct+D, and the rest

of the proof follows.

Consequently, if the information is critical (as it will be for the prime numbers),
and for κ(u, z, a) = rad(2z2)− exp(u)− b),

0 =
∫
M

∫
M

∫
Cyb(M)

F (z, a)

=
∫
M

∫
M

∫
A
H(2(z + u)− b)eE(b)z2+F (b)u2+A(b)zu+B(b)z+C(b)u+D(b)

We can then narrow the concern of our endeavours, and choose E,F,A,B,C for
b = (b1, b2) such that

eE(b)z2+F (b)u2+A(b)zu+B(b)z+C(b)u = b−z
2

1 b−u
2

2 (b1 + b2)−uz

Set

D(b) =
∑

n,m δ(b1 − n)δ(b2 −m)anm

Then the above reduces to

0 =
∫
M

∫
M

∫
A
H(2(z + u)− b)

∑∞
n=1

∑∞
m=1 anmn

−z2m−u
2
(n+m)−uzδ(b− (n,m))
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or

0 =
∫
Re(2(z+u))≥1

ζ
(2)
a (u, z)

which demonstrates the second order zeta criterion - and which in turn, by the
considerations above, resolves Hilbert’s 8th problem.

3 Further work

It is intriguing to revisit an expression from earlier in this paper

ζ
(3)
a (u, v, w) := 1

3!−uvw

∑
anmpn

−u3m−v
3
p−w

3
(nmp)−uvw(nm+ p)−(u+v)w(mp+

n)−(v+w)u(pn+m)−(w+u)v(n+m+ p)−uvw

and ask whether phenomena of number associated to this type of quantity might
be better understood through examination of a related expression

ζ̂
(3)
ε (u) :=

∑
p primes exp(−εijk(u)pipjpk)

where p = (p0, p1, p2) is a 3-tuple of primes, and ε is a 3-tensor.

It then seems like a natural approach to consequently consider studying ζ̂(3)(u)
and its truncations

ζ̂
(3)
ε (u|x) :=

∑
p≤x exp(−εijk(u)pipjpk)

and seek to investigate whether these functions, together with deeper ideas from
information theory, could shed light on more esoteric areas of number theory.

Of course, this suggests further that there might be a reverse transform for said
expression, with

ζ̄
(3)
τ (u) =

∑
n exp(τijk(u)ninjnk)

such that ζ̄
(3)
τ (ζ̂

(3)
ε (u)) = u. Indeed, this would be more natural to study, since

n ∈ N3 is a more natural space than 3-tuples of primes.

Questions that might benefit from these investigations could include the Collatz
Conjecture (otherwise known as the 3n + 1 or Ulam conjecture), and the Erdös-
Strauss conjecture. In particular, these are:
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Conjecture 3.1. (Collatz Conjecture). Let n be any natural number. If it is odd,
multiply it by 3 and add 1. If it is even, divide it by 2. Continue this process. Then
after a finite number of iterations, this arithmetic progression will eventually hit 1;
ie, there is some k such that 3 times the kth iterate plus 1 will be some power of 2.

Conjecture 3.2. (Erdös-Strauss Conjecture). For every integer n ≥ 2, there exist
positive (possibly identical) integers x, y, z such that:

4
n

= 1
x

+ 1
y

+ 1
z

Also, one might be interested in proving that this criticality result holds:

Conjecture 3.3. (3rd zeta criticality criterion). The only zeroes of ζ(3)(u, v, w) lie
on the critical manifold 2(u+ v + w) = 1.

Towards obtaining an analogue of the Euler product formula for this 3rd zeta
function, one might be interested in studying the set

S(2)(x) := {(a, b, c)|a+ b+ c = x, gcd(ai, aj) = 1, rad(abc(a+ b)(a+ c)(b+

c)(a+ b+ c)) < x}

or some related set

S(2)(x, y) := {(a, b, c)|a+ b+ c = x+ y, Taxicab(rad(2)(abc(a+ b)(a+ b+

c), abc(a+ c)(a+ b+ c), abc(b+ c)(a+ b+ c))) < Taxicab(x, y, x+ y)}

where rad(2) : R3 → R3 is some natural lift of rad from R to R3, or from C to
the quaternions Q for the associated analytic lift. (Note that this may not simply
correspond to applying rad to each term in the vector, as we wish rad(2) to satisfy
naturality properties:

rad(2)(xy) = rad(2)(rad(2)(x)rad(2)(y)), for instance.)

But of course, the Quaternions are but a special case of the Cayley-Dickson con-
struction, which, beyond the complex numbers, allows representations of elements
of such algebras as matrices. So instead, let us define rad(2) : GL2(R2)→ GL2(R2)
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as a map between 2 by 2 matrices with the naturality properties we require. I claim
that it is possible to create such a map, and that it is unique. Also note that there
is a natural analytic extension to GL2(C2)→ GL2(C2).

But then Taxicab(a, b, c), being the number that has c representations as the
sum of b ath powers of natural numbers, no longer has a sufficiency of arguments.
We wish to extend the idea of generalised Taxicab numbers, perhaps, to allow it to
take a matrix argument in a natural way.

Consider then Taxicab(a,B, c) as the matrix that has c representations as the
sum of B ath powers of natural numbers, where B is a 2 by 2 matrix, ie, if

B =

[
b11 b12

b21 b22

]
then we are interested in determining the matrix M = Taxicab(a,B, c) such

that

M =

[
Σb11
i=1n

a
11i Σb12

i=1n
a
12i

Σb21
i=1n

a
21i Σb22

i=1n
a
22i

]
Then it might be sensible to define

S(2)(x, y) := {(a, b, c)|a+ b+ c = x+ y, A = rad(2)(

[
a(b+ c) c(a+ b)
b(a+ c) (a+ b+ c)

]
),

det(Taxicab(xy,A, x+ y)) < tr(Taxicab(xy, diag(xy, x+ y), x+ y))} (20)

Then investigate finding a triple product identity perhaps of the form

ζ(3)(u, v, w) = Π(p,q) primeΠ(a,b,c)∈S(2)(p,q)(1−F(a, b, c, u, v, w))−1 (21)

for some mysterious function F .

There is a natural question as to whether it is indeed Taxicab that we would
like to consider in the definition of S(2)(x, y), or rather perhaps instead an invariant
associated to the lengths of sequences of Aliquot numbers, or perhaps instead some
form of generalisation of the Partition function. Recall that p(n) is the number of
ways to construct a number as the sum of some number of positive integers. But
this is an inverse of

∑
m Taxicab(1,m, p(n)), as Taxicab(1,m, p(n,m)) is the number
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that has p(n,m) ways to be constructed from the sum of m integers, where p(n,m)
is the number of ways to add m integers together to get n.

Certainly if y and c are zero, then the expression above reduces to S(1)(x), as we
must necessarily have that rad(1)(ab(a + b)) < x. Whether or not this is a sensible
definition, of course, is another matter entirely.

As to our function F , a natural choice might well be

F (u, v, w; a, b, c) := 3F
(2)
1

[
B(u, a), B(v, b), B(w, c)

B(u+ v + w, a+ b+ c)
;−alt(1)(u, v, w),−alt(2)(u, v, w)

]
(22)

where

alt(1)(u, v, w) := (u+ v)rad(1)(w) + (v + w)rad(1)(u) + (w + u)rad(1)(v) (23)

and

alt(2)(u, v, w) := (u− v)rad(1)(w) + (v − w)rad(1)(u) + (w − u)rad(1)(v) (24)

Here

3F
(2)
1

[
a, b, c

d
;u, v

]
:= Σn,m

(a)n,m(b)n,m(c)n,m
(d)n,m

un
2
vm

2
(u+ v)nm

n!!m!!
(25)

where

(q)n,m := Πn−1
k=0Πm−1

l=0 (q + k + l) (26)

is the generalised Pochhammer symbol, or the rising double factorial, for n,m >
0. (For the edge cases, if m = 0, (q)n,0 = (q)n, similarly (q)0,m = (q)m.)

Of course, we might ask to consider the generalised Beta function
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B(x, y; z) :=

∫ 1

t2+s2=0

(t2)x−1(s2)y−1(1− t2 − s2)z−1

or equivalently

B(x, y; z) :=

∫ 1

‖(t,s)‖=0

(t2)x−1(s2)y−1(1− t2 − s2)z−1 (27)

in the above. We then might instead posit that a natural F could take the form

3F
(2)
1

[
B(u, v + w; a), B(v, w + u; b), B(w, u+ v; c)

B(u+ v + w, uvw; a+ b+ c)
;−alt(1)(u, v, w),−alt(2)(u, v, w)

]
(28)

Irrespective of this, there is definitely more to explore and investigate further in
this direction. Indeed, there is fertile ground here for future work.
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