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Abstract

Calculating certain aspects of geometry has been difficult. They have defied analytics. Here I propose a
method of analysing shape and space in terms of two variables (n, m).

I. INTRODUCTION

Detailed here is the general notion of what
(m;, n;) is. It is essentially a grouping of ideas
that emanate from applying two variables m
and n to the forms of matrices, i.e., grids. For
a random shape, embedded in a grid and de-
noted by the coordinates (m,n), this can be
represented by a set as coordinates where m is
the first continuous row and 7 is the first col-
umn and so on. For a simple, symmetric shape
such as spheres or cubes we have fs—',’j = 1. Then
the size of the shape is given by the horizontal
(m) distance the shape traverses, denoted by
T. The vertical distance (1) is symbolised by
S. For a symmetric shape we have ¥m = Xn.
Also regarding the slope we have ; = 7. When
determining the position of a row or column in
regard to a function describing the curve that
the rows/columns follow we have f(m) = n.
Thus, to find a position just employ this equa-
tion.

f(m) =2m

Knowing any number of rows and columns
specifies the position of the element. Also
(m;,n;) can be used to state the number of
elements to be added or subtracted to the ma-
trix. m means the number of rows to add to the
matrix and n means the number of columns to
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Figure 1: For a given distribution in a geometry we
have T and S representing the grid coordinates
(m,n)
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Figure 2: In this diagram the shaded cell is located at
(44)

be added, i.e., a;; = [a11] then use the operator
[m,n] = [2,2].

a1 412 413
[m,n]la;] = | a1 axn ax
a31 4d3zx 4ass

this can be manipulated to add or remove any
number of rows/columns. Also [m, n][3,3] +
[m,n]|[—3,-3] = [0] generally [m,n|[a,b] +
[m,n][—a,—b] = 0. In regards to multiplica-
tion we have [m, n][a,b]X[m,n][c,d] = 2(m,n)
if a = ¢,b = d. The rate of change of rows and
columns with respect to themselves is:
Generating functions for (m, n) can be basi-
cally any function, i.e., f(m) = 2m The velocity
of “shapes” described by the (m,n) grids is
simply V,, = ", i.e., if a shape moves by n;
units along one axis we have the velocity for
a given time period. If the geometry is mul-
tiplied by a constant ¢ we have ¢/t = V. If
f(x) “grows” the geometry then the velocity is
f(x)/t. When generating patterns using New-
ton’s Method we have y — fn = f'(n)(x —a).
If the geometry is the shape of a sphere then
by calculating the circumference and the num-
ber of rows we can calculate the circumference

C = md then the row size is %"l
C=nD
Size of a row
_nD
on
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Figure 3: The results of applying f(m) = 2m

Figure 4: The size of rows in a circle
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In regard to the rank as a tensor we have
Tymr. A rank 2 matrix can be turned into rank

Figure 6: The flat (m, n) grid can be represented by polar
coordinates, the information is essentially the
same.

Figure 5: Figure 5: Ty If we “curve” the flat grid we
can produce a rank 3 tensor

3 by ‘curving’ the grid.

CPI : __ _ number of occurences
DenSIty 18 glVQI;by P = Total number of elements *
i

This is equal to 5. Now for an aside. This
is a sketchy proof that every point in the grid
contains “something”. That is in reality there

is no such thing as an empty grid.

b b q
/ 0= / dm —dm @ Iﬁ#
a a

Letdm:mz—ml:f:dm—(mz—ml) and h
my =0, fah dm +m1 and fah ml = c. Therefore
every element contains something. In terms of
polar coordinates we have:

Figure 7: For further work if two or more shapes are
repeated they produce an integer value

ds® = dr* + r*d6’
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A+B=2when A=B AN ” .
A+B+C=3whenA=B=C e l "

In regards to tensors, for a general grid we have - 7 E
ds?® = 6(m,n)dx"dx’. For adding two shapes ’ 3\ . !l -
we have A+ B =2if A+ B. We have A+ B + i 2 - l

C =3if A+ B+ C and so on. Specifically we

have (mi’ nf) + (1’,‘, Sf) = (mi +1i 1j + Sj) Figure 8: Figure 9

@ =6
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When determining the angle to point to the
furthest point on the shape from the origin, we
have 0 < f(0) < 2pi if f(m,n) = g(m,n,t),
which depends on time. Then we can equate
this with g(m,n,t) = om,n. To determine the
facets of a shape we take the enclosing bound-
aries T, S the distance from this origin to the
furthest point, the angle 6 and also how many
cells the shape takes up and the volume of
those cells. Also a function’s segments are
equal to the radius r times the angle 6, i.e.,
Yrifi = f(mi,nj). The angle 6 can be found by
tan(0) = (’2

n—f
= fm*

o=t (22705

Then Xr;0i = f(m,n). The “grid” can be dis-
torted by the simple formulae a,, = 1/m and
a, = m. This can be extended to any formula
for a given value of the spacing

Figure 9: The “radius” to the furthest point and its as-
sociated angle.

am =m

|-

in general a,, = f(m) The (m, n) theme can be
extended to polar coordinates.
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Figure 10: The spacing’s of the grid can be represented
by a function

Figure 11: The grids can be written as polar coordinates
where the corresponding (m,n)’s are shown
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Figure 12: Some simple functions showing spacing’s of
the grids
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(am, an) = (ai, by;)

{(1,1)(2,2)(3,3)(4,4) ...}

Figure 13: Where (m,n) = (1,4a;)

(@m,an) = (1,a;) = {(1,1)(1,2)(1,3)(1,4)(1,5)}

Trajectories can be denoted by “links”.

Figure 14: A trajectory can be represented by ’links’
where S; = R;0i

The geometry of a single cell can re-
represented by the following diagram. A curi-
ous case is when tan(6) = tan(¢)

tan@;, = (m;x)

Figure 15: Figure 14
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Figure 16: Figure 15

tan(¢) = tan(6)

To begin the point of this article we have simple
sets denoting operators, i.e., in the above dia-
grams we could denote the information about
the shapes by {R,T,S}. This can also be de-
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noted by Ket vectors

T|¢ >= horizontal distance
S|¢ >= verticasl distance
®|¢ >= angle for R

a+ |¢ >= number of cells

Al¢p >= area of cell in question/ area of TS U]
R|¢ >= radius L MF_; R Z T
A I L)
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O ~ O Figure 18: The R, 6,S and T of building the sets.
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Figure 17: A distribution of 2%;") = p = density of
occurences.
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4 Figure 19: A random shape and how it can be captured
r=>5
T=5

Set {R,T,S,p,a", A}
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R =85cm
T =65cm
S=8cm
T
U
at 6
A=4cm

In the following diagrams, we see the elegance
of the set. We can apply it to individual ele-
ments to determine their geometry then apply
these again to the set to supply information
about the shape, i.e,, Lo K = C where L is
one set (large scale) and K is another set (small
elements). In regard to probabilities we have
P+« P = P = X(m,n)/my,. The main beauty
of the set [R, T, S, ¢, a+, A] is that it can be ap-
plied to itself. That is on small elements to
determine larger shapes. It can also be used as
a quantum operator RTS(¢)a + A|P >.
For larger shapes we have

T =X(Ty)
S=%(Sy)
R=R,
A=2XA,
a+ =n

¢ =06n

Figure 20: Curvi-linear coordinates and empty cells can
be subsumed

X={R,T,S,¢,a+,A}

7 = min(m) min(n)i, min(m) max(m)i

This finds the highest and lowest points
for each row and column (summing over
i) X|(ai,b1),(a2,b2),(a3,b3), (ag,by) ... >=
X[R,T,S, ¢,a+,A]
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Figure 21: By 'zooming in" and applying the set repeat-
edly a full picture can be obtained.

Now we introduce the operator W which
produces a coordinate from [R, T, S, ¢, a+, A],
ie, Wo{R,T,S,¢,a+,A} = (m,n) This oper-
ator has to be determined from knowledge of
the neighboring elements. Furthering this say;,
we have a matrix A.

Then TTA = {(6111,6[13), (a23, ﬂzz) .. } which
can all be possible combinations of A. Then
the matrix B chooses “points” from this matrix,
i.e., BIT a element of TTA

To find the value of a function contained
within the operator, we have tan(f) = S/T =
n/m. f(m) =n = XT;tan(P) or f(m) = XS;
f(m) = %—% = tan6;. Therefore f'(m) =
sec?(9)
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Figure 22: Evaluating a curve using the (m,n) grid

tanf =

S_N
T m

f(m) = iTitanQ
=)_S;

LS
fom = £
o f(m) = sec?6;

We can also have a “scale factor”, X =
a(t){R,T,S,0,a+,A}. This grows the entire
shape, perhaps producing spheres when the an-
gle revolves. The operator can be used as a sub-
stitute for tensors as the metric g, (dx"dx?) =
T? + 52,

For higher dimensions we have 7nix =
[y T?,¥52...] As the metric, where the square
root is taken to produce a value. We cannot
however do this for the angle 6. This however
is a matter of notation. The product X% could
be used in a similar manner to the dot product.
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