The Recursive Future Equation

ISSN 1751-3030

Author:

Ramesh Chandra Bagadi

Data Scientist

International School Of Engineering (INSOFE)

2nd Floor, Jyothi Imperial, Vamsiram Builders, Janardana Hills, Above South India Shopping Mall, Old Mumbai Highway, Gachibowli, Hyderabad, Telangana State, 500032, India.

 $Email: \underline{rame shcbagadi@yahoo.com}\\$

Phone: +91 9440032711

Abstract

In this research investigation, the author has presented a Recursive Future Equation.

Theory

Given a Time Series
$$Y = \{y_1, y_2, y_3, ..., y_{n-1}, y_n\}$$

we can find y_{n+1} using the following Recursive Equation.

Consider

$$S_1 = Smaller \ of (y_{n+1}, y_k)$$
 and

$$L_1 = L \arg er \ of \left(y_{n+1}, y_k\right)$$

$$S_2 = Smaller \ of ((L_1 - S_1), y_k)$$

$$L_2 = L \arg er \ of \left(\left(L_1 - S_1 \right), y_k \right)$$

$$S_3 = Smaller \ of ((L_2 - S_2), y_k)$$

$$L_3 = L \operatorname{arg} \operatorname{er} \operatorname{of} ((L_2 - S_2), y_k)$$

And so on, so forth

$$S_p = Smaller \ of \left(\left(L_p - S_p \right), y_k \right)$$

$$L_p = L \arg er \ of \left(\left(L_p - S_p \right), y_k \right)$$

$$y_{n+1} = \left\{ \sum_{k=1}^{n} y_k \left\{ \frac{S_1}{L_1} \right\} \right\} + \left\{ \sum_{k=1}^{n} y_k \left\{ \frac{S_2}{L_2} \right\} \right\} + \left\{ \sum_{k=1}^{n} y_k \left\{ \frac{S_2}{L_2} \right\} \right\} + \dots + \left\{ \sum_{k=1}^{n} y_k \left\{ \frac{S_p}{L_p} \right\} \right\}$$

That is,

$$y_{n+1} = \lim_{p \to \infty} \left\{ \sum_{k=1}^{n} y_k \left\{ \left\{ \frac{S_1}{L_1} \right\} + \left\{ \frac{S_2}{L_2} \right\} + \left\{ \frac{S_3}{L_3} \right\} + \dots + \left\{ \frac{S_p}{L_p} \right\} \right\} \right\}$$

From the above Recursive equation, we can solve for y_{n+1}

References

- $1. \quad http://www.vixra.org/author/ramesh_chandra_bagadi$
- 2. http://www.philica.com/advancedsearch.php?author=12897