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Abstract: Let G be a finite multiplicative group with

identity e and ( )N G be the Neutrosophic group with

indeterminate I . We denote by  ,Ne G I , the

Neutrosophic graph of G , ( )N G and I . In this paper,

we study the graph  ,Ne G I and its properties.

Among the results, it is shown that for  any finite 

multiplicative group G ,  ,Ne G I is a connected

graph of diameter less than or equal to 2. Moreover, for 

finite group G , we obtain a formula for enumerating

basic Neutrosophic triangles in  ,Ne G I .

Furthermore, for every finite groups G and G , we

show that G G if and only if ( )N G ( )N G ,

and if ( )N G ( )N G , then  ,Ne G I  ,Ne G I  .

Keywords: Indeterminacy; Finite Multiplicative group; Neutrosophic Group; Basic Neutrosophic triangle; Neutrosophic group 

and graph isomorphism. 

1 Introduction 

Most of the real world problems in the fields of 

philosophy, physics, statistics, finance, robotics, design 

theory, coding theory, knot theory, engineering, and 

information science contain subtle uncertainty and 

inconsistent, which causes complexity and difficulty in 

solving these problems.  Conventional methods failed 

to handle and estimate uncertainty in the real world 

problems with near tendency of the exact value. The 

determinacy of uncertainty in the real world problems 

have been great challenge for the scientific community, 

technological people, and quality control of products in 

the industry for several years. However, different 

models or methods were presented systematically to 

estimate the uncertainty of the problems by various   

incorporated computational systems and algebraic 

systems. To estimate the uncertainty in any system of 

the real world problems, first attempt was made by the 

Lotfi A Zadesh [1] with help of Fuzzy set theory in 

1965. Fuzzy set theory is very powerful technique to 

deal and describe the behavior of the systems but it is 

very difficult to define exactly. Fuzzy set theory helps 

us to reduce the errors of failures in modeling and 

different fields of life.  In order to define system 

exactly, by using Fuzzy set theory many authors were 

modified, developed and generalized the basic theories 

of classical algebra and modern algebra. Along with 

Fuzzy set theory there are other different theories have 

been study the properties of uncertainties in the real 

world problems, such as probability theory, 

intuitionistic Fuzzy set theory, rough set theory, 

paradoxist set theory [2-5]. Finally, all above theories 

contributed to explained uncertainty and inconsistency 

up to certain extent in real world problems. None of the 

above theories were not studied the properties of 

indeterminacy of the real world problems in our daily 

life. To analyze and determine the existence of 

indeterminacy in various real world problems, the 

author Smarandache [6] introduced philosophical 

theory such as Neutrosophic theory in 1990. 

Neutrosophic theory is a specific branch of 

philosophy, which investigates percentage of 

Truthfulness, falsehood and neutrality of the real world 

problem. It is a generalization of Fuzzy set theory and 

intuitionistic Fuzzy set theory. This theory is 

considered as complete representation of a 

mathematical model of a real world problem. 

Consequently, if uncertainty is involved in a problem 

we use Fuzzy set theory, and if indertminancy is 

involved in a problem we essential Neutrosophic 

theory. 

Kandasamy and Smarandache [7] introduced the 

philosophical algebraic structures, in particular, 

Neutrosophic algebraic structures with illustrations and 

examples in 2006 and initiated the new way for the 

emergence of a new class of structures, namely, 

Neutrosophic groupoids, Neutrosophic groups, 

Neutrosophic rings etc. According to these authors, the 

Neutrosophic algebraic structures N(I) was a nice 

composition of indeterminate I and the elements of a 
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given algebraic structure ( , )N  . In particular, the new 

algebraic structure ( ( ), )N I   is called Neutrosophic 

algebraic structure which is generated by N and I .

In [8], Agboola and others have studied some 

properties of Neutrosophic group and subgroup. 

Neutrosophic group denoted by  ( ),N G  and defined

by ( )N G G I  , where G is a group with respect 

to multiplication. These authors also shown that all 

Neutrosophic groups generated by the Neutrosophic 

element I  and any group isomorphic to Klein 4-group 

are Lagrange Neutrosophic groups. 

Recent research in Neutrosophic algebra has 

concerned developing a graphical representation of the 

elements of a given finite Neutrosophic set, and then 

graph theoretically developing and analyzing the 

depiction to research Neutrosophic algebraic 

conclusions about the finite Neutrosophic set. The most 

well-known of these models is the Neutrosophic graph 

of Neutrosophic set, first it was introduced by 

Kandasamy and Smarandache [9].  

Recently, the authors Kandasamy and 

Smarandache in [9-10] have introduced Neutrosophic 

graphs, Neutrosophic edge graphs and Neutrosophic 

vertex graphs, respectively. If the edge values are from 

the set G I they will termed as Neutrosophic 

graphs, and a Neutrosophic graph is a graph in which at 

least one edge is indeterminacy. Let ( )V G be the set 

of all vertices ofG . If the edge set ( )E G , where at

least one of the edges of G is an indeterminate one. 

Then we call such graphs as a Neutrosophic edge 

graphs. Further, a Neutrosophic vertex graph NG is a 

graph G with finite non empty set ( )N NV V G of 

p  points where at least one of the point in ( )NV G  is 

indeterminate vertex. Here ( )NV G ( )V G N  , 

where ( )V G are vertices of the graph G and N the

non empty set of vertices which are indeterminate. 

In the present paper, indeterminacy of the real 

world problems are expressed as mathematical model 

in the form of new algebraic structure  ,GI  , and its

properties are studied in second section, where G is 

finite group with respect to multiplication and I 

indeterminacy of the real world problems.  

  In the third section, to find the relation between G, 

I and N (G) we introduced Neutrosophic 

graph  ,Ne G I of the Neutrosophic group  ( ),N G  ,

by studying its important concrete properties of these 

graphs.  

In the fourth section, we introduced basic 

Neutrosophic triangles in the graph  ,Ne G I and

obtained a formula for enumerating basic Neutrosophic 

triangles in  ,Ne G I  to understand the internal

mutual relations between the elements in G, I and N 

(G). 

In the last section, all finite isomorphic groups 

G and G such that ( ) ( )N G N G and

   , ,Ne G I Ne G I  are characterized with examples.

Throughout this paper, all groups are assumed to 

be finite multiplicative groups with identity e . Let 

( )N G be a Neutrosophic group generated by G and

I . For classical theorems and notations in algebra and 

Neutrosophic algebra, the interest reader is refereed to 

[11] and [8]. 

Let X be a graph with vertex set ( )V X and edge 

set ( )E X . The cardinality of ( )V X and ( )E X are 

denoted by ( )V X and ( )E X , which are order and 

size of X , respectively. If X is connected, then there 

exist a path between any two vertices in X . We denote 

by nK the complete graph of order n . Let ( )u V X . 

Then degree of u , deg( )u in X is the number of 

edges incident at u . If deg( ) 1u  then the vertex u is 

called pendent. The girth of X is the length of smallest 

cycle in X . The girth of X is infinite if X has no 

cycle. Let d( , )x y be the length of the shortest path 

from two vertices x and y in X , and the diameter of 

X denoted by 

( )Diam X max{ ( , )d x y : , ( )}x y V X . 

For further details about graph theory the reader should 

see [12]. 

2 Basic Properties of Neutrosophic set and 

GI

This section will present a few basic concepts of 

Neutrosophic set and Neutrosophic group that will then 

be used repeatedly in further sections, and it will 

introduce a convenient notations. A few illustrations 

and examples will appear in later sections.   

Neutrosophic set is a mathematical tool for 

handling real world problems involving imprecise, 

inconsistent data and indeterminacy; also it generalizes 

the concept of the classic set, fuzzy set, rough set etc. 

According to authors Vasantha Kandasamy and 

Smarandache, the Neutrosophic set is a nice 

composition of an algebraic set and indeterminate 

element of the real world problem. 
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Let N be a non-empty set and I be an

indeterminate. Then the set ( )N I N I  is called 

a Neutrosophic set generated by N and I .If  ‘  ’ is

usual multiplication in N , then I  has the following

axioms.  

1. 0 0I 

2. 1 1I I I   

3.
2I I

4. a I I a   , for every a N .

5.
1I 

does not exist.

For the definition, notation and basic properties of 

Neutrosophic group, we refer the reader to Agbool [8]. 

As treated in [8], we shall denote the finite 

Neutrosophic group by ( )N G for a groupG .

Definition 2.1 Let G be any finite group with respect 

to multiplication. Then the set GI defined as 

 :GI gI g G   :Ig g G  .

Definition 2.2 If a map f from a finite nonempty 

set S into a finite nonempty set S  is both one-one and

onto then there exist a map g from S  into S that is

also one-one and onto. In this case we say that the two 

sets are equivalent, and, abstractly speaking, these sets 

can be regarded as   the same cardinality. We write  

S  ~ S  whenever there is a one-one map of a set

S onto S  .

Two finite rings R and R are equivalent if 

there is a one-one correspondence between R and R . 
We write R  ~ R .
Definition 2.3 Let G be any finite group with respect 

to multiplication and let ( )N G G I  .Then 

 ( ),N G  is called a Neutrosophic group generated

by G and I under the binary operation ‘  ’on G . The

Neutrosophic group ( )N G has the following 

properties.  

1. ( )N G is not a group.

2. ( )G N G .

3. ( )GI N G .

4. ( )N G is a specific composition of G and I .

Lemma 2.4 Let G be any finite group with respect to 

multiplication and 
2I I . Then G GI . In 

particular, G GI . 

Proof. For any finite group G , we have G GI and

GI G . Now define a map :f G GI by the

relation ( )f a aI for every a I . Let ,a b G .

Then 

a b  0a b   ( ) 0a b I I  

aI bI  ( ) ( )f a f b .This shows that f is a

well defined one-one function. Further, we have 

Range( )f  ( ) :f a GI a G  

 :aI GI a G   GI .

This show that for every aI GI at least one

a G such that ( )f a aI .

Therefore, :f G GI is one-one correspondence 

and consequently a bijective function. HenceG GI . 

Lemma 2.5  Let G be any finite group with respect to 

multiplication and let ( )N G G I  . Then the

order of ( )N G is 2 G . 

Proof: We have  :GI gI g G  .

Obviously, GI  G and G  GI  but ( )GI N G .

It is clear that ( )N G is the disjoint union of 

G andGI .That is,  

( )N G G GI  and G GI   . 

Therefore, ( )N G G GI  2 G , 

since G GI . 

Lemma 2.6 The setGI is not Neutrosophic group with 

respect to multiplication of groupG . 

Proof: It is obvious, sinceGI G I  .

Lemma 2.7 The elements inGI satisfies the following 

properties, 

1. e gI gI 

2.  
2 2gI g I

3.

terms

... n

n

gI gI gI g I   for all positive integers

n . 

4.  
1

gI


does not exist, since 
1I 

does not ex-

ist.

5. gI g I g g  .

Proof: Directly follows from the results of the 

group  ( ),N G  .
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Theorem 2.8 The structure  ,GI  is a monoid under

the operation ( )( )aI bI abI for all ,a b in the group 

 ,G  and
2I I . 

Proof: We know that  :GI gI g G  .

Let aI , bI and cI be any three elements in GI . Then 

the binary operation 

( )( )aI bI abI in  ,GI  satisfies the following

axioms. 

1. abI GI ( )( )aI bI GI  .

2.    ( )( ) ( ) ( ) ( )aI bI cI ab I cI

     ( ) ) ( )) ( )( )ab c I a bc I aI bI cI  

3. Let e be the identity element in  ,G  .Then

eI I Ie   and
2( )I aI aI ( )aI aI I  .

Remark 2.9 The structure  ,GI  is never a group

because 
1I 

does not exist.

Here we obtain lower bounds and upper bounds of the 

order of the Neutrosophic group ( )N G . Moreover, 

these bounds are sharp. 

Theorem 2.10 Let G be a finite group with respect to

multiplication. Then, 

1 G n  2 ( ) 2N G n   . 

Proof. We have, 

1G   { }G e  ( )N G  { , }G GI e I 

 ( ) 2N G  . This is one extreme of the required 

inequality. For other extreme, by the Lemma [2.4], 

1G   1GI 

 2G GI  and G GI is not odd 

 G GI is even. 

 ( ) 2N G G GI n   . 

Hence,  the theorem. 

3 Basic Properties of Neutrosophic Graph 

In this section, our aim is to introduce the notion 

and definition of Neutrosophic graph of finite 

Neutrosophic group with respect to multiplication and 

study on its basic and specific properties such as 

connectedness, completeness, bipartite, order, size, 

number of pendent vertices, girth and diameter. 

Definition 3.1 A graph  ,Ne G I  associated with

Neutrosophic group  ( ),N G  is undirected simple

graph whose vertex set is ( )N G and two vertices 

x and y in ( )N G if and only if xy is either x or y . 

Theorem 3.2 For any group  ,G  , the Neutrosophic

graph  ,Ne G I is connected.

Proof: Let e be the identity element in G .Then

( )e N G , since ( )G N G . Further, xe x , for 

every x e in ( )N G . It is clear that the vertex e is

adjacent to all other vertices of the graph  ,Ne G I .

Hence  ,Ne G I is connected.

Theorem 3.3 Let 1G  .Then the graph has at least

one cycle of length 3. 

Proof: Since 1G  implies that ( ) 4N G  . So

there is at least one vertex gI of ( )N G such that 

gI is adjacent to the vertices e and I in 

 ,Ne G I ,since eI I ,
2( )I gI gI gI  and 

( )gI e  geI gI . Hence we have the cycle 

e I gI e   of length 3, where g e .

Example 3.4 Since 

 10( ) 2, 4, 6, 8, 2 , 4 , 6 , 8N G I I I I

is the Neutrosophic group of the group 

 10 2, 4, 6, 8G  with respect to multiplication

modulo 10, where 6e  .The Neutrosophic graph 

 10 ,Ne G I contains three cycles of length 3, which

are listed below. 

1 : 6 2 6C I I   , 

2 : 6 4 6C I I   , 

3 6 8 8C I I    . 

Theorem 3.5 The Neutrosophic graph  ,Ne G I is

complete if and only if 1G  .

Proof: Necessity. Suppose that  ,Ne G I is

complete. If possible assume that 1G  , then

( ) 4N G  . So without loss of generality we may

assume that ( ) 4N G  and clearly the vertices

Neutrosophic Sets and Systems, Vol. 15, 2017 25 



T.Chalapathi, R. V M S S Kiran Kumar, Neutrosophic graphs of finite groups

, , ,e g I gI   ( , )V Ne G I .Therefore the vertex

g is not adjacent to the vertex I in  ,Ne G I , since

gI g or I for each g e in G , this contradicts our

assumption that  ,Ne G I is complete. It follows that

( )N G cannot be four. Further, if ( ) 4N G  , then

obviously we arrive a contradiction. So our assumption 

is wrong , and hence 1G  .

Sufficient. Suppose that 1G  . Then, trivially

( ) 2N G  .Therefore,  ,Ne G I
2K , since 

eI I . Hence,  ,Ne G I is  a complete graph.

Recall that  ( , )V Ne G I is the order and

 ( , )E Ne G I is the size of the Neutrosophic graph 

 ,Ne G I . But,

 ( , )V Ne G I ( ) 2N G G 

and the following theorem shows that the size of 

 ,Ne G I .

Theorem 3.6 The size of Neutrosophic graph 

 ,Ne G I is 3 2G  .

Proof: By the definition of Neutrosophic graph, 

 ,Ne G I contains  
2

2 1G  non adjacent pairs. 

But the number of combinations of any two distinct 

pairs from ( )N G is
( )

2

N G 
 
 

. Hence the total 

number of adjacent pairs in  ,Ne G I is

 ( , )E Ne G I 
( )

2

N G 
 
 

 
2

2 1G 

3 2G  .

Theorem 3.7 [11] The size of a simple complete graph 

of order n  is 
1

( 1)
2

n n  . 

Corollary 3.8 The Neutrosophic graph  ,Ne G I ,

1G  is never complete.

Proof: Suppose on contrary that 

 ,Ne G I , 1G  is  complete. Then, by the

Theorem [3.7], the total number of edges in 

 ,Ne G I is   
1

2 2 1
2

G G   2 1G G  ,

but in view of Theorem [3.6], we arrived a 

contradiction to the completeness of  ,Ne G I .

Theorem 3.9 The graph  ,Ne G I has exactly

1G  pendent vertices.

Proof: Since ( )N G G GI  and G GI   . 

Let ( )x N G . Then either x G or x GI . Now

consider the following cases on GI and G , 

respectively. 

Case 1. If x GI , then x gI for g G . But

( )xI gI I  2gI gI x  and ex egI

gI x  . This implies that the vertex x is adjacent to 

both the vertices e and I  in ( )N G .Hence 

deg( ) 1x  for every x GI .

Case 2. If x G , then  ex x ,for every x e and

egI gI , for every gI GI . Therefore 

deg( ) ( ) 1 1e N G   . Now show that 

deg( ) 1x  , for every x e in G . Suppose,

deg( ) 1x  , for every x e in G . Then there exist

another vertex y e in G such that either 

xy x or y , this is not possible in G , because G is

a finite multiplication group. Thus deg( ) 1x  , for 

x e inG .

From case (1) and (2), we found the degree of 

each non identity vertex inG is 1. This shows that each 

and every non identity element in G  is a pendent 

vertex in  ,Ne G I . Hence, the total number of

pendent vertices in  ,Ne G I is 1G  .

The following result shows that  ,Ne G I is

never a traversal graph. 

Corollary 3.10 Let 1G  . Then  ,Ne G I is never

Eulerian and never Hamiltonian. 

Proof. It is obvious from the Theorem [3.9].  

Theorem 3.11 [11] A simple graph is bipartite if and 

only it does not have any odd cycle. 

Theorem 3.12 The Neutrosophic graph  ,Ne G I ,

1G  is never bipartite.
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Proof. Assume that 1G  . Suppose,   ,Ne G I is

a bipartite graph. Then there exist a bipartition 

 ,G GI , since ( )N G G GI  and G GI   .

But e G and I GI , where e I . So there exist 

at least one vertex gI in  ,Ne G I such that

e I gI e   is an odd cycle of length 3 because 

,eI I ( )I gI gI and ( )gI e gI .  

This violates the condition of the Theorem [3.11].  

Hence   ,Ne G I is not a bipartite graph.

Theorem 3.13 The girth of a Neutrosophic graph is 3. 

Proof. In view of Theorem [3.3], for 1G  , we

always have a cycle e I gI e   of length 3, for each 

g e in G , which is smallest in  ,Ne G I .

This completes the proof. 

Remark 3.14 Let G be a finite group with respect to 

multiplication. Then ( ( , ))gir Ne G I   if 1G  ,

since  ,Ne G I is acyclic graph if and only if 1G  . 

Theorem 3.15 Diam( ( , )) 2Ne G I  . 

Proof. Let G be a finite group with respect to 

multiplication. Then we consider the following two 

cases.  

Case 1 Suppose 1G  . The graph  ,Ne G I
2K .

It follows that  ,Ne G I is complete, so

diam( ( , )) 1Ne G I  . 

Case 2 Suppose 1G  . Then the vertex e  is adjacent

to every vertex of  ,Ne G I . However the vertex

aI is not adjacent to bI for all a b in G , so 

( , ) 1d aI bI  . But in  ,Ne G I , there always exist

a path aI I bI  , since ( )aI I aI and

( )I bI bI , which gives ( , ) 2d aI bI  , for every 

aI , ( )bI N G .

Hence, both the cases conclude that: 

Diam( ( , )) 2Ne G I  . 

4 Enumeration of basic Neutrosophic trian-

gles in  ,Ne G I  

Since  ,Ne G I is triangle free graph for 1G  , we 

will consider 1G  in this section.  

Let us denote  a traingle by ( , , )x y z in  ,Ne G I with

vertices ,x y and z . Without loss of generality we

may assume that our triangles ( , , )e I gI have vertices 

e , I and gI , where g e in G . These triangles are

called basic Neutrosophic triangles in  ,Ne G I , which

are defined as follows. 

Definition 4.1 A triangle in the graph  ,Ne G I is

said to be basic Neutrosophic if it has the common 

vertices e and I .The set of all basic Neutrosophic 

triangles in  ,Ne G I denoted by

 ( , , ) : ineIT e I gI g e G  .

A triangle ( , , )x y z in  ,Ne G I is called non-basic

Neutrosophic if ( , , ) eIx y z T . 

The following short table illustrates some 

finite Neutrosophic graphs and their total number of 

basic Neutrosophic triangles. 

 ,Ne G I  * ,pNe Z I  ,nNe C I   2 ,pNe G I  4,Ne V I

eIT 2p   1n  2p   3 

where  * 0p pZ Z  is  a group with respect to 

multiplication modulo p , a prime, 

 2 11, , ,..., : 1n n

nC g g g g 

is a cyclic group generated by g with respect to 

multiplication, 

 2 0, 2, 4,...,2( 1)pG p 

is a group with respect to multiplication modulo 2p and 

 2 2 2

4 , , , :V e a b c a b c e   

is a Klein 4-group. 

Before we continue, it is important to note that 

the multiplicative identity e may differ from group to 

group. However, for simplicity sake we will continue 

to notate that 1e  , and we leave it to reader to 

understand from context of the group for e . 

The following results give information about 

enumeration of basic and non-basic Neutrosophic 

triangles in the graph  ,Ne G I .

First we begin a lemma, which gives a 

formula for enumerating the number of Neutrosophic 

triangles in  ,Ne G I corresponding to fixed elements

e and I in the Neutrosophic set ( )N G . 
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This is useful for finding the total number of 

non-basic Neutrosophic triangles in  ,Ne G I .

Theorem 4.2 Let 1G  . Then the total number of basic 

Neutrosophic triangles in  ,Ne G I is 1eIT G  .

Proof. Since ( )N G G GI  and G GI   . It 

is clear that e I . For any aI GI , the traid 

( , , ) eIe I aI T ( , ), ( , ),e I e aI and ( , )I aI are                   

edges in  ,Ne G I

, ( ) , ( )eI I e aI aI I aI aI   

,I aI GI  , where a e in G .

That is, for fixed vertices e , I and for each aI GI ,

the traid ( , , )e I aI exists in  ,Ne G I . Further, for

any vertex a G ,the vertices e , I and a does not

form a triangle in  ,Ne G I because ( , )I a is not an

edge in  ,Ne G I , since aI a or I for all a e .

So that the total number of triangles having common 

verities e and I in  ,Ne G I is

 ( ) 1eIT N G G  

 2 1G G   1G  .

Theorem 4.3 The total number of non-basic 

Neutrosophic triangles in  ,Ne G I is zero.

Proof. Suppose that two vertices either ,x y or ,y z or

,z x are not equal to e and I .  

Then the traid ( , , )x y z is a non-basic triangle in 

 ,Ne G I  ( , , ) eIx y z T

,xy x yz y   and zx z

 either xyzx x or yzxy y

or zxyz z . 

This is not possible in the Neutrosophic group ( )N G . 

Thus there is no any non-basic triangle in the 

graph  ,Ne G I , and hence the total number of non-

basic Neutrosophic triangles in  ,Ne G I is zero.

In view of Theorems [3.9] and [4.2], the 

following theorem is obvious. 

Theorem 4.4 The total number of pendent vertices and 

basic Neutrosophic triangles in  ,Ne G I is same,

which is equal to 1G  . 

5 Isomorphic properties of Neutrosophic 
groups and graphs 

In this section we consider important concepts 

known as isomorphism of groups and Neutrosophic 

groups. But the notion of isomorphism is common to 

all aspects of modern algebra [14] and Neutrosophic 

algebra. An isomorphism of groups and Neutrosophic 

groups are maps which preserves operations and 

structures. More precisely we have the following 

definitions which we make for finite groups and 

Neutrosophic finite groups.  

Definition.5.1 Two finite groups G and G  are said

to be isomorphic if there is a one-one correspondence 

:f G G such that ( ) ( ) ( )f ab f a f b for all

,a b G  and we write G G .

Now we proceed on to define isomorphism of 

finite Neutrosophic groups with distinct indeterminate, 

which can be defined over distinct groups with same 

binary operation. We can establish two main results.  

1. Two groups are isomorphic and their Neutro-

sophic groups are also isomorphic.

2. If two Neutrosophic groups are isomorphic,

then their Neutrosophic graphs are also iso-

morphic.

Definition 5.2 Let  ,G  and  ,G  be two finite

groups and let I I  be two indeterminates of two

distinct real world problems. The Neutrosophic groups 

( )N G  ,G I   and ( )N G  ,G I   

are isomorphic if there exist a group isomorphism 

 from G onto G such that ( )I I  and we

write ( ) ( )N G N G .

Definition 5.3 [13] If there is a one-one 

mapping a a of the elements of a group G onto

those a group G and if a a and b b implies

ab a b  , then we say that G and G are

isomorphic and write G G . If we put

( )a f a  and ( )b f b  for ,a b G , then 

:f G G is a bijection satisfying 

( ) ( ) ( )f ab a b f a f b   . 

Lemma 5.4  G G ( ) ( )N G N G  .

Proof. Necessity. Suppose G G . Then there exist a

group isomorphism   from G onto G  such

that ( )a a  for every a G and a G  . By the

definition [12], the relation says that 
 
sends ab  onto

a b  , where ( )a a  and ( )b b  are the elements of
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G one-one corresponding to the elements a , b in G .

We will prove that ( ) ( )N G N G . For this we

define a map : ( ) ( )f N G N G by the relation

( )f G G , ( )f I I  and ( )f GI G I  .

Suppose , ( )x y N G .  

Then either ,x y G or ,x y GI . Now consider 

the following two cases. 

Case 1 Suppose ,x y G .  

Then x x and y y .

Trivially, ( ) ( )f x x x  , for every x G and

x G  , since G G . Thus, ( ) ( )N G N G .

Case 2 Suppose ,x y GI .  

Then x aI and y bI for ,a b G . Obviously, f is

one-one correspondence between  ( )N G and ( )N G ,

since G G and ( )f I I  . Further,

 ( ) ( )( )f xy f aI bI

( )f abI a b I   ,

since ( )f GI G I 

( )( )a I b I   

( ) ( )f aI f bI  ( ) ( )f x f y .  

Thus f is a Neutrosophic group isomorphism from 

( )N G onto ( )N G , and hence ( ) ( )N G N G .

Sufficiency. It is similar to necessity,  

because G I G I    implies that G G and 

GI G I  under the mapping a a
and aI a I  , respectively.

Theorem 5.5 If G G , then

 ,Ne G I   ,Ne G I  , where I I  .

But converse is not true. 

Proof. Suppose ( )N G G I  and 

( )N G G I   be two different Neutrosophic 

groups generated by G , I and G , I  , respectively.

Let  be an isomorphism from G onto G .

Then  is one-one correspondence between the 

graphs  ,Ne G I and  ,Ne G I  under the relation

( )x x  for every ( )x N G and ( )x N G  .

Further to show that  preserves the adjacency. For 

this let x and y be any two vertices of the graph 

 ,Ne G I , then x , ( )y N G . This implies that

 ( , ) ( , )x y E Ne G I xy x 

( ) ( ) ( )x y x     x y x   

 ( , ) ( , )x y E Ne G I     .

Hence, G and G are adjacent in  ,Ne G I  .

similarly,  maps non-adjacent vertices to non-

adjacent vertices. Thus,  is a Neutrosophic graph 

isomorphism from  ,Ne G I onto  ,Ne G I  , that

is,  ,Ne G I   ,Ne G I  .

The converse of the Theorem [5.5] is not true, 

in general. Let 4G V and let
*

5G Z  . Clearly,

 ,Ne G I   ,Ne G I  , but 4V is not isomorphic 

to 
*

5Z . 

This is illustrated in the following figure.
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