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AAFrempong Conjecture
(Prize for proof: To be determined)

Abstract
The above conjecture states that if A B Cx y z+ = , where A B C x y z, , , , ,  are positive integers,
x y z, , > 2 , and A B C≠ ≠ ≠ 2 , then A B C, ,  and  cannot be the lengths of the sides of a triangle.
This conjecture evolved when after proving the Beal conjecture algebraically (viXra:1702.0331),
the author attempted to prove the same conjecture geometrically. A proof of the above conjecture
may shed some light on the relationships between similar equations and the lengths of the sides of
polygons. Counterexamples could be added to the exceptions.
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The above conjecture evolved when after proving the Beal conjecture algebraically
(viXra:1702.0331), the author attempted to prove the same conjecture geometrically.
The conjecture states that if A B Cx y z+ = , where A B C x y z, , , , ,  are positive integers, x y z, , > 2 ,
and A B C≠ ≠ ≠ 2 , then A B C, ,  and  cannot be the lengths of the sides of a triangle
Examples:
1.  Since 3 6 33 3 5+ = , 3 6 3, ;  and  cannot be the lengths of the sides of a triangle.

2.  Similarly, since 2 8 49 3 5+ = , 2 8 4, ,  and  cannot be the lengths of the sides of a triangle.
However, for 2 2 23 3 4+ = , 2 2 2,  and  can be the lengths of the sides of a triangle since the sum
of the lengths of any two sides is greater than the length of the third side. (Note: 2 + 2 > 2)

Note the following::
In any triangle, the sum of the lengths of any two sides is greater than the length of the third side.
For A B C, ,  and  to form a triangle, 1. A B C+ > ,  2. A C B+ > , and  3. B C A+ > .

 Main Dish
The requirement is that one should prove that if A B Cx y z+ = , where A B C x y z, , , , ,  are positive
integers, x y z, , > 2 , and A B C≠ ≠ ≠ 2 , then A B C, ,  and  cannot be the lengths of the sides of a
triangle.
A proof of the above conjecture may shed some light on the relationships between similar
equations and the lengths of the sides of polygons.

PS:
An interesting observation, above, is the prime number, 2. In the Pythagorean theorem,
each exponent equals 2, but in the exception to the above conjecture, each base equals 2,
( 2 2 23 3 4+ =  is true), but the exponent on the second term on the left is a repetition of the
first exponent. Generally, a a an n n+ = +1 is true only if a = 2.
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