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Electrostatic problems are widely solved using two types of boundary conditions (BC), namely,
the Dirichlet condition (DC) and Neumann condition (NC). The DC specifies values of electrostatic
potential (ψ), while the NC specifies values of ∇ψ at the boundaries. Here we show that DC and
NC may not produce equivalent solutions to a given problem; we demonstrate it with a particular
problem: 1-D linearized Poisson-Boltzmann equation (PBE), which has been regularly used to find
the distribution of ionic charges within electrolyte solutions. Our findings are immediately applicable
to many other problems in electrostatics.

Key words: Poisson-Boltzmann equation, Debye length, Dirichlet, Neumann

This paper is being uploaded to vixra.org

1. INTRODUCTION

A large number of problems in electrostatics involve
solving the Poisson’s equation (PES): ∇2ψ = −ρe/ε to
obtain ψ as a spatial function [1], where, ρe is the charge-
density distribution of the free charges, ε is the permittiv-
ity of the medium. PES is widely solved using two types
of BCs, namely, DC and NC, please see Ref. [2](Sec (1.9),
pp. 37). However, it is not clear whether DC and NC
produces the same solution to a given equation or not;
the author is unaware of any work that resolves this is-
sue. Here, we will show that DC and NC do not produce
equivalent solutions in general.

When the positions of all the charges are known i.e.
ρe is known beforehand, it is relatively easier to find ψ.
However, when the exact form of ρe is unknown, it is not
very straight forward to find ψ, but, it may be possible
to model ρe in these cases using available information
from the system. The Poisson-Boltzmann (PB) model is
one such model that is relevant to the distribution of free
ions within electrolyte solutions [3–5]. The PB model ex-
presses ρe as a function of ψ itself using the electrolyte-
solution properties. This leads to the PBE, which is a
non-linear function of ψ in general, but, can be reduced
to a simpler linear equation in some special cases [5, 6].
PBE is usually solved with DC [7, 8] or NC [9, 10]; for
symmetric problems one can exploit the symmetry in-
stead of specifiyeing relevant values at all the boundaries
e.g. please see equations (5) and (6) in Ref. [? ], the pair
is actually equivalent to NC.
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To demonstrate our idea of the non-equivalence of DC
and NC, we will take the help of a 1-D linearized PBE;
the idea is immediately applicable to other problems.

2. ANALYSIS AND CONCLUSION

We consider a 1-D problem in a rectangular domain
like in Ref. [7], where ρe varies essentially in the x direc-
tion, between right (R) and left (L) boundaries at ±a.
The linearized PBE is given by:

d2ψ

dx2
= κ2ψ (1)

Where κ is a parameter; λD ≡ κ−1 is known as ‘Debye
length’ [7]. To solve Eq. (1) we first use the DC:

ψ(x = +a) = ζDR ; ψ(x = −a) = ζDL (2)

The suffixesR and L in ζ correspond to ‘Right’ and ‘Left’,
while the superscript D corresponds to the DC. Solving
Eq. (1) using Eq. (2) we get,

ψD = ζDR

[
sinh{κ(x+ a)}

sinh(2κa)

]
− ζDL

[
sinh{κ(x− a)}

sinh(2κa)

]
(3)

Eq. (3) is the same as equation (1) in Refs. [11, 12] with
some difference in notations; please see appendix (B) in
the present paper for the derivation. The correctness of
Eq. (3) can be checked (see appendix (B) ) by considering
a particular symmetric case: ζDR = ζDL = ζ, to get

ψD0
= ζ

cosh(κx)

cosh(κa)
(4)

We used a suffix D0 here. Please compare Eq. (4) with
equation (4) in Ref. [7]; the little difference is due to
different scaling.

Differentiating Eq. (3) we get:

dψD

dx
= κζDR

[
cosh{κ(x+ a)}

sinh(2κa)

]
− κζDL

[
cosh{κ(x− a)}

sinh(2κa)

]
(5)
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Using Eq. (5) we define the quantities µD:

µD
R ≡

dψD

dx

∣∣∣∣
x=+a

=
κ

sinh(2κa)

[
cosh(2κa)ζDR − ζDL

]
(6)

µD
L ≡

dψD

dx

∣∣∣∣
x=−a

=
κ

sinh(2κa)

[
ζDR − cosh(2κa)ζDL

]
(7)

We write Eq. (6) and Eq. (7) in a compact matrix form:

µD
R

µD
L

 =
κ

sinh(2κa)

cosh(2κa) −1

1 − cosh(2κa)

ζDR
ζDL


(8)

The above square matrix is invertible, because its de-
terminant, ∆ ≡ − cosh2(2κa) + 1 ≡ − sinh2(2κa) 6= 0
(∵ κa 6= 0); therefore the ordered pair (ζDR , ζ

D
L ) has a one-

to-one correspondence with the ordered pair (µD
R , µ

D
L ) i.e.

if we specify values of one pair, that determines the other
pair uniquely. We invert the matrix and write,ζDR
ζDL

 =
1

κ sinh(2κa)

cosh(2κa) −1

1 − cosh(2κa)

µD
R

µD
L


(9)

Now, we will solve the PBE with NC:

dψ

dx

∣∣∣∣
x=+a

= µN
R ;

dψ

dx

∣∣∣∣
x=−a

= µN
L (10)

Solving Eq. (1) using Eq. (10) we get:

ψN =
µN
R

κ

[
cosh{κ(x+ a)}

sinh(2κa)

]
− µN

L

κ

[
cosh{κ(x− a)}

sinh(2κa)

]
(11)

The correctness of Eq. (11) can be checked easily, please
see appendix (A).

Using Eq. (11) we define the quantities ζN :

ζNR ≡ ψN (+a) =
1

κ sinh(2κa)

[
cosh(2κa)µN

R − µN
L

]
(12)

ζNL ≡ ψN (−a) =
1

κ sinh(2κa)

[
µN
R − cosh(2κa)µN

L

]
(13)

We write Eq. (12) and Eq. (13) together in a compact
matrix form:ζNR
ζNL

 =
1

κ sinh(2κa)

cosh(2κa) −1

1 − cosh(2κa)

µN
R

µN
L


(14)

Eq. (14) can be inverted to get,µN
R

µN
L

 =
κ

sinh(2κa)

cosh(2κa) −1

1 − cosh(2κa)

ζNR
ζNL


(15)

The similarity between the Eq. (9) and Eq. (14) is
evident. However they are actually different that we

describe below; we also describe the difference between
Eq. (8) and Eq. (15) that looks similar, too.

Let, we are given a 1-D system as described in the
beginning of Sec. (2), with known values of the param-
eters κ and a. Suppose we measured the values of ψ
and dψ/dx at two boundaries to obtain the two ordered
pairs (ζDR , ζ

D
L ) and (µN

R , µ
N
L ). When the pair (ζDR , ζ

D
L ) is

used as BC to solve the PBE it is called DC and we ob-
tain ψD(x) given by Eq. (3). We take spatial derivative
of ψD(x) and evaluate dψD/dx at boundaries to obtain
(µD

R , µ
D
L ). However, this pair may not coincide with the

experimentally obtained (µN
R , µ

N
L ), because, ψD(x) may

not be accurate enough due to various limitations of the
Poisson-Boltzmann (PB) model. Similarly, when exper-
imentally obtained (µN

R , µ
N
L ) is used as BC to solve the

PBE, it is called NC, we obtain ψN (x) given by Eq. (11).
We evaluate ψN (x) at two boundaries to get the pair
(ζNR , ζ

N
L ) that may not coincide with the experimentally

obtained pair (ζDR , ζ
D
L ).

Summary: We showed that the DC and NC do not
produce equivalent solutions to the PBE. The idea is
immediately applicable to other problems in electrostat-
ics. The consequences should be very important to many
branches of physical, chemical and biological sciences.

Appendix A: Description with simple symmetric
cases:

In Ref. [9], A. Ajdari solved the PBE with NC, for the
simple symmetric case; he used µN

R = σ0/ε, and µN
L =

−σ0/ε, with different notations (z → x, h → a); but,
we will stick to our convention. In this special case, we
use the symbol ψN0 instead of ψN ; using these particular
values in Eq. (11), and using the identities cosh(X +
Y ) + cosh(X − Y ) ≡ 2 coshX coshY , and sinh 2X ≡
2 sinhX coshX, we get:

ψN0
=

[
σ0

εκ

]
cosh(κx)

sinh(κa)
(A1)

The formula of ψN0
given by Eq. (A1) is the same as in

Ref. [9], which checks the correctness of Eq. (11). We use
Eq. (14) in this particular case:

ζNR
ζNL

 =
σ0

εκ sinh(2κa)

cosh(2κa) −1

1 − cosh(2κa)

 1

−1


(A2)

From Eq. (A2), using the identity 1 + cosh(2κa) ≡
2 cosh2(κa), we get:

ζN0 ≡ ζNR = ζNL =
σ0 cosh(κa)

εκ sinh(κa)
(A3)

⇒ σ0

εκ
= ζN0 tanh(κa) (A4)
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Using Eq. (A4) in Eq. (A1) we get:

ψN0 = ζN0
cosh(κx)

cosh(κa)
(A5)

Please note the similarity between Eq. (A5) and Eq. (4) of
the present paper (i.e. equation (4) in Ref. [7]); however,
these two equations are not the same; ζ may be obtained
as a result of measurement, but ζN0 is a derived quantitiy,
it is not a measured quantity, one measures something
else and uses a model to calculate ζN0 , which may not
match with the experimental values.

Appendix B: Solution of PBE with DC

The PBE:
d2ψ

dx2
= κ2ψ (B1)

Two DCs: ψ(x = +a) = ζR (B2)

ψ(x = −a) = ζL (B3)

The general solution to PBE i.e. Eq. (B1) is given by,

ψ = A exp(+κx) +B exp(−κx) (B4)

Using Eq. (B2) and Eq. (B3) in Eq. (B4) we get,

ψ(+a) = ζR = A exp(+κa) +B exp(−κa) (B5)

ψ(−a) = ζL = A exp(−κa) +B exp(+κa) (B6)

From Eq. (B5) and Eq. (B6) we get,

ζR exp(−κa) = A+B exp(−2κa) (B7)

ζL exp(+κa) = A+B exp(+2κa) (B8)

Subtracting Eq. (B7) from Eq. (B8) we get,

B =
ζL exp(+κa)− ζR exp(−κa)

2 sinh(2κa)
(B9)

Again, From Eq. (B5) and Eq. (B6) we get,

ζR exp(+κa) = A exp(+2κa) +B (B10)

ζL exp(−κa) = A exp(−2κa) +B (B11)

Subtracting Eq. (B11) from Eq. (B10) we get,

A =
ζR exp(+κa)− ζL exp(−κa)

2 sinh(2κa)
(B12)

Using expressions for A and B given by Eq. (B12) and
Eq. (B9), in Eq. (B4), then rearranging terms, we get,

ψ = ζR

[
sinh{κ(x+ a)}

sinh(2κa)

]
− ζL

[
sinh{κ(x− a)}

sinh(2κa)

]
(B13)

It can be checked that for the special case, ζR = ζL = ζ;
Eq. (B13) will reduce to equaion (4) given in Ref. [7]. For
the special case, ζR = ζL = ζ; Eq. (B13) should reduce
to equaion (4) given in Ref. [7]. Let’s check it; we need
the following identities:

sinh(X + Y )− sinh(X − Y ) = 2 coshX sinhY (B14)

sinh(2X) = 2 sinhX coshX (B15)

Eq. (B13) simplifies to,

ψ =
ζ

sin(2κa)
[sinh(κx+ κa)− sinh(κx− κa)]

= ζ
2 cosh(κx) sinh(κa)

2 sinh(κa) cosh(κa)
(B16)

∴ ψ = ζ
cosh(κx)

cosh(κa)
(B17)

Please note the little difference between Eq. (B17) and
equation (4) in Ref.[7] is due to the scaling of the variables
(e.g. x̄ ≡ x/a).
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