One Step Forecasting Model

Author:

Ramesh Chandra Bagadi

Data Scientist

International School Of Engineering (INSOFE)

2nd Floor, Jyothi Imperial, Vamsiram Builders,, Janardana Hills, Above South India Shopping Mall,, Old Mumbai Highway, Gachibowli,, Hyderabad, Telangana State, 500032, India.

Email: rameshcbagadi@yahoo.com

Abstract

In this research investigation, the author has presented two models of One Step Forecasting.

Theory

Given,

$$Y_n = \{y_1, y_2, y_3, \dots, y_{n-1}, y_n\}$$

$$Y_{(k+1),n} = \{y_k, y_{k+1}, y_{k+2}, \dots, y_{n-1}, y_n\}$$

$$Y_{1,(n-k)} = \{y_1, y_2, y_3, \dots, y_{n-k-1}, y_{n-k}\}$$

 $^{j}Y_{1,(n-k)}=j^{th}$ arrangement of elements of $Y_{1,(n-k)}$ among the (n-k)! arrangements

$$\hat{Y}_{(k+1),n} = \frac{\{y_k, y_{k+1}, y_{k+2}, \dots, y_{n-1}, y_n\}}{\left\{\sum_{i=k}^n y_i^2\right\}^{1/2}}$$

$${}^{j}\hat{Y}_{1,(n-k)} = \frac{{}^{j}Y_{1,(n-k)}}{\left\{\sum_{j=1}^{n-k} y_{j}^{2}\right\}^{1/2}}$$

 $Co\sin eSimilarity(\hat{Y}_{(k+1),n}, \hat{Y}_{1,(n-k)}) = Dot \Pr oduct(\hat{Y}_{(k+1),n}, \hat{Y}_{1,(n-k)})$

Model 1

$$y_{n+1} = \sum_{k=0}^{n-1} (\alpha_{n-k})(y_{n-k})$$

$$\alpha_{n-k} = \frac{Co \sin eSimilarity(\hat{Y}_{(k+1),n}, \hat{Y}_{1,(n-k)})}{\left\{\sum_{k=0}^{n-1} \left\{Co \sin eSimilarity(\hat{Y}_{(k+1),n}, \hat{Y}_{1,(n-k)})\right\}^{2}\right\}^{1/2}}$$

Model 2

$$y_{n+1} = \sum_{k=0}^{n-1} (\alpha_{n-k})(y_{n-k})$$

$${}^{j}\alpha_{n-k} = \frac{Co\sin eSimilarity(\hat{Y}_{(k+1),n}, {}^{j}\hat{Y}_{1,(n-k)})}{\left\{\sum_{j=1}^{n-k}\sum_{k=0}^{n-1}\left\{Co\sin eSimilarity(\hat{Y}_{(k+1),n}, {}^{j}\hat{Y}_{1,(n-k)})\right\}^{2}\right\}^{1/2}}$$

Note:

CosineSimilarity of only two different numbers can be taken as

- 1. Zero, i.e., 0
- 2. The Smaller Number among the two Numbers

Normalized CosineSimilarity of only two different numbers can be taken as

- 3. Zero, i.e., 0
- 4. Ratio of the Smaller Number by the Larger Number

Results

Model 1

For Model 1, when the first 8 Primes Numbers, i.e., $Y_n = \{2,3,5,7,11,13,17,19\}$ were taken to predict the next Number, a result of 22.8606 was found. The next Prime Number being 23, the Error % was (23-22.8606)

Error % =
$$\left\{ \frac{(23 - 22.8606)}{23} \right\} \times 100 = 0.606087\%$$

References

- 1. http://www.vixra.org/author/ramesh_chandra_bagadi
- 2. http://www.philica.com/advancedsearch.php?author=12897