Introduction to

“A Modification of the Lifshitz-Slyozov-Wagner Equation for Predicting Coarsening of y*
and Other Precipitates with Compositions Similar to that of Their Matrix”

The story behind this article is instructive, and even a bit troubling. | wrote it in 1991 as a
continuation of part of my Doctoral thesis, which I'd completed a few years earlier. During that
research, I'd found that scientists who’d done very fine laboratory work on Ostwald ripening
during the 1960s had made a curious error in simple mass balances when deriving a rate equation
for Ostwald ripening starting from the minimum-entropy-production-rate (MEPR) principle.

That error led the 1960s scientists to reject (with commendable honesty) their hypothesis that the
MEPR principle is applicable to Ostwald ripening. Like all the rest of us metallurgists back then, |
didn’t catch that error, until | examined the derivation of the MEPR-based rate equation in detail
during my thesis work. However, | didn’t manage to re-derive the rate equation fully until | took up
the subject again in the early 1990s. The scientists who did such fine lab work in the 1960s would
no doubt have been pleased to learn that their empirical results agreed quite well with predictions
made by the corrected equation. Thus, those scientists were correct in their hypothesis about the
MEPR principle’s applicability.

| continue to wonder how we metallurgists overlooked, for more than two decades, the simple
error that led those scientists to conclude, mistakenly but honestly, that they’d been wrong.

| never did manage to publish this article, but the same derivations and analyses were published
by other researchers within a few years. Some of the reviewers’ comments on the article are
addressed in the second article in this document, “Comments on ‘Ostwald Ripening Growth Rate
for Nonideal Systems with Significant Mutual Solubility’”.
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LIFSHITZ-SLY OZOV-WAGNER EQUATION FOR PREDICTING
COARSENING RATES OF y' AND OTHER PRECIPITATES WITH COMPOSITIONS
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Abstract—This study modifies the Lifshitz-Slyozov-Wagner (LSW) equation to determine
how coarsening rates are affected by partitioning of elements between matrix and precipitate.
The modified equation does not require the assumption that one element’s diffusivity controls
coarsening. Important aspects of conservation of matter during coarsening are presented.
Actual coarsening data are analyzed according to the modified LSW equation, yielding
reasonable interfacial energies (~0.01 J/m?2) for several Ni-base y/y' alloys, but an anomalous
high value (perhaps caused by elastic interactions) for one Re-containing superalloy. Analysis
of data from a study that measured both coarsening rate and rate of change of mean-field
supersaturation yielded consistent, independent values of surface energy and effective
diffusivity. Itis commonly assumed that diffusion of Al controls coarsening of y', but the
present study suggests that diffusion of elements that partition to the matrix (like Re) is equally

important.

1. INTRODUCTION

The LSW coarsening equation [1,2] and its modifications are solutions to a diffusion

problem in which the growth rate of particles with radius a is

% = -DC*QVX |-, (1



and the solute concentration in equilibrium with a particle of radius a is

Xl =%, +%, (2)
where
c* = number of atoms (of both solute and solvent ) per unit volume in the matrix;
Q = molar volume of the precipitate;
X — concentration of the precipitate species in the matrix;
Xo = concentration of precipitate species in equilibrium with a planar interface; and
n = thermodynamic factor, equal to 20€/RT for pure-material precipitates.

For X(a) - X « 1, Reference [1] showed that the average radius (<7 >) of an ensemble of

coarsening precipitates increases with time according to

<r>3-<r>z = K(t-1,), 3)

where 7, is the time at which steady-state behavior begins and
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Although the LSW equation is useful for predicting coarsening rates in many metallic
systems, it is difficult to apply to y' precipitates in Ni-base alloys because y' is
nonstoichiometric and because its coarsening may not always be controlled by y'-formers.

Elements that partition to the matrix phase (y) must diffuse away from growing precipitates, and

some authors suggest that this process can control coarsening [3].

When using the LSW equation to study coarsening of Y', authors have attempted to
deduce which element controls coarsening, after which they have used X, and D of the

“controlling” element in the LSW equation [4,5]. One weakness of this approach is that the



classic LSW equation cannot account for control of coarsening by diffusion of elements that

partition to the matrix.

A more-important weakness is that coarsening needn’t be controlled by a single
element. Each element, whether it partitions to matrix or to precipitate, should have an influence
that depends upon its diffusivity, concentration in the matrix, and extent of partitioning between
matrix and precipitate. Without accounting for partitioning explicitly, its importance in N i-base
alloys cannot be assessed accurately. The purpose of this study is to derive an equation that

accounts more satisfactorily for the role of each element.t

The derivation presented in this study is based upon the analyses of References [7] and
[8] for precipitates coarsening under a compositional constraint. A key concept in their analysis
is the minimization of entropy-production rate (MEPR) principle from irreversible

thermodynamics.

The LSW theory’s assumptions and limitations apply to the present derivation as well.
In particular, coarsening is a near-equilibrium process that occurs after growth is complete, and
there is local equilibrium between each precipitate and its surrounding matrix. Therefore,
supersaturations in the matrix are much smaller than differences between equilibrium

compositions of matrix and precipitate.

For simplicity, this derivation assumes that molar volumes of matrix and precipitate are

equal when expressed in terms of volume per mole of atoms. This assumption is approximately

true for Ni-basey/y' ailoys. References [7] and [8] describe modifications of the treatment for

unequal molar volumes. The present derivation also assumes constant activity coefficients, as’

T Since the present paper was first submitted, Umantsev and Olson have treated a similar (and in some ways
more general) problem in Reference [6], which also summarizes previous treatments of multicomponent alioys.



does the original LSW theory. References [6] and [9] discuss modifications for non-Henrian

behavior as well as its importance.
2. DERIVATION

The first step in the derivation is to relate elemental fluxes to the elements’ degrees of
partitioning between matrix and precipitate. The MEPR principle is then used to combine the
elements’ flux ratios, mobilities, and matrix concentrations into an “effective” diffusivity.
Subsequently, an equation is derived for supersaturations of each element. The equation for
supersaturations is useful (a) for establishing an analogy to the LSW diffusion solution, and (b)
for determining surface energies and effective diffusivities from studies that measure mean-field
supersaturation as a function of time. Finally, an equation for K is derived. The derivation

refers several times to the mass balances in the Appendix.

Determining Ratios of Elemental Fluxes

To determine ratios of elemental fluxes, we do a mass balance on the « matrix that
surrounds the f-phase precipitates. Because coarsening is a near-equilibrium process, we may
characterize o and g compositions by their equilibrium mole fractions Xla and X? . A mass
balance shows that to change N moles of atoms in the a phase surrounding a precipitate into N

moles of atoms as g phase, the amount of each element that must be transferred from the matrix -
1s Np;, where the partitioning p; is defined as Xiﬁ -X,-a. The p; can be treated as constants if (a)

supersaturations are small compared to differences between Xiﬁ and X? , and (b) the composition

of the B precipitates is essentially independent of radius, as is usually assumed. The validity of

assuming constant p; will be considered in comparisons with experimental results (Section 3).



For constant pj, the above mass balance shows that the ratios of atoms transferred

during coarsening must be proportional to their respective p;, thereby requiring that the fluxes J;

must satisfy the relationship
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Equation (5) seems surprising at first, for it says that the flux ratios are independent of

elements’ respective diffusivities and the precipitate’s stoichiometry, except insofar as the latter

affects p; . Equation (5) has further implications for ratios of elements’ supersaturations: the
LSW theory assumes that J; are proportional to fhe differences between mean-field
supersaturations and supersaturations at the precipitate surfaces; therefore, Equation (5) implies
that these differences must be proportional to p;. Because the mean-field supersaturations in
the LSW theory are themselves simply the supersaturations in equilibrium with particles of
radius < >, Equation (5) further implies that the supersaturation of each element is
proportionate to its p;. In the particular case of a binary alloy, the elements’ fluxes and
supersaturations must be equal in magnitude and opposite in sign if we ignore vacancy fluxes,
as the LSW theory does. All of these implications are demonstrably true under the

assumptions of the LSW theory, as will be demonstrated later in the main text and Appendix.

Formulating the “Effective” Diffusivity

To derive an “effective” diffusivity, we follow References [7] and [8], and write each J;
through the o matrix as
Ji=- Bicax;’(vui% F,-), 4 (6)
where B; is the mobility of component i, C*is the total concentration of atoms in the amatrix,
and the coupling forces F; are any general forces other than Onsager-type forces that may arise

between constituent elements by virtue of their relative motion.



Combining Equations (5) and (6), and multiplying both sides by p;,
0 SR L A N (7)
B;C°X ia
n

MEPR requires ¥ JF, =0, where n is the number of components. Therefore, from

t=i1

n
Equation (5), YpiF;=0. If we now assign one element the subscript &, and express all fluxes
i=1

in terms of Ji  then J; :%Jk . Combining these ideas with Equation (7),

n

ZPiFi =~ 2

i=1 i=1

2 n
Py K |\ 3 PV )= 0. (8)
PelBicox ™| i :

For constant activity coefficients, B; = D; /RT. Substituting this expression for B; and solving

for Jg,

DC @
Je= - pr [(—R%e—ff] 21 PV 9)
1= ’
leading to
C(Z
(DC )eff = 5 ¢ (10)
2 Y

Pi

where y; = ‘
Di X ia

Expressing Ji in Terms of VX?

To make use of the LSW solution to the diffusion problem, we must write Equation (9)

in terms of VX ,”. We can do so because the Vulf" are not independent in our case: they are

related through the supersaturations dX? , which in turn are related to each other through

~ conservation of matter, as shown in the Appendix. For constant activity coefficients,



; o
du®= RT dX%“/X® Also, dX * = PLdX * (see Appendix). Therefore, dp,” = 25 qu,”. In
. i i Tk ! x@ b
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addition, LSW demonstrated that VX " at the particle/matrix interface is proportional to the

difference between the mean-field supersaturation and the supersaturation at the interface, both

of which are proportional to pj, as will be demonstrated later [Equation (20)]. These ideas lead

to _
" X @ < 2
[0 1 x
2 py” =) == 2|2 |y Coan
i=1 Pk ;o1 \x |
and subsequently to )
no( 2
DC P
T = [(._#] XE X = | Vi (12)
i=1\X% /]
Again using du”= RTdX /X7, we arrive at
nof 2

vx /7. (13)

To put Equation (13) in the form of Equation (1), we recognize that one mole of atoms as «
phase is transformed into one mole of atoms as g phase for every pr moles of element &

transferred. Therefore, the analog to Equation (1) in our case is

ve ”
= ‘[(Dc)eff] P—ZL 2

=

2
P;

a
i

da

da VX&) a (14)

where V ”[f is the volume per mole of atoms in the g phase. Equation (14) cannot be correct
unless VX.” o p; forall i. Otherwise, the coarsening rate predicted by Equation (14) would

depend upon which element is assigned subscript k. The proportionality between VXia and p;

will be demonstrated next.



Expressions for 177-and the Supersaturations dX?

The LSW diffusion solution shows us that K for our case will be ;lVZ times the product
of ) of element k (1)) and the coefficient of - VX}' »— o 1n Equation (14). When both
precipitate and matrix are essentially pure substances, as in the original LSW theory, n of the
precipitate species is equal to 20£2X/RT. However, this is not true when matrix and precipitate

have similar compositions. Nor is the corresponding increase in chemical potential necessarily

equal to 20€2/r [10]. To determine n, we follow Reference [10] and write the changes in dy‘;‘

and dptf in terms of corresponding departures from planar-interface X ia and X Iﬁ :

a
ou:
=3 || X * (15)
o a
J=k an T’P’Xmaej,k
and
B ou

au’ =3 |25 ax ? + Vaph, (16)

B

m#jk

J =k aXﬁ TP, X,

where dPP1s the increase in pressure on precipitates of radius 7 due to interfacial tension. To

maintain local equilibrium, d],tia = dyf . Setting Equations (15) and (16) equal, multiplying by

Xf, and summing over all i,

n f (04 n ﬂ

o, I \
33 xA x*ls B3 xf| 2 ax P vEaph. (17)
i=1 \j#k ana T’P,X::#jvk j i=1 \j#k anﬁ T,P,X'i‘j‘k [

By the Gibbs-Duhem equation, the summation on the right-hand side of Equation (17) is equal

to zero [10]. In.addition, for constant activity coefficients,

o’ RT RT
(_l-) = —,0i=j; 0 i=j=k; and - —, i =k . (18)
ax;’ TEX: X Xy
Therefore, Equation (17) becomes
X!
D X = #dPﬁ . ' (19)

=1 X,-a
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From conservation of matter, 3 dX ,.a = 0. Subtracting this expression from the left-hand side
i=

of Equation (19), rearranging, and using dX [a =2 ax : (see Appendix),
Pk

vFPaph
dx [ = P ) (20)
noog

rT Y L
Pk

Now, using dPP = 2od(1/r ), we can see that

20p VP
e = ——x'm_ @1

noo2
: p;
RT X —
i=1X;
Note that py and »z have the same sign. Therefore, as in the LSW theory, « adjacent to a
precipitate is enriched in elements that partition to the precipitate and depleted in elements that

partition to the matrix. Also, because VXia x dX; “ Equation (21) shows that VXI.O‘ x p; for

all i, as required for Equation (14) to be valid. An additional implicaﬁon of Equation (21) is that
for elements that partition to the matrix (p; negative), 2 “is actually lower adjacent to
precipitates of finite radius than adjacent to a planar interface, and it increases as precipitates
coarsen. Because of the Gibbs-Duhem equation, this situation also holds true in the classic
LSW situation (i.e., when matrix and precipitate are essentially pure, insoluble materials), but is

seldom noted [6].

Final Expression for K

Combining Equations (1 )ﬂ through (4), (14), and (21),

2
K - g{(DC )eﬂl; ; (Vzﬁ) } (22)

Equation (22) is identical in form to Reference [7]’s result for stoichiometric

compounds, and can be simplified under some circumstances. For example, if gin a binary



alloy is essentially pure B and «is essentially pure A, then ps =-1, pp = 1, and X}, « X"

Unless D4 « Dp , 4 is much smaller than yp, and Equation (22) reduces to the standard LSW

equation. Under the same conditions, Equation (21) reduces to the LSW expression for 7.

Variation of Mean-Field Supersaturation with Time

References [1] and [11] note a rearrangement of Equations (21) and (22) that is useful
for determining o from coarsening studies. Following their reasoning, we can write the mean-
field supersaturation in the matrix as a function of <r>:

X J<rs) - X fw) = K& (23)
<r>

We then define X ,f‘ (<r>)- X, %(o0) = A; and combine Equations (22) and (23) to obtain

(L)B i (Lf LV AP (24)
Ar) Ak nzf

Deﬁmno = Xk, We can see that yx is the slope of L versus time. Reference [11] notes that by
nk Ak

measuring both <r> and Xl: as a function of time, one may determine K and i empirically, then

find n from K/xg = (ny, )3, which leads to an equation that we may use to calculate o without

w2 1
ik
i Xla Xk
- . (25)
2Vf1pk

Similarly, we can determine (DC )eff Without knowing o via

knowing the diffusivities:

o =

Wi -

pkak)
2 )
ah s =
i—lXia

(DC )= (26)

10



3. COMPARISON WITH PUBLISHED STUDIES

Equation (22) is valid only to the extent that p; may be treated as constants. We can

address this issue by considering Reference [11]’s data on concentration of Al as a function of

time in the y matrix of Ni-Al alloys. Reference [11] found that at 715°C, XAI dropped from

0.125 after 0.5 hours (the first data point) to 0.123 after 96 hours, by which time X,Il was

essentially indistinguishable from the equilibrium concentration. The mole fraction of Al iny'
15 0.232 [12], from which we can see that p4; was within 2% of the equilibrium ;/alue
throughout Reference [11]'s experiment. Because (DC)¢y varies with the sum of squares of p;,
the error incurred by assuming constant p; should be on the order of 5%, which is usually

negligible.

Few authors of coarsening studies have provided compositions of both matrix and
precipitate, as needed for use of Equations (22) and (25). Among those who did were Ardell
and his co-workers [11,12] for Ni-Al alloys, Davies et al. [13] for Ni-Co-Al alloys, and Giamei

and Anton [3] for a Re-containing Ni-base superalloy.

Reference [11]’s data are particularly valuable because the author measured both XXI
and <> as a function of time, thereby enabling us to compare o values obtained from Equations
(22) and (25). Calculation of ofrom Equation (25) is summarized in Table 1. V,’;l' was
assumed to be 6.79 x 10 m3 per mole of atoms, corresponding to a lattice parameter of
3.56 x 1010 m. Resulting o values are on the order of 0.01 J/m2. For comparison with later

results, Table 1 also gives values of (DC)efr calculated from Equation (26).

Tables 2 through 4 summarize calculation of ofrom Equation (22). (DC)eﬁfvalues
given in Table 4 were calculated from Equation (10) using diffusion parameters presented in
Table 2. Values presented in Table 2 provide only approximate intrinsic diffusivities for the

alloys considered in this study because diffusion parameters for Al, Ti, and W were determined

11



by [14] from dilute binary Ni-base alloys, and values for Co, Cr, and Re are assumed equal to
those of Ni, Ti, and W, respectively. C' was taken as 1.47 x 10° moles of atoms per m3,
corresponding to a lattice parameter of 3.56 x 10-10m. K in Table 4 is the experimentally
determined slope of ('@ /2)3 vs. 1, where a is the average length of the sides of y' cubes.
Calculated values of opresented in Table 3 were determined by setting the measured K equal to

the right-hand side of Equation (22) and solving for o. Coarsening rates were not corrected for

volume fraction because existence of a volume-fraction effect in y'is controversial [13,15,16].

A study of Table 3 shows that 14; is rarely much larger than that of other elements.
Because 1 is a measure of an element’s contribution to coarsening resistance, this result
suggests that Al diffusion may not truly control coarsening of y', as is often assumed. Instead,
yvalues for Co and other elements that partition to the matrix are often fully comparable to 14,

suggesting that these elements can be as important as Al.

By comparing entries for Reference [11]’s data in Tables 1 and 4, we can see that
(DC)eﬁvalues calculated from Equation (10) agree well with values from Equation (26).
Similarly, o values from Reference [11]’s data in Table 4 agree well with corresponding values
from Table 1. With the exception of alloy 1444 + 4Re, o values in Table 4 also agree
reasonably well with Reference [17]’s rough estimate of 0.03 J/m2. In contrast, ofor
1444 + 4Re is 0.16 J/m?2, approximately an order of magnitude larger than values for the Ni-Al

and Ni-Co-Al alloys.
4. DISCUSSION
Like the standard LSW equation, Equations (10) and (22) predict that coarsening is

inhibited most effectively by elements with low diffusivities and low concentrations in the

matrix. However, Equations (10) and (22) also predict that large degrees of partitioning inhibit

12



coarsening. This prediction is reasonable, since elements that do not partition need only order

into the precipitate’s crystal structure rather than diffuse between particles [3].

In addition, because 3; « (p; )2, Equation (22) predicts that the algebraic sign of p; does
not affect coarsening. This prediction, too, is reasonable, as low-diffusivity elements can inhibit
coarsening as effectively by having to diffuse aWay from coarsening particles (p; negative) as by
having to diffuse toward them (p; positive). This prediction supports suggestions by Giamei

and Anton and Davies ef al. about the roles of Co and Re, both of which partition to the matrix.

Although these qualitative predictions are reasonable, there i.s some discrepancy in the
calculated o values. Ni-Al and Ni-Co-Al alloys gave reasonable, consistent o values insofar as
uncertainties in diffusivities allow, and the agreement between values calculated from Equations
(22) and (25) is encouraging. However, the o value for Giamei and Anton’s alloy seems
anomalously large. There are several possible causes for this discrepancy, two of which are

listed below as hypotheses that can be tested to assess Equation (22)’s validity:

1. Actual diffusivities in 1444 + 4Re may differ considerably from the approximate

values used in this calculation.

2. Elastic effects may be important. As described by Voorhees [15], elastic effects not
only can modify solute distributions around precipitates, but can create interparticle
interactions that overwhelm capillarity-driven coarsening. In this connection, note
that among the alloys listed in Tables 3 and 4, only 1444 + 4Re should have a
negative lattice—paranieter mismatch [3]. Therefore, elastic effects may be

qualitatively different in this alloy.

A third possibility, raised By References [11] and [18], is that the MEPR principle is not

applicable to coarsening, in which case the differences between calculated o values would have

13



no physical meaning. Christian [18] noted that the applicability of the MEPR principle to
complex phenomena in general is controversial, and Reference [11] questioned its applicability

to coarsening of y' in particular.

As evidence, Reference [11] noted that (DC)eprvalues calculated from Reference [11]'s
versions of Equations (10) and (26) disagree by considerably more than the uncertainty in
diffusivities. However, Reference [11] did not consider effects of partitioning, and its (DC)¢
values appear to disagree primarily for that reason. In contrast, DC)¢fr values calculated in the
present study from Reference [11]’s data agree well. This agreement suggests that the MEPR

principle’s applicability to y' may merit reconsideration.

As noted in the Introduction, some works have applied the LSW equation to coarsening
of y' by assuming that one element (usually Al) controls coarsening. This assumption led to an
inconsistent application of the LSW equation in that the calculations used Qof NizAl and D of
Al. A possible reason for this inconsistency is the thought that NizAl dissolves
stoichiometrically in‘y, yielding one mole of Al for every mole of NizAl. However, the ratio of
Al released to y' dissolved is given more realistically by p4;. In addition, it is not clear that Al
alone controls coarsening in these alloys. For this reason, o values calculated by other

references may need to be reconsidered.
5. SUMMARY

The MEPR principle leads naturally to a modified LSW equation that makes correct
qualitative predictions about the role of partitioning. The modified equation reduces to the
- standard LSW equation under appropriate conditions. Interfacial energies calculated from the
modified equation provide testable hypotheses about diffusivities and elastic interactions in Re-
containing alloys. Although it is commonly believed that diffusion of Al controls coarsening of

y', diffusion of elements that partition to the matrix may be equally important.
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APPENDIX
SOME ASPECTS OF CONSERVATION OF MATTER DURING COARSENING

Proportionality between Supersaturations (dX? ) and Partitionings (p;)

If equilibrium compositions of matrix phase « and precipitate phase g separated by a
planar interface are X and X{ respectively, then the inverse lever rule, (i.e. conservation of
matter), shows that the fraction of atoms contained in the g phase of an alloy with bulk
composition X is given by f* = (X? - X{) / p; , where p; = Xf - X¢. If pis in the form of
precipitates of radius 7, both the compositions and /P will change [10] (although the changes in

Xf are ignored in the LSW theory).

Again from conservation of matter, the changés in composition and fP are related by

XP7%+ X0 P = (XF+ axP)( %+ ar®) + (XF + axP ) fP + af? ). (A1)
A first-order expansion of df# gives ‘
dff = a—fﬁ-dx;Z + fﬁdxﬁ (A2)
aX” oxP !
which leads to
dxf:_[if; pl.+i;-dx;’}. (A3)
f f
Substituting this expression for dX/ into Equation (A1), and realizing that df #= - df ¢ |
7 dX;'=—pdf". (A4)

This result shows that supersaturations are proportional to elements’ degrees of partitioning.
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Consistency between Supersaturations and Flux Ratios

For simplicity, the discussion presented here deals with a binary alloy, but the
principles hold true for a multicomponent alloy. It is often believed that during coarsening of
particles of AaBp in a binary A-B alloy, the fluxes J4 and Jp are in the ratio J4/Jg=alb.
However, this idea violates conservation of matter, which requires that J4 + JB = 0 (both within
the matrix and at particle/matrix interfaces) if we ignore vacancy fluxes [19], as the LSW theory
does. From J4 +JB = 0, conservation of matter requires that J4 = -/g , and that J4/Jp = -1.
Therefore, it is not physically possible for J4/Jp to equal a/b in a binary alloy. This point was

.

recognized implicitly by [6].

Instead, as was shown in the main text [Equation (5)], fluxes must be proportional to
the elerﬁe_nts’ respective p;. (In a binary alloy, pg = -pp; therefore, Ja/Jg=-1.) This
proportionality maintains consistency in two important ways: (a) since Zp; =0, XJ; =0,
confirming conservation of matter; and (b) since both J; and supersaturations are proportional

to pj, Ji = VXl.a for all i (because VXl.a is proportional to the difference between mean-field and

interfacial supersaturations of i, both of which supersaturations are proportional to p;).

One important (and surprising) implication of the fact that both J; and VXl.a are

proportional to pj is that the effective diffusivity must be the same for every element. However,
that is exactly the result obtained from nonequilibrium thermodynamics in Equation (10) of the

main text, again demonstrating self-consistency.

Consistency between Flux Ratios and Coarsening Rates

The self-consistency demonstrated thus far (i.e., that both the supersaturations dX’.a
and the fluxes J; are proportional to p;) is essential, but not sufficient. It is also necessary to
demonstrate that fluxes proportional to pi are consistent with the mass transfers that occur

during coarsening. This demonstration was made in the discussions that led to Equation (5) in

the main text. Therefore, the overall conservation of matter is consistent: supersaturations are
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proportional to p;, thereby producing fluxes proportional to p;. In turn, fluxes proportional to p;
are exactly those needed to transform the a matrix into  (or conversely, to transform finto

when a smaller-than-average particle dissolves). This necessary consistency is violated at

several points by the idea that JA/JB = a/b during coarsening of AzBp in a binary A-B alloy.
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Table 1. Calculation of o and (DC)egrfrom K and x4; (Ni—6.35 and Ni-6.5 wt. % Al [1 117)

Element Xi" XI?' pi  Kmdsec  xar. nAl > M a, (DC)eft,
(x 1080  sec! (x 101D J/m?2 moles/m-sec
898K:
Ni 0.869 0.768 -0.101
2.25 868 1.37 0.0067 6.12x 10-14
Al 0.131 0.232 0.101
988K
Ni 0859 0.768 -0.091
65.4 28,500 1.32 0.0060 2.18x 1012
Al 0.141 0.091

0:232

T XI.Y 'was calculated from Figure 1 of Reference [12].
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Table 2. Values used for each
element in the diffusivity equation
D =D, exp(-Q/RT) [14]

Element D,, m2/sec Q, kJ/mole

Ni 127x 104 279
Al 1.87x 104 268
Ti 86x 105 257
W 1.11x103 321

Co Assumed equal to Ni values’
Cr Assumed equal to Ti values’
Re Assumed equal to W values'

T By present author.
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Table 3. Calculation of y; values from data of References [3,11,12,13]

Element Xiy XI-Y pi D;, m?/sec Y, sec/m>
Ardell [11], Ni-6.35 and Ni-6.5 wt. % Alt
898K : '
Ni 0.869 0.768 -0.101 7.48 x 10-21 1.56 x 1018
Al 0.131 0.232 0.101 4.81 x 10-20 1.62 x 1018
OB8K :
Ni 0.859 0.768 -0.091 2.25x 10-1° 4.25x% 1016
Al 0.141 0.232 0.091 1.26 x 10-18 4.62 x 1016
Ardell et al. [12]. Ni-6.7 wt. % Al, 1023KT
Ni 0.867 0.770 -0.097 7.20x 10-19 1.50 x 1016
Al 0.133 0.230 0.097 3.86x 10-18 1.83 x 1016
Davies et al. [13], Ni-Co-Al Alloys, 1073K#
Alloy Ni 10-13 -
Ni 0.792 0.694 -0.098 332x10-18 3.65x 1015
Co 0.0935 0.0605 -0.033 3.32x10-18 3.51 x 1015
Al 0.114 0.245_ 0.131 1.68 x 10-17 8.94 x 1015
Alloy Ni 22-13
Ni 0.665 0.652 -0.013 3.32x 10-18 7.69 x 1013
Co 0.238 0.109 -0.129 3.32x 10-18 2.10 x 1016
Al 0.0969 0.239 0.142 1.68 x 10-17 1.24 x 1016
Alloy Ni 37-12
Ni 0.508 0.541 0.0325 3.32x10°18 6.25x 1014
Co 0.407 0.224 -0.183 3.32x 1018 2.48 x 1016
Al - 0.0852 0.2355 0.150 1.68 x 10-17 1.58 x 1016
Alloy Ni 49-12 ‘
Ni 0.379 0.485 0.106 3.32x 10-18 8.87 x 1015
Co 0.516 0.285 -0.231 3.32x 10-18 3.13 x 1016
Al 0.105 0.231 0.126 1.68 x 10-17 8.98 x 1015
Giamei and Anton [3], 1444 + 4Re, 1338K
Ni 0.711 0.741 0.030 1.63 x 10-15 7.77 x 1011
Al 0.013 0.105 0.092 6.44 x 10-15 1.01 x 1014
Ti 0.010 0.028 0.018 7.96 x 10-15 4.11x 1012
w 0.0654 0.0708 0.0054 3.26x 10-16 1.37 x 1012
Cr 0.182 0.056 -0.126 7.96x 1015 1.09 x 1013
Re 0.0193 0.000 3.26 x 10-16 5.92 x 1013

-0.0193

T }QY calculated from Figure 1 of Reference [12].

¥ Mole fractions were calculated from Figure 8 of Reference [13].
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Table 4. Calculation of o from data of References [3,11,12,13]

Zy, (DC’)eﬁﬂL Actual K Calculated o
(sec/m?2) (mole/m-sec) (m3/sec) (J/m?2)

Ardell [11], Ni=6.35 and Ni—6.5 wt. % Al

898K:

3.18 x 1016 4.62 x 10-14 2.25x 1030 0.0089
988K: ;

8.86 x 1016 1.66x 10°12 . 6.55x 102° 0.0079

Ardell et al. [12], Ni-6.7 wt. % Al, 1023K

3.33 x 1016 441 x 10-12 1.72x 1028 0.0081
Davies et al. [13], Ni-Co-Al Alloys, 1073K

Alloy Ni 10-13

1.61 x 1016 9.13 x 10712 2.87 x 10728 0.0068
Alloy Ni 22-13

334 x 1016 4.40x 10-12 2.65x 1028 0.013
Alloy Ni 37-12

412x1016  356x10°12  2.04x 1028 0.012
Alloy Ni 49-12

491 x 1016 299 x 10-12 1.80 x 1028 0.013
Giamei and Anton [31], 1444 + 4Re. 1338K*

1.77 x 1014 832x 1010  486x 1025 0.16

T Calculated from Equation (10).
¥ K determined by plotting values for z > 2 hours from
Table III of Reference [3].
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COMMENTS ON “OSTWALD RIPENING GROWTH RATE
FOR NONIDEAL SYSTEMS WITH SIGNIFICANT MUTUAL SOLUBILITY”

J. A. SMITH

References [1] and [2] present two extensions of the LSW theory of precipitate
coarsening: (1) to alloys with large degrees of mutual solubility between precipitate and matrix;
and (2) to alloys whose deviations from Henrian behavior make the LSW theory’s assumption of

constant activity coefficients untenable.

Although these ideas are potentially valuable, [1] and [2] contain inconsistencies and
conceptual errors that restrict their usefulness and invalidate some of their equations. The most
important of these errors are (1) confusion of thermodynamic and kinetic influences upon local
supersaturations around precipitates; (2) diffusive flux ratios that conflict with their
thermodynamic treatment; and (3) assumptions about diffusivities that lead to further

inconsistencies.

Thermodynamic versus Kinetic Influences

An important part of Reference [1] and [2]’s treatment is determining the degree of
supersaturations around precipitates in alloys that deviate from Henrian behavior (i.e., whose
activity coefficients are not constant). Reference [1] shows that it is straightforward to do so for
binary alloys. However, Reference [2] notes that it is not possible to determine supersaturations

in ternary alloys from thermodynamics alone; instead, one must also use mass-balance



information. Rather than do so, [2] simplifies the derivation by dividing it into various cases. In
some of these cases, the supersaturation of one element or another is assumed to be essentially

equal to zero. Reference [2] states that this situation can arise due to rapid diffusion.

This idea is erroneous firstly because it violates the assumption of local equilibrium on
which the LSW theory is based. Equilibrium supersaturations associated with discrete
precipitates depend only upon capillarity effects and conservation of matter; they are independent
of kinetics. Secondly, as will be shown later, diffusive fluxes of the alloy’s elements must have
definite ratios that are determined by mass balances. Conservation of matter dictates that one
element cannot diffuse so rapidly as to reduce its supersaturation to essentially zero without the
other elements doing likewise. That being the case, one cannot assume arbitrarily that only one

element’s supersaturation is negligible.

In addition, this assumption is unnecessary because one can determine the
supersaturations readily by establishing firstly that the supersaturation of any element i is
proportional to its degree of partitioning between matrix and precipitate. To show that this is so,
consider an alloy in which equilibrium compositions of matrix phase « and precipitate phase f
separated by a planar interface are X,* and X/ respectively. From conservation of matter, the
fraction of atoms contained in the g phase of an alloy with bulk composition X is given by
=X - X /p;, where p; = XF - X*. If pis in the form of precipitates of radius 7, both the

compositions and ff will change [3].

From conservation of matter, these changes are related by

X%+ XPrP = X3+ aXI)E* + o) + (%P + oxXD P + 979, (1)

A first-order expansion of 8/ F gives



p B
o b= P oxey U oxt @
0x* ax!
which leads to
of b ¢
6Xf=—[—{7 i+§—,‘3_6xiﬂ' 3)

Substituting this expression for X/ into Equation (1), and realizing that d/f = -0/ &, we arrive
g P q g

after considerable manipulation at

B = 5 )

To maintain local equilibrium, chemical potentials must remain equal in both phases.

Therefore, departures from planar-interface chemical potentials must be equal:

o = (r) — g (r =) =ouf, or, in terms of the supersaturations [4],

o uf* « ouf

m = m #j K

X’ +v oPf (5)

where dPPis the pressure on gprecipitates of radius 7 due to interfacial tension.

If we now multiply both sides of Equation (5) by X/ and sum over all i, the summations

on the right-hand side are equal to zero because of the Gibbs-Duhem equation [4], resulting in

> xS (a"?)
: < j’k[ axy TPX%

m=.

]5}9“} = Q%pP*# 6

where F is the molar volume of . Also from the Gibbs-Duhem equation,



a d ,“ia al
TR S

Subtracting Equation (7) from Equation (6), and using p; = X - X%,

A

m=jk

]a)g’} = QfspP . (®)

We next write the left-hand side of Equation (8) in terms of a single element’s supersaturation.
We do so by making use of the proportionality between supersaturations and p;. If we write all
supersaturations in termé of that of element £, the element whose mole fraction was not held
constant in the above derivatives, then the supersaturation of any element i is given by dX,* =

(PilPl)dXy. Substituting this result into Equation (8), and using u¢ = u¢ + RTIn (X7y9),

3, olnx? dlny| QF o PP
(Tk')z pi 2 pj 0 j = . (9)
k i )ga J=k a)sa RT
TPXe 4 TER S
Now, dlnX/0Xj = 1/X"*fori=j, 0 fori=j=k, and -1/X; for i = k. Therefore, using dPF =
20lr,
o Zapk Qﬁ
KS = (10)

J

; dlny '
RT 2 p sr +2 By
i Xi Jj=k aXa T PxX©
T mejk

The derivatives of y¢ can now be expressed as appropriate to the thermodynamic model for the

alloy.



Diffusive Flux Ratios

According to Reference [1], ratios of diffusive fluxes J; through the matrix are equal to

the stoichiometric ratios in the  phase:

L/ (11)
Jp X’,g;

This idea is erroneous because Equation (11) implies that in a binary alloy, both elements’ fluxes
must have the same algébraic sign. However, conservation of matter requires that 56X =-5X7.
That is, if the matrix next to a precipitate is enriched in one element, it must be depleted in the
other. Therefore, the concentration gradients between precipitates must be equal and opposite,
and so must the fluxes in a near-equilibrium situation like Ostwald ripening. According to
Equation (11) fluxes are not proportional to the supersaturations that induce them, thereby

violating one of Reference {1]’s assumptions.

A second argument against Equation (11) is that it implies an unreasonable description of
events at the matrix/precipitate interface. We can see this by considering a monolayer containing
N moles of atoms in the « phase at the interface with a g precipitate. According to the model
from which Equation (11) arises, this monolayer of « is replaced completely by one of upon
arrival of NXﬁ moles of A and NX% moles of B from the matrix. The original atoms that
comprised the « monolayer must all diffuse away or move away by fluid flow. Hence, 2N moles

of atoms must be transported to form N moles of .

A more-reasonable mechanism suggests itself from the observation that if
supersaturations are small compared to pj, the monolayer will contain NX;" moles of each
element before transforming and NX,ﬁ afterward. Hence, the layer of « can transform to g by

incorporating Npg moles of B (assuming B is the majority component in ) and rejecting Npy



moles of A. By this mechanism, the same amount of gis formed with much less mass transport.

In addition, the fluxes of A and B produced by this mechanism are automatically opposite
in sign and proportional to their respective supersaturations because both 5X; and J; are

proportional to p;. Extending this argument to multicomponent solutions gives us

Ji b
pul S o N 12
7. B (12)

The proportionality between supersaturations [Equation (10)] and the diffusive fluxes that result
from them [Equation (12)] arises from conservation of matter, and is essential to self-consistency

of the solution. This self-consistency lends credence to the approach used here.

Assumptions about Diffusivities

Reference [1] assumes that diffusion of the precipitate’s majority component is rate-
limiting. This rather restrictive requirement detracts from the usefulness of their idea, and is
unnecessary because Reference [6] shows how to treat cases in which no single element’s
diffusivity controls coarsening. In such cases, each element contributes to an “effective” product
of mobility and matrix concentration. Reference [6]’s treatment can be extended to alloys with
substantial mutual solubility between matrix and precipitate, with the result that the effective

product of concentration and mobility is [5]

Ca
2
p,
P

MX;

(MC),; = ; (13)

where C% is the total number of atoms per unit volume in o, and M; is the mobility of i. Using

this “effective” value, the flux of element & is given by



Je= =P (MC)g ]2 PV - (14)

Because supersaturations are proportional to pj, so too are the VX; . Therefore, we can

proceed as in [5] to write Equation (14) in terms of VX,‘(’ , with the result that

Jlny @
_[(MC)eﬁ]RTIZ P X7 +§k J( X ) VX[ . (15)
' d TPX®

m=jk

Net Effect of Non-Henrian Behavior Upon Coarsening

The net effect of non-Henrian behavior can be seen by writing the coarsening rate of an
individual precipitate particle in terms of Ji. As shown earlier, one mole of a-phase atoms is
converted to one mole of g-phase atoms for every pj moles of element k transferred. Therefore,

the coarsening rate of a particle of radius a is given by

dlny

da Qﬂ pi L a

08 oo S MO o IRT S B : VXi lr=a-

df pk [( )eﬁ] ’z pt Xa % Sk pj a : k lr_a (16)
J T’P'X;aejk

When da/dt is expressed in this form, the LSW rate constant K is equal to the product of

4/90B, the coefficient of -VX ¢ in Equatien (16), and the coefficient of 1/r in Equation (10). Asa

result, the thermodynamic terms in Equations (10) and (16) cancel, leaving

K =8[(MC) 4]0 (2" ). (17)

This result shows that when VK is written in terms of mobilities, the change in
supersaturation that accrues from non-Henrian behavior does not appear. This result is
reasonable because the driving force for coarsening is the chemical-potential difference between
precipitates of different radii, which difference is equal to 208 A(1/7)] regardiess of the

resulting degree of supersaturation in the matrix.



s

However, if we write K in terms of diffusivities, the non-Henrian behavior does enter the
solution. For binary alloys, the effect is exactly as given by [1] because M; in a binary alloy is
given by M; = Di/RT(1 + diny¢# /dInX;"). In Reference [1]’s notation, diny¢ /dInX; =

2X 4 X1ap, Where lyp is a thermodynamic interaction parameter. (MC)efr then becomes

D,D,C XX

(MC), = —— i
7 RT(piDpX 3 + paD X 5 )(1-2X §X 31,p)

(18)

Comparing Equation (18) with Reference [1]’s Equation (24) shows that Reference [1] is correct
regarding the inverse relationship between coarsening rate and the factor 1-2Xy X3 /45 in binary

alloys.

Conclusions

Conceptual errors in Reference [1] and [2]’s treatment, particularly regarding flux ratios,
invalidate much of it. However, Reference [1] and [2] are correct about the thermodynamic
factor 1—2XXX‘§ZAB in binary alloys. Reference [1] and [2]’s treatment requires one element’s
diffusivity to “control” coarsening, but this unnecessarily restrictive requirement is readily
avoided by using Reference [6]’s method to determine an “effective” product of concentration
and mobility (or diffusivity). By doing so, the LSW equation can be extended to
multicomponent alloys with large degrees of solubility between precipitate and matrix. The
resulting formulas for show that both supersaturations and fluxes are proportionate to the degree

of partitioning, p;. This result is essential to self-consistency of the solution.
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