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Abstract 

This exposition has the following main objects in view. (1) All main depth-integrated time-

dependent and time-averaged characteristics, – as the velocity potential, velocity, pressure, 

momentum flux density tensor, volumetric kinetic, potential, and total energies, Poynting (energy 

flux density) vector, radiation (wave) stress tensor, etc, – of the ideal  (inviscid, incompressible, and 

irrotational) fluid flow in an imaginary wave-perturbed infinite water layer with an arbitrary shaped 

bed and with a free upper boundary surface, and also the pertinent depth-integrated time-dependent 

and time-averaged differential continuity equations, – as those of the mass density, energy density, 

and momentum flux density (Euler’s and Bernoulli’s equations), etc, – are rigorously deduced from 

the respective basic local (bulk and surface) characteristics and from the respective bulk continuity 

equations, with allowance for the corresponding exact kinematic boundary conditions at the upper 

(free) and bottom surfaces and also with allowance for the corresponding exact dynamic boundary 

condition at the free surface, which follows from the basic Bernoulli equation. (2) The recursive 

asymptotic perturbation method with respect to powers of ka that has been developed recently by the 

present author for the local characteristics and bulk continuity equations of the ideal fluid flow in the 

presence of a priming (seeding) progressive, or standing, monochromatic gravity water wave 

(PPPMGWW or PSPMGWW) of a wave number k>0 and of wave amplitude a>0  in an imaginary 

infinite water layer of a uniform depth d>0 is extended to flow’s momentary and time-averaged 

(TA), depth-integrated (DI) characteristics and to their continuity equations, particularly to the 3×3 

radiation, or wave, stress tensor (RST). (3) The extended recursive method is applied to 
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PPPMGWW’s and PSPMGWW’s with the purpose to obtain their main TADI characteristics in 

terms of elementary functions. (4) The first non-vanishing asymptotic approximation of a 

characteristic, particularly that of the 3×3-TADIRST, of a PPPMGWW or PSPMGWW is 

generalized to a priming progressive, or standing, quasi-pane (PPQP or PSQP) MGWW. (5) The 

longshore wave–induced sediment transport rate, expressed by the so-called CERC (Coastal 

Engineering Research Council) formula, is briefly discussed in its relation to the 〈x,y〉-component of 

the 3×3-TADIRST of the pertinent PPQPMGWW. (6) The presently common 2×2-TADIRST’s of 

progressive and standing water waves, which have been deduced by various writers from intuitive 

considerations and have been canonized about 55 years ago, are revised in accordance with the 3×3 

ones of the recursive asymptotic theory. 
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1. Introduction 

In my resent paper Iosilevskii [2017], to be cited henceforth as I, a recursive asymptotic 

theory has been developed for local (bulk and surface) characteristics of an ideal (inviscid, 

incompressible, and irrotational) nonlinear gravity wave motion on an infinite water (liquid) layer of 

a constant depth d with respect to powers of a dimensionless real-valued scaling parameter ‘ka’, 

where k>0 is the wave number and a>0 the amplitude of a priming (seeding) progressive, or 

standing, plane monochromatic gravity water wave (briefly PPPMGWW or PSPMGWW 

respectively). The method, by which the nonlinear water wave problem has been treated in I from 

scratch, can be regarded as a peculiar instance of the general perturbation method, which is known as 

the Liouville-Green (LG) method in mathematics and as the Wentzel-Kramers-Brillouin (WKB) 

method in physics. Broadly speaking, this exposition is a continuation of I, in which the recursive 

asymptotic theory, developed in I, is extended to any momentary or time-averaged depth-integrated 

characteristic and depth-integrated continuity equation, of a nonlinear gravity wave motion induced 

by a PPPMGWW or PSPMGWW. To be more specific, the plan of this study, outlined in its 

Abstract, will be followed closely. 

The notation of paper I retain, and it will, as a rule, be used throughout the exposition without 

any further comments. This applies particularly to the conventional set-theoretic notation (see, e.g., 

Halmos [1960] and to the Special Quotation Method (SQM), which is used for distinguishing 

between use and mention of graphic symbols; both are important parts of the underlying language of 

I. Still, for the reader’s convenience, I shall, from time to time, recall some elements of the notation 

of I. In referring to numbered articles (as sections, subsections, equations, corollaries, definitions, 

etc) of paper I, the numeral name of an article will be preceded by the Roman numeral ‘I’. For 

instance, “(I.6.14)” or “Corollary I.6.1” stands for equation (6.14) or Corollary 6.1 in I. Whenever 

confusion can result, the end of an article as a comment, preliminary remark, proof, etc will be 

marked by a heavy dot ‘•’, – just as in I. 
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2. Basic depth-integrated continuity equations 

 

2.1. Preliminaries 

Definition 2.1 (a definition schema). Let ‘ F t x( , ) ’ be a real-valued functional form which, 

along with its first-order partial derivatives, is defined for each 22, ERxt ×∈  and for each 

z h x t x∈ −[ ( ), ( , )]2 2Ζ  (i.e. for each ) ,(, cc
ff Ζ−∈ hxt D , in accordance with Definition I.3.2). Then 

( ) ∫∫
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h

xt

xh

dzFdzxtFxtFF   ),(,
),(

)(
2

2

2

d
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d
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,                                            (2.1) 

the understanding being that ‘F’ is a placeholder (ellipsis), which should be replaced by a specific 

base letter (as ‘Φ’, ‘V’, ‘E’, ‘P’, etc) with some or no labels. The functional form ‘ ),( 2xtF


’ (or the 

associated function F


 of the form) is said to be the depth-integrated of the functional form ‘ F t x( , ) ’ 

(or, correspondingly, of the function F


).• 

Comment 2.1. When standing alone, the place-holding symbol ‘ F


’ is ambiguous, because it 

either is an abbreviation of the respective functional form ‘ ( )2, xtF


’, as stated by the train of 

definitions (2.1), or it is a functional constant that denotes the associated function F


 of the 

functional form ‘ ( )2, xtF


’. It is hoped that this ambiguity will be solved by the context, in which that 

symbol occurs. • 

Lemma 2.1: Let ‘ z t x1 2( , ) ’ and ‘ z t x2 2( , ) ’ be given real-valued functional forms, which, 

along with their first-order partial derivatives, are defined for each 22, ERxt ×∈ . Let ‘ F t x( , ) ’ be a 

real-valued functional form which, along with its first-order partial derivatives, is defined for each 

22, ERxt ×∈  and for each z z t x z t x∈[ ( , ), ( , )]1 2 2 2 , the understanding being that 

z t x z t x2 2 1 2( , ) ( , )> . Given 22, ERxt ×∈ , let 

( ) ( ) ( )( ) ( )
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22212212
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subject to the pertinent  version of Comment 2.1. Then 
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jj ∇−∇+∇=∇ ==∫  for each { }2,1∈j .                       (2.4) 

Proof: The lemma immediately follows from the Leibnitz rule of differentiation of a definite 

integral with variable limits, and also from the chain rule of differentiation of a composite function• 

Corollary 2.1. 

( ) ( ) ( ) ( )( )22222 ,,;,ˆ,;,ˆ, xtxhxtFhxtFxtFF Ζ−=Ζ−== 







                               (2.5) 

and hence 

t
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,                                                   (2.6) 
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

 for each { }2,1∈j .                         (2.7) 

Proof: The corollary immediately follows from Definition 2.1 by Lemma 2.1 at z h1 = −  and 

z2 = Ζ , the understanding being that the function h  is independent of ‘ t ’.• 

Definition 2.2. If a real-valued functional form ‘ )(tG ’, depending on the time-valued 

variable ‘t’ and perhaps on some other variables, is integrable on any finite interval of time 

continuum Χ (from Greek ‘Χρόνος’ \xrónos\, meaning time)  then 

( ) ∫
−
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==
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which is basically the same definition as  (I.10.28). Consequently, if  

t
tHtHtG

∂
∂

==
)()()( 

 .                                                        (2.9) 

while the functional form is bounded on Χ, then it follows from (2.8) that 
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2.2. The depth-integrated continuity equation for the mass density 

Theorem 2.1. In accordance with Definition 2.1, let 

( ) ( )
( )

( )

∫
Ζ

−

=
2

2

,

2 , ,
xt

xh
jj dzxtVxtV d



 for each 3,1ω∈j .                                      (2.11) 

Then for each for each 22, ERxt ×∈ : 

( ) ( ) 0,, 2

1
2

2 =∇+
Ζ ∑

=j
jj xtV

t
xt 

∂
∂ ,                                                 (2.12) 

which is the depth-integrated of equation (I.4.3), i.e. of this one: 

( ) 0,
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1
2 =∇∑

=j
jj xtV ,                                                        (2.121) 

Proof: It follows from (2.121) that 
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At the same time, equation (2.7) with jVF =  yields 
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By (2.13), equation (2.131) can be rewritten thus: 
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Owing to equations (I.4.70) and (I.4.71), namely these ones 
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which are the kinematic boundary conditions at the bottom and upper surfaces of the water layer 

respectively, equation (2.132) immediately turns into (2.12). QED.• 

Comment 2.2. Equation (2.12) can be rewritten as 
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where for each 22, ERxt ×∈ : 

( )
( )

( )

( ) ( )[ ]220

,

020 ,,
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xh

+Ζ== ∫
Ζ

−

ρρρ d ;                                       (2.15) 

( )20 , xtρ  is the water mass column per unit area of the XY-plane at a temporo-spatial point 2, xt .• 

Comment 2.3. Under the natural assumption that, given 22 Ex ∈ , ( )2, xtΖ  is bounded for 

each Rt∈ , it follows from the pertinent instance of (2.10) that 

( ) ( ) ( )
∫

−
→∞

=
∂

Ζ∂
=

∂
Ζ∂

=Ζ
2

2

22
2 0,1lim,,

T

T
T

t
t

dt
t
xt

Tt
xtxt dd

 .                                 (2.16) 

Hence, it follows from (2.12) that 
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which is the pertinent instance of (2.8).• 

 

2.3. The depth-integrated continuity equation for the energy density 

Theorem 2.2. In accordance with Definition 2.1, let 
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7 



   

( ) ( ) gzzPzEE 0hspp ρ=−==  ,                                               (2.201) 

gzxtEzExtExtEE 0kpk ),()(),(),( ρ+=+==  ,                                (2.211) 
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in accordance with (I.4.40)–(I.4.42), and (I.4.61) or (I.4.61a) respectively; ( )xt,Φ=Φ   is the velocity 

potential and ( )tP0  is defined  by (I.4.47)–(I.4.49). 

Then for each 22, ERxt ×∈ : 
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(2.23) is the depth-integrated of equation (I.4.60), i.e. of this one 

0
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Proof: It immediately follows from (2.231) that 
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At the same time, equation (2.6) with kEF =  and equation (2.7) with jQF =  yield 
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respectively. Hence, the final equation of the train (2.232) can be written thus: 
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In developing the final result in the train of equations (2.237), use of the kinematic boundary 

condition (2.133) has been made. In developing the final result in the train of equations (2.238), use 

has been made of the kinematic boundary condition (2.134) and of the dynamic boundary condition 

(I.4.67), namely of this one: 
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Equation (2.236) subject to (2.237) and (2.236) coincides with (2.23). 

From (2.21) subject to (2.20), it follows that 
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By (2.24), equation (2.23) turns into (2.23a). QED.• 

Comment 2.4. Equation (2.20) can be rewritten as 

( ) ( ) ( )2pe2pw2p ,, xExtExtE


+= ,                                               (2.25) 

where 

( ) ( )
( ) ( )

( )2
2

0

,

0
0

,

0
p2pw ,

2
1  ,

22

xtgdzzgdzzExtE
xtxt

Ζ=== ∫∫
ΖΖ

ρρd



,                         (2.25w) 

( ) ( )
( ) ( )

( )2
2

0

0

0

0

p2pe 2
1  

22

xghdzzgdzzExE
xhxh

ρρ −=== ∫∫
−−

d



.                            (2.25e) 

Consequently, equation (2.21) can be written as: 
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( ) ( ) ( )2pw2k2w ,,, xtExtExtE
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

+= .                                            (2.27) 

According to (2.19)–(2.21), E


, kE


, and pE


 are respectively the depth-integrated total, kinetic, and 

potential energy densities of the perturbed liquid layer; pwE


, defined by (2.25w), and wE


, defined by 

(2.27), can respectively be called the depth-integrated wave-related total and potential energy 

densities of the perturbed liquid layer; and peE


, defined by (2.25e). can be called the depth-integrated 

equilibrium-related potential energy density of the perturbed liquid layer. At the same time, it is 

understood that if the liquid layer is in equilibrium then its depth-integrated potential energy density 

equals peE


, whereas 
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,                                   (2.28) 

where C0  is the null-valued constant function (see subsection 2.4 for greater detail).  

By (2.25w) and (2.27), equation (2.23) can alternatively be written as: 

( ) ( ) ( ) ( )
t
xttPxtQ

t
xtE

j
jj ∂

∂
∂

∂ 2
0

2

1
2

2w ,,, Ζ
−=∇+∑

=





.                               (2.23b)• 

Convention 2.1. In paper I, ‘ )(0 tP ’ is an arbitrary real-valued functional form independent of 

‘x’ and hence possibly depending only on ‘t’ – the form, which had appeared in the process of 

integration of the Euler equation (I.4.38) subject to (I.4.39) so as to result in its first integral (I.4.46), 

being the pertinent general unsteady Bernoulli equation. Immediately after deducing the latter 

equation, ‘ )(0 tP ’ was specified by definitions (I.4.47)–(I.4.49), according to which ‘ )(0 tP ’ can take 

one of two values, namely (a) 0)(0 =tP  if the part of space above the upper boundary surface 

( )2, xtz Ζ=  of the liquid layer is vacuous or (b) )()( a0 tPtP = if the above part of space is occupied 

with air producing a given atmospheric pressure ( )tPa  at ( )2, xtz Ζ= . In the latter case, I have tacitly 

assumed that ( )tPa  is the same at least for ],[ Mm ΖΖ∈z , where mΖ  is the infimum and MΖ  is the 

supremum of ( )2, xtΖ ; I have also neglected the surface tension of the liquid. Now, it is natural to 

assume that ( )tPa  remains constant, aP , within a span of time, in which some bulk characteristics of 

the fluid flow in the liquid layer significantly change. Consequently, I shall henceforth assume that 

‘ )(0 tP ’ is a two-valued constant ‘ 0P ’ such that 00 =
P  or a0 PP = . Alternatively, for the sake of 
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definiteness and for avoidance of triviality, I may, without loss of generality, assume that the  

definition a0 PP =  is the only one to hold,• 

Comment 2.5. Besides (2.16), it is clear that 

( ) ( ) 0,1lim, 2

2

2
2

2
2

=
∂

Ζ∂
=

∂
Ζ∂

∫
−

→∞

T

T
T

t

dt
t

xt
Tt

xt
d .                                        (2.29) 

Under the evident assumption that the functions kE


, E


, and wE


 are bounded, so that 

( ) ( ) ( ) 0,,, 2k2k2k =
∂

∂
=

∂
∂

=
∂

∂
ttt

t
xtE

t
xtE

t
xtE



,                                      (2.30) 

averaging each one of equations (2.23), (2.23a), and (2.23b) subject to Convention 2.1 with respect 

to t yields: 

( ) 0
2

1
2 =∇∑

=j
jj xQ


.                                                         (2.31)• 

 

2.4. The depth-integrated Bernoulli equation 

Definition 2.3. In accordance with Definition 2.1, let 

( ) ( )
( )

( )

∫
Ζ

−

Φ=Φ
2

2

,

2  ,,
xt

xh

dzxtxt d



,                                                    (2.32) 

( ) ( )
( )

( ) ( )
( )

( )

∫∫
Ζ

−

Ζ

− ∂
Φ∂

=Φ=Φ
2

2

2

2

,,

2  , ,,
xt

xh

xt

xh

dz
t

xtdzxtxt 

d



 ,                                       (2.33) 

the understanding being that 

( ) ( )
t

xtxt
∂

Φ∂
=Φ

,, 

 ,                                                         (2.34) 

Besides (2.11), (2.19)–(2.21), (2.32), and (2.33), it also follows from Definition 2.1 that 

( ) ( )
( )

( )

∫
Ζ

−

=
2

2

,

2  ,,
xt

xh

dzxtPxtP d



,                                                     (2.35) 

( ) ( )
( )

( )

∫
Ζ

−

=
2

2

,

d2d  ,,
xt

xh

dzxtPxtP d



,                                                    (2.36) 

( )
( )

( )

( ) ( )[ ]220

,

020 ,,
2

2

xhxtPdzPxtP
xt

xh

+Ζ== ∫
Ζ

−

d



;                                       (2.37) 
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where, in accordance with (I.4.50)–(I.4.52) subject to (I.4.40)–(I.4.42) (or (2.191)–(2.211)) and 

(I.4.47)–(I.4.49) and also subject to Convention 2.1, 

( )

( ) [ ] ,),(
2
1),(),(

),(),(),(),(),(

0
2

000hsd0

pk0000

gzxt
t

xtPzPxtPP

zExtExtPxtExtPxtP

ρρ
∂

∂ρ

ρρ

−Φ∇−
Φ

−=++=

−−Φ−=−Φ−= 

                  (2.351) 

the understanding being that ),( xtP  is the total pressure at a temporo-spatial point ),( xt  of the 

perturbed liquid layer, ),(d xtP , defined by (I.4.52), i.e. as: 

[ ]200k0d ),(
2
1),(),(),(),( xt

t
xtxtExtxtP Φ∇−

Φ
−=−Φ−= ρ

∂
∂ρρ 

d ,                    (2.361) 

is the dynamic pressure at that point, and ( )zPhs , defined by (I.4.41), i.e. by (2.201), is the hydrostatic 

pressure at each temporo-spatial point ),( xt  of the perturbed liquid layer, which is located in the 

horizontal plane with the applicate z. Each equation of the train (2.351), whose left-hand side is 

),( xtP , is a version of the unsteady Bernoulli equation for the fluid flow in the perturbed liquid 

layer – the equation being the first integral of the Euler equation (I.4.24). Equation (2.37) is 

analogous to (2.15). 

By (2.191)–(2.211) and (2.33), definitions (2.35) and (2.36) subject to (2.351) and (2.361) 

become 

( ) ( ) ( ) ( )

( ) ( )[ ] ( ) ( ) ( ) ( )[ ]

( ) ( )[ ] ( ) ( ) ( )[ ],,
2
1,,

,
2
1,,,

,,,,

2
2

2
2

02d220

2
2

2
2

02k20220

220202

xhxtxtPxhxtP

xhxtxtExtxhxtP

xtExtxtPxtP

−Ζ−++Ζ=

−Ζ−−Φ−+Ζ=

−Φ−=

ρ

ρρ

ρ















                 (2.38) 

( ) ( ) ( )2k202d ,,, xtExtxtP −Φ−=






ρ .                                             (2.39) 

the understanding being that the train of equations (2.38) presents three versions of the depth-

integrated Bernoulli equation, whereas equation (2.39) defines the depth-integrated dynamic 

pressure in the perturbed liquid layer.• 

 

2.5. The depth-integrated momentum flux density tenor and the momentary and time-

averaged radiation (wave) stress tensors 

Definition 2.4. In accordance with Definition 2.1, let for each 3,1ω∈i , for each 3,1ω∈j  and 

for each ( ) 22, ERxt ×∈ : 
12 



   

( ) ( )
( )

( )

∫
Ζ

−

=
2

2

,

2  ,,
xt

xh
ijij dzxtSxtS d



,                                                    (2.40) 

( ) ( )
( )

( )

∫
Ζ

−

=
2

2

,

ij2  ,,
xt

xh
ij dzxtExtE d



,                                                   (2.41) 

where, in accordance with (I.4.55), (I.4.56), and Convention 2.1, for each ( ) ( )( ]22 ,, xtxhz Ζ−∈ : 

( ) ( )[ ] ( ) ( )[ ] ( )( )
( )[ ] ( ) ( )[ ] ( ),,,,

,,,,

330k00

33pk00

jiijijijij

jiijijijijij

gzxtExtExtP

zExtExtExtPxtS

δδδρδδρ

δδδδδρ

−−−+Φ−=

−−−+Φ−=




δ

                (2.401) 

( ) ( ) ( ) ( )[ ] ( )[ ]xtxtxtVxtVxtE jijiij ,,,,, 00 Φ∇Φ∇== ρρ ,                            (2.411) 

subject to (2.191), (2.201), and (2.34). The 3×3–tensor ( )xtSij ,  thus defined is called the bulk 

momentum flux density tensor of the perturbed liquid layer at a given temporo-spatial point ( )xt, . 

By (2.401), definition (2.40) yields 

( ) ( ) ( ){ } ( ) ( )[ ] ( )( )
( ) ( )[ ] ( ){ } ( ) ( )[ ]

( ) ( )[ ]( )332
2

2
2

0

2k220220

332p2k220202

,
2
1

,,,,

,,,,,,

jiij

ijijij

jiijijijijij

xhxtg

xtExtExtxhxtP

xtExtExtExtxtPxtS

δδδρ

δδρ

δδδδδρ

−−Ζ−

−+Φ−+Ζ=

−−−+Φ−=














       (2.42) 

subject to (2.19), (2.20), (2.33), (2.37), and (2.41). The 3×3–tensor ( )2, xtSij



 thus defined is called the 

depth-integrated momentum flux density tensor of the perturbed liquid layer at a given instant Rt∈  

along the given vertical line ( )2xL , defined as: 

( ) ( ) ( )( ]{ } ExtxhzzxL ⊂Ζ∈= 222 ,,                                             (2.43) 

at a given point 22 Ex ∈ .• 

Comment 2.6. In accordance with the instance of definition (2.6) with Φ= Φ , it follows 

from (2.32) that 

( ) ( ) ( )
( )

( ) ( )
( )

( )

( )[ ] ( )
( )

( ) ( )[ ] ( ) ( ),,,,

,, , ,,,

2,2

2
,

,,
2

2

2

2

2

2

2

2

xtxtxt

t
xtxtdz

t
xtdzxt

tt
xtxt

xtz

xtz

xt

xh

xt

xh

ΖΦ+Φ=

Ζ
Φ+

Φ
=Φ=

Φ
=Φ

Ζ=

Ζ=

Ζ

−

Ζ

−
∫∫









d





∂
∂

∂
∂

∂
∂

∂
∂

        (2.44) 

whence 

( ) ( ) ( )[ ] ( ) ( ),,,,, 2,22 2
xtxtxtxt xtz ΖΦ−Φ=Φ Ζ=









                                      (2.45) 

the understanding being that 
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( ) ( )
t

xtxt
∂
Ζ∂

=Ζ
,, 

 .                                                       (2.46)• 

Corollary 2.2. 1) Here follow the individual components of the 3×3-tensor ( )2, xtSij



 versus 

the respective components of 3×3-tensor ( )xtSij , : 

( ) ( )
( )[ ] ( ) ( )

( ) (c)                           .3 ,

(b)                                                                           ,3 , ,

(a)  , , ,
2
1             

33k0033k0033

2,13333

2,12,1
22

0k00

pk00

==+−Φ−+Ζ=+−Φ−=

=∈===

∈∈−Ζ−−+Φ−+Ζ=

−−+Φ−==



































jiEEhPEEPS

jiEESS

jihgEEhP

EEEPSS

iiii

ijijijij

ijijijijjiij

ρρ

ω

ωωρρ

ρ

    (2.42′) 

( ) ( )
( ) ( )

(c)                                                                       .3 ,

(b)                                                                        ,3 , ,

(a)                         , , ,             

33k0033

2,13333

2,12,10k00

pk00

==+−Φ−=

=∈===

∈∈−−+Φ−=

−−+Φ−==











jiEEPS

jiEESS
jigzEEP

EEEPSS

iiii

ijijijij

ijijijijjiij

ρ

ω

ωωρρ

ρ

     (2.401′) 

2) It is understood that m2 )( hxh ≥  in (2.42′) and that mhz −≥  in (2.401′), where hm  is the 

infimum of all values of ‘ h x( )2 ’. Therefore, ( )2, xtSij



, defined by (2.42′,a), ( )233 , xtS


, defined by 

(2.42′,c), and ( )xtSij , , defined by (2.401′,a), become unbounded as ∞→mh . That is to say, ( )2, xtSij



, 

defined by (2.42), and ( )xtSij , , defined by (2.401), do not exist in the case of infinitely deep water.• 

Definition 2.5. In agreement with Comment I.4.2, if the liquid layer is in equilibrium (at 

rest), so that for each ( ) 22, ERxt ×∈  and each ( )( ]0,2xhz −∈ : 

( )  0, =Φ xt , ( ) ( )0,0,00, ==xtV , ( ) 0, 2 =Ζ xt ,                                   (2.47) 

then equations (2.401) and (2.42) become  

( ) ( ) ( )( )33p03300e , jiijjiijijij zEPgzPxtS δδδδδδρδ −−=−−=δ ,                     (2.401e) 

( ) ( )
( )

( ) ( )( ) ( ) ( )( ),
2
1

 ,,

332
2

020332pe2e0

0

e2e

2

jiijijjiijij

xh
ijij

xghxhPxExP

dzxtSxtS

dddρddddd −+=−−=

= ∫
−



d



            (2.42e) 

the understanding being that ( )2pe xE


 is defined by definition (2.25e) in Comment 2.4, whereas 

( )
( )

( )20

0

02e0

2

xhPdzPxP
xh

== ∫
−

d



;                                                 (2.37e) 
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It goes without saying that the 3×3–tensor ( )xtS ij ,e , defined by (2.401e), is the bulk momentum flux 

density tensor of the equilibrious liquid layer at a given temporo-spatial point ( )xt, , whereas the 

3×3–tensor ( )2e , xtS ij



, defined by (2.42e), is the depth-integrated one at a given instant Rt∈  along 

the given vertical line ( )2e xL , defined as: 

( ) ( )( ]{ } ExhzzxL ⊂−∈= 0,22e
                                              (2.43e) 

at a given point 22 Ex ∈ .• 

Definition 2.6. In accordance with (2.40), (2.42), and (2.42e), the 3×3-tensor ( )2w , xtS ij



, 

which is defined for each 3,1ω∈i , for each 3,1ω∈j , and for each ( ) 22, ERxt ×∈  as: 

( ) ( ) ( )

( ) ( )[ ] ( ) ( )[ ] ( )( )
( ) ( )[ ] ( ) ( )[ ] ( )( ),,,,,,

,
2
1,,,,

,,

332pw2k2202w0

332
2

02k22020

2e22w

jiijijijij

jiijijijij

ijijij

xtExtExtExtxtP

xtgxtExtExtxtP

xSxtSxtS

δδδδδρ

δδδρδδρ

−−−+Φ−=

−Ζ−−+Φ−Ζ=

−=

















δ



         (2.48) 

is called the full, or 3×3, momentary radiation, or wave-related, stress tensor at a given instant Rt∈  

along the given vertical line ( )2xL , defined by (2.43) at a given point 22 Ex ∈ ; the subscript ‘w’ in 

‘ ijSw



’  ̧‘ w0P


’, and ‘ pwE


’ is an abbreviation for “wave”. In writing (2.48), I have tacitly made use of 

definition (2.25w) of Comment 2.4, whereas: 

( )
( )

( )20

,

0
02w0 ,

2

xtPdzPxP
xt

Ζ== ∫
Ζ

d



,                                            (2.37w) 

which is analogous to (2.37e). In contrast to ( )2, xtSij



, defined by (2.42), ( )2w , xtS ij



, defined by 

(2.48), exists in the case of infinitely deep water.• 

Definition 2.7. 1) In accordance with the pertinent instances of (2.8), it follows from (2.48) 

that for each 3,1ω∈i  for each 3,1ω∈j  and for each 22 Ex ∈ : 

( ) ( ) ( )

( ) ( ) ( ) ( )[ ] ( )( )

( ) ( ) ( ) ( )[ ] ( )( ).,
2
1

332pw2k2202w0

332
2

02k22020

2e22w

jiijijijij

jiijijijij

ijijij

xExExExxP

xgxExExxP

xSxSxS

δδδδδρ

δδδρδδρ

−−−+



 Φ−=

−Ζ−−+



 Φ−Ζ=

−=















δ



δ



       (2.49) 

the understanding being that 
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( ) ( ) ( ) ( )[ ] ( ) ( )txtz

tt

xtxtxtxtx 2,222 ,,,,
2
ΖΦ−Φ=Φ=Φ Ζ=














 ,                             (2.50) 

by the pertinent instance of (2.6). The 3×3–tensor ( )2w xS ij



, defined by (2.49), is called the full, or 

3×3, time-averaged depth-integrated radiation, or wave-related, stress tensor of the perturbed liquid 

along the given vertical line ( )2xL , defined by (2.43) at a given point 22 Ex ∈ . 

2) The 2×2–tensor ( )2
22

w xS ij
×//



, defined as 

( ) ( )2w2
22

w xSxS ijij







=// ×  for each 2,1ω∈i  for each 2,1ω∈j  and for each 22 Ex ∈ ,           (2.51) 

is called the abridged, or 2×2, time-averaged depth-integrated radiation, or wave-related, stress 

tensor of the perturbed liquid along the given vertical line ( )2xL , defined by (2.43) at a given point 

22 Ex ∈ .• 

Definition 2.8. Definitions (2.48), (2.49), and (2.51) can be provided with the following 

wordy interpretations.  

1) For each 3,1ω∈i , for each 3,1ω∈j , and for each ( ) 22, ERxt ×∈ , the 3×3-tensor ( )2w , xtS ij



 

is the excess of the momentary depth-integrated momentum flux density 3×3-tensor ( )2, xtSij



 due to 

the presence of waves as compared to that in equilibrium, ( )2e xS ij



. 

2) For each 3,1ω∈i , for each 3,1ω∈j , and for each 22 Ex ∈ , the 3×3-tensor ( )2w xS ij



 is the 

excess of the time-averaged depth-integrated momentum flux density 3×3-tensor ( )2xSij



 due to the 

presence of waves as compared to that in equilibrium, ( )2e xS ij



. 

3) For each 2,1ω∈i  for each 2,1ω∈j  and for each 22 Ex ∈ , the 2×2-tensor ( )2
22

w xS ij
×//



 is the 

excess of the abridged, or 2×2, time-averaged depth-integrated momentum flux density tensor ( )2xSij



 

due to the presence of waves as compared to that in equilibrium, ( )2e xS ij



.• 

Comment 2.7. Longuet-Higgins and Stewart [1960; 1961, p. 575 f; 1962; 1964, pp. 532, 535, 

and 536 f] seem to have been the first writers to introduce the notion of radiation stress for gravity 

water waves and to calculate the latter from intuitive considerations for a progressive wave in the 

first non-vanishing approximation with respect to ka, By “radiation stress” they meant the time-

averaged depth-integrated wave-related 2×2 horizontal momentum flux density tensor, which they 
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denoted by ‘ ijS ’ (not to be confused with my homograph ‘ ijS ’) subject to 2,1ω∈i  and 2,1ω∈j  and 

which they characterized in their paper of 1964 wordily as “the excess flow of momentum due to the 

presence of waves”. This description will be referred to as Longuet-Higgins and Stewart’s wordy 

definiens of their 2×2 time-averaged depth-integrated radiation, or wave, stress tensor (2×2 

TADIRST) and be denoted by ‘ LS
ijS ’. Since then, in the literature on water wave dynamics, there 

appeared several different intuitive logographic (formulary) definitions, – e.g. those of Phillips [1977, 

p. 62, equation (3.6.12)], Mei [1989, p. 457, equation (2.25)],], and Dingemans [1997, part 1, p. 193, 

equation (2.446), or p. 211, equation (2.501)]. – of a 2×2 time-averaged depth-integrated tensor, 

which is equivocally denoted by ‘ Sij ’ subject to 2,1ω∈i  and 2,1ω∈j  and which its author or authors 

call by the generic name “radiation stress tensor”, thus regarding its definiens as an adequate 

logographic interpretand of the above wordy definiens. It is, however, amazing that all those 

different definitions result, as stated by their authors, in the same expression for the 2×2 TADIRST 

as that obtained initially by Longuet-Higgins and Stewart, in spite of the fact that the latter 

expression is debatable. In this connection, it is worthy to emphasize that the 2×2 TADIRST is 

always calculated as an approximate and tacitly asymptotic quantity of the order of (ka)2, and 

simultaneously as an approximate and tacitly asymptotic quantity of first order with respect to an 

unspecified small parameter of mild depth variation, so that intuition is unreliable basis for dealing 

with such calculations. At the same time, in the absence of rigorous syntactic rules of calculation, 

one can easily overlook some contributions of the required order (ka)2. I shall therefore discuss the 

present situation in the matter of radiation stresses after I deduce a comparable concrete expression 

for the 2×2 TADIRST from the recursive asymptotic theory in question.• 

 

2.6. The depth-integrated continuity equations for the momentum flux density and for 

the momentary radiation (wave) stress 

Theorem 2.3. For each 3,1ω∈i  and each 22, ERxt ×∈ : 

( ) ( )

( )( ) ( ) ( )[ ] ( ) ( )
( ) ( )( ) ( )[ ] ,,,

,,

,,

3d20

20220d0

2

1
2

2
0

2

2

ixhz

iixhz

j
ijj

i

xtPxtg

xtPxhxghxtPP

xtS
t
xtV

dρ

ρ
∂

∂ρ

−=

−=

=

−Ζ−

Ζ∇+∇++=

∇+∑




                           (2.52) 
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which is a tautological equation, being the depth-integrated one of the tautological continuity 

equation for the momentum flux density (I.4.53) or (I.4.57), i.e. of the equation 

( ) ( )
0

,, 3

1
0 =

∂
∂

+
∂

∂ ∑
=j j

iji

x
xtS

t
xtVρ                                                (2.521) 

subject to (I.4.55) and (I.4.56), i.e. subject to (2.401) and (2.411), in the perturbed liquid layer. Owing 

to Corollary 2.2(2), equation (2.52) does not hold as ∞→mh  

Proof: It immediately follows that for each 3,1ω∈i : 
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Hence, by (2.521) and (2.522), it follows that  
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At the same time, equation (2.6) with iVF =  and equation (2.7) with ijSF =  yield 
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respectively. Hence, the final equation of the train (2.523) can be written thus: 
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where, in analogy with  (2.187) and  (2.188), 
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            (2.527) 
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In developing the equation trains (2.527) and (2.528), use has been made of the equations: 
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which hold owing to the kinematic boundary conditions (2.133) and (2.134) respectively. Also, in 

developing the final result in the train (2.528), use has been made of the dynamic boundary condition 

(2.239) subject to (2.361) . By (2.527) and (2.528), it follows that 
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     (2.5211) 

Equation (2.526) subject to (2.5211) coincides with (2.52). QED.• 

Corollary 2.3. a) For each 2,1ω∈i , equations (2.42) and (2.52) become 
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                         (2.52a) 

for each 22, ERxt ×∈ , while equation (2.401) becomes 

( ) ( )[ ] ( ) ( )[ ] ijijijijij gzxtExtExtPxtS δρδδρ 0k00 ,,,, −−+Φ−= 

δ                      (2.401a) 

for each 22, ERxt ×∈  and each ( ) ( )[ ]22 ,, xtxhz Ζ−∈ . 

b) For 3=i , equations (2.42) and (2.52) become 
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                    (2.52b) 

for each 22, ERxt ×∈ , while equation (2.401) becomes 

( ) ( )[ ] ( ) ( )[ ] ( )3303k33003 1,,,, jijjjj gzxtExtExtPxtS δδρδδρ −−−+Φ−= 

δ              (2.401b) 

for each 22, ERxt ×∈  and each ( ) ( )[ ]22 ,, xtxhz Ζ−∈ . 

c) If  

h Cd= , i.e. ( ) dxh =2  for each 22 Ex ∈ ,                                       (2.53) 

where ‘ d ’ is a constant so that ( ) 02 =∇ xhi , then for each 3,1ω∈i  and each 22, ERxt ×∈ , equations 

(2.42) and (2.52) become 
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while equation (2.401) remains unaltered.• 

Theorem 2.4. For each 3,1ω∈i  and each 22, ERxt ×∈ : 
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              (2.53) 

which is a tautological continuity equation, being the full momentary depth-integrated radiation 

stress-tensor ( )2w , xtS ij



, defined by (2.48). In contrast to equation (2.52), equation (2.53) exists in the 

case of infinitely deep water (cf. Definition 2.6). 

Proof: It immediately follows from (2.42e) that 
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.                                    (2.54) 

20 



   

Subtraction equation (2.54) from (2.52) yields (2.53).• 

Corollary 2.4. It has been shown in paper I that all wave-related bulk characteristics of fluid 

flow in the perturbed liquid layer decrease exponentially as kze  (k>0, z<0) with |z| increasing (see 

(I.7.32) and (I.7.78)). Therefore, it is natural to assume that ( )2, xtVi



 (e.g.) is bounded and that hence 

( ) 0, 2 =
t

i

t
xtV

∂
∂


,                                                           (2.55) 

in accordance with Definition 2.2. Consequently, averaging of equations (2.52) and (2.53) with 

respect to t yields: 
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respectively.• 
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3. Asymptotic power expansions of the depth-integrated functional 

forms 

 

3.1. A general algorithm for the asymptotic power expansion of a depth-integrated 

wave-related functional form 

Definition 3.1 (a modification of Definition 2.1). 1) Unless stated otherwise, I shall 

henceforth assume in accordance with (I.4.73) that h Cd= , i.e. dxh =)( 2  for each 22 Ex ∈ ,  where 

‘ d ’ is a constant, while dC  is the constant function of 2x , every value of which equals d. 

Accordingly, ka=ε , where k>0  is the wave number and a>0 is the amplitude of a priming (seeding) 

progressive, or standing, plane monochromatic gravity water wave (briefly PPPMGWW or 

PSPMGWW respectively). 

2) Let ‘ ( )ε,; xtF ’ be a real-valued functional form which, along with its first-order partial 

derivatives, is defined for each 22, ERxt ×∈  and for each )],(,[ 2xtdz Ζ−∈  (i.e. for each 

) ,(, cc
ff Ζ−∈ dCxt D , in accordance with Definition I.3.2), and also for each [ )1,0∈ε . Then 
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( ) ( ) ∫∫
−−

==′=′
00

)(
2

2

,;,;
dxh

FdzdzxtFxtFF d



d



 ,                                          (3.2) 

( ) ( )
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,;,; FdzdzxtFxtFF
xt
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

 ,                                         (3.3) 

the understanding being that ‘F’ is, as before, a placeholder (ellipsis), which should be replaced by a 

specific base letter (as ‘Φ’, ‘V’, ‘E’, ‘P’, etc) with some or no labels. The functional form 

‘ ( )ε,; 2xtF


’ (or the associated function F


 of the form) is, as before, said to be the depth-integrated 

of the functional form ‘ ( )ε,; xtF ’ (or, correspondingly, of the function F


).• 

Corollary 3.1. 1) In accordance with Hypothesis I.4.2, the functional form ( )ε,; 2xtF ′′


 as 

specified by (3.3) can, with the help of the Leibnitz rule (cf. Lemma 2.1), be expanded into the 

Maclaurin series with respect to ( )ε,; 2xtΖ , so that 
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where 
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(cf. (I.4.85) and (I.4.86)). At the same time, by Hypothesis I.5.1(1), for each 22, ERxt ×∈  and for 

each [ )1,0∈ε : 
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whereas by Definition I.5.1, subject to Hypothesis I.5.1(2), given a bulk characteristic of the wave-

related fluid flow ( )ε,; xtF , there exists a natural number ν∈ω0 such that for each 22, ERxt ×∈ , 
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As a consequence, it follows from definition (3.2) that 
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By (3.7), it also follows from definition (3.5) that 
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2) On the other hand, the variants of (I.6.14) (subject to the abbreviation ),;(),( 22 εxtxt Ζ=Ζ  ) 

and (I.6.15) with ‘m+1’ in place of ‘m’, yield 
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where 
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the understanding being that  
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lζ  for each 0 ω∈m  and for each ml ,0ω∈ ,                         (3.130) 

( ) ( )2)(2
1
)( ,,

11
xtxt ll ζζ =><   for 0=m  and for each 11 ω∈l ,                             (3.14) 
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                            (3.16) 

in accordance with the pertinent variants of (I.6.150) and (I.6.16)–(I.6.18). In turn, equation (3.15) for 

each 4,22 ω∈l , e.g., yields 
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whereas equation (3.16) for each 5,33 ω∈l , e.g., yields 

ζ ζ( ) ( )3
3

1
3< > = , ζ ζ ζ( ) ( ) ( )4

3
2 1

23< > = , ( )ζ ζ ζ ζ ζ( ) ( ) ( ) ( ) ( )5
3

1 1 3 2
23< > = + ,                        (3.18) 

in agreement with (I.6.19) and (I.6.20). Also, in general, given 0ω∈m , it follows from (6.13) that 
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in agreement with the pertinent variant of (I.6.21). 

3) By(3.10) and (3.12), the asymptotic expansion of the functional form ( )ε,; 2xtF ′′


, defined 

by (3.4) , in powers of ε can be constructed in analogy with asymptotically expanding either one of 

the functional forms ( )2d , xtΑ  and ( )2k , xtΑ  (abbreviations of ( )ε,; 2d xtΑ  and ( )ε,; 2k xtΑ ) in 

subsections I.6.1 and.I.6.2. The above asymptotic expansion is the object of the following theorem.• 

Theorem 3.1. For each 22, ERxt ×∈  and each [ )1,0∈ε : 

( ) ( ) ( )( )∑
∞

+=
+∞ ′′=′′′′

1
22]1,[2 ,,;~,;

ν
ν εεε

l
l

l xtfxtFxtF






,                                   (3.20) 

where 
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Note. In writing equations (3.20) and (3.21), it is tacitly assumed that, given ν∈ω0, for each 

22, ERxt ×∈  and each ( ) ( )( ]ε,;, 22 xtxhz Ζ−∈ : 

( ) 0,)( =xtf n  for each 1,0 −∈ νων                                              (3.200) 

(cf. (3.130)). Therefore, without altering the final result, the lower limits of summation with respect 

to q and n in equation (3.20) can be any natural numbers of the set νω ,0  and, consequently, the lower 

limit of summation with respect to l in equation (3.21) can be any natural numbers of the set 1,0 +νω . 

Proof: 1) By (3.10) and (3.12), and in analogy with (I.6.22) or (I.6.23), it follows that for 
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The final expression in (3.22) can be developed further in analogy with item b of the proof of 

Theorem I.5.2 as follows. Let nll m += =1
 , so that νω ++∈ 1ml , because ν++= 1ml  when 11 +=+ mlm  

and ν=ν . If ‘l’ is employed as a new variable of summation instead of ‘ 1=ml ’, so that nllm −==1 , 

then the domain of values of the variable ‘n’ is determined by the conjunction of two relations: (i) 

νω∈ν , i.e. ∞<≤ nn , and (ii) 1−−= mln  at 11 +=+ mlm . Hence, 1−−≤≤ mlnn , i.e. 1, −−∈ mln nω . 

Therefore, relation (3.22) becomes 

( ) ( ) ( ) ( )∑ ∑
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ν ν

ζεεε
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)(2
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)( ,,~,;,;

ml

m
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ν

m
ν

lmm xtxtfxtxtF  for each 0ω∈m            (3.23) 

(cf. (I.6.24) and (I.6.25)). Hence, equation (3.4) yields 
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m

xtF
n n

ζεε
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                         (3.24) 

(cf. (I.6.26)–(I.6.31)). 

2) Let ‘q’, defined as 1−−= mlq  , be a new variable of summation to be employed in (3.24) 

instead of ‘ m ’. Therefore, (i) q=ν when ν++= 1ml  and (ii) 1−= lq   when m=0, so that 1`, −∈ lq νω . 
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At the same time, since qml ++= 1 , therefore 1+=νl  if m=0 and q=ν, so that 1+∈ νωl . Also, 

1−−= qlm . Hence, (3.24) reduces to 
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l xtxtf
ql

xtF


                          (3.25) 

(cf. (I.6.32) and (I.6.33)), which is equivalent to (3.20) subject to (3.21). QED.• 

Corollary 3.2. By (3.8) and (3.16), it follows from (3.1)–(3.3) that relation (3.7) holds with 

( ) ( )( )22 ,),( xtfxtf νν ′=


,                                                      (3.26) 

),(),(),( 2)(2)(2)( xtfxtfxtf lll ′′+′=


 for each 1+∈ νωl ,                               (3.27) 

subject to subject to (3.9) and (3.21).• 

Corollary 3.3. 
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                 (3.29) 

Proof: Equations (3.28) and (3.2) are instances of (3.21) at 1+=νl  and at 2+=νl  

respectively. In developing the final expressions in (3.28) and (3.29), use of (3.14) at l1 1 2∈{ , } , of 

(3.15) at l1 1 2∈{ , } , and of (3.19) at }1,0{∈m  have been made.• 

 

3.2. Asymptotic power expansions of specific depth-integrated functional forms 

Corollary 3.4. 1) All pertinent logographic operata, i.e. equations and logographic terms, of 

the previous subsection apply with each one of the following triples of functional variables or base 

symbols of functional variables: 
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,each  and each for  ,2,, ,1,, ,1,,

,1,, ,2,, ,2,, ,1,, ,1,, ,1,,

3,13,1)()()(dd

)()()(kk)()()(

ωω

ff

∈∈

ΦΦ ∗∗

jieEsSpP

qQqQeEvV

ijlijijlijl

iliilililiilil




                (3.30) 

in place of the triple of placeholders 

ν,, )(lfF .                                                              (3.31) 

2) According to the above item 1, the subject matter of the previous subsection applies to any 

quintet of functions 

ν,,;, )()( ll fFfF




,                                                         (3.32) 

or actually to the quintet of functional forms, of which those functions are associate, and which are 

based on a certain well-defined basic asymptotic power series (3.7) for the pertinent bulk 

characteristic ( )ε,; 2xtF .  

3) All basic asymptotic power expansions in the range of the place-holding (abstract) relation 

(3.7), except that for ( )xt,Φ , defined by (2.34), are given in subsection I.5.4. At the same time, it 

immediately follows from (I.5.8) by (2.34) that  

( ) ( ) ( ) ∑
∞

=
∞ =ΦΦ=Φ

1
)(]1,[ ),(,;~,;,

n
n

n xtxtxtxt φεεε 







 ,                                 (3.33) 

subject to  

t
xt

xt n
n ∂

∂
=

),(
),( )(

)(

φ
φ 

  for each 1ω∈n ,                                         (3.34)• 

Comment 3.1. In accordance with the dynamic pressure ),(d xtP , defined by (I.4.52) or 

(2.361), ),(0 xtΦρ  can be called the volumetric dynamic energy and be, accordingly, denoted by 

‘ ),(d xtE ’, i.e.  

),(),( 0d xtxtE Φ= 

d ρ .                                                      (3.35) 

Consequently, definition (I.4.52) or (2.361) turns into the equation 

[ ]200kdd ),(
2
1),(),(),(),( xtxtxtExtExtP Φ∇−Φ−=−−= ρρ  .                        (3.36) 

In principle, the velocity potential ),( xtΦ  of liquid flow is defined with an accuracy to an arbitrary 

time-dependent functional form )(0 tΦ  (cf. Comment I.4.2), so that .both ),(d xtP  and ),(d xtE  are 
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defined with an accuracy to )(00 tΦρ . However, in paper I and in this exposition I have from the very 

beginning tacitly assumed that 0)(0 =Φ t .• 

Corollary 3.5. By the pertinent instance of (3.7) subject to (3.26) and (3.27), it immediately 

follows from (3.33) subject to (3.3) that 

( ) ( ) ( ) ( )∑
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=
∞ =ΦΦ=Φ

1
2)(2]1,[22 ,,;~,;,

l
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l xtxtxtxt φεεε



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




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

 ,                             (3.37) 

where 

( )2)1(2)1( ,),( xtxt φφ ′=






  for 1=l ,                    `                           (3.38) 

( ) ( ) ( )2)(2)(2)( ,,, xtxtxt lll φφφ ′′+′=










  for each 2ω∈l ,                                   (3.39) 

subject to 
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  for each 1ω∈l ,                                       (3.40) 
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  for each 2ω∈l .                   (3.41) 

Particularly, equation (3.41) yields: 
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  at 2=l ,          (3.411) 
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In developing the final result in the train (3.411), use of (I.6.521) has been made. 

Corollary 3.6 (analogous to Corollary 3.5). By the pertinent instance of (3.7) subject to 

(3.26) and (3.27), it immediately follows from (I.5.43) subject to (I.5.44) that 

( ) ( ) ( ) ∑
∞

=
∞ ==

1
2)(2]2,[22 ),(,;~,;,

l
il

l
iii xtvxtVxtVxtV 
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εεε  for each 3,1ω∈i ,               (3.42) 

where 
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( )2)1(2)1( ,),( xtvxtv ii ′=   for 1=l ,                                              (3.43) 

( ) ( ) ( )2)(2)(2)( ,,, xtvxtvxtv ililil ′′+′=   for each 2ω∈l ,                                 (3.44) 

subject to 

( ) ∫
−

=′
0

)(2)(  ),(,
d

ilil dzxtvxtv  for each 1ω∈l ,                                      (3.45) 
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(cf. (3.37)–(3.41)). Particularly, equation (3.46) yields: 
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(cf. (3.411) and (3.412)).• 

Corollary 3.7.  By the pertinent instance of (3.7) subject to (3.26) and (3.27), it immediately 

follows from (I.5.49) subject to (I.5.50) that 
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( ) ( ) ( )2)(k2)(k2)(k ,,, xtextexte lll ′′+′=   for each 3ω∈l ,                               (3.49) 
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Particularly, equation (3.51) becomes 
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Comment 3.2. 1) In accordance with (I.4.41) or (2.201), ( )zEp  has no asymptotic series in 

powers of ε or, in other words, it is of the order of ε0. Therefore, the subject matter of subsection 3.1 

is not applicable with ‘ pE ’ in place of ‘F’. Nevertheless, in accordance with (2.20), ( )2p , xtE


 exists 

and it can be expanded into a quasi-recursive asymptotic series in powers of ε.  

To be specific, comparison of (2.20), (2.25), (2.25w), and (2.25e) with (3.1)–(3.3) shows that  

( ) ( ) ( ) ( ) ( )2pw2pe2p2p2p ,,, xtExExtExExtE
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+=′′+′= ,                               (3.52) 

where 
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,                             (3.53) 
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xtxt

Ζ====′′ ∫∫
ΖΖ

ρρ
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,                   (3.54) 

In this case, at 1=m , relation (3.12) subject to (3.13) becomes 
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l xtxt ζεε ,                                               (3.55) 

subject to (3.15).and (3,17), Hence, (3.54) and (3.55) yield 
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l xtxtgxtgxtExtE ζζερρ
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,            (3.56) 

where I have set 2ll =  and 1lm = . This is a genuine power asymptotic expansion for ( )2p , xtE ′′


 or 

( )2pw , xtE


. In accordance with (3.53) and (3.56), ( )2p , xtE


, defined by equation (3.52), can be 

expanded into a power series in ε thus: 
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( ) ∑
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                         (3.58) 

For instance, in accordance with (3.171), the second equation (3.58) at 2=l  and at 3=l  becomes 

),(
2
1),( 2

2
)1(02)2(p xtgxte ζρ= ,                                               (3.581) 

),(),(),( 2)2(2)2(02)3(p xtxtgxte ζζρ= ,                                         (3.582) 

respectively. Owing to the fact that the term of the order of ε1 is absent in the series (3.57), the latter 

is not recursive, but it can be qualified quasi-recursive.• 

Comment 3.3. In accordance with (3.35), multiplication of all terms of equations (3.37)–

(3.412) by 0ρ  results in the equations pertinent to the recursive asymptotic expansion of ( )2d , xtE


. 

Particularly, comparison of  (3.411) and (3.581) shows that  

),(2),( 2)2(p2)2(d xtexte  −= .                                                (3.59)• 

Comment 3.4. In accordance with (I.4.42) or (2.211), ),( xtE  has ( )zEp  as one of its two 

summands, whereas ),(k xtE , being its second summand, has a recursive asymptotic power series in 

ε, which begins with a term of the order of ε2,  in accordance with (I.5.49) and (I.5.49). Therefore, the 

subject matter of subsection 3.1 is not applicable with ‘E’ in place of ‘F’ either. However, in 

accordance with (2.26), (2.27), (2.49), and (2.50), ( )2, xtE


, defined by (2.21), has the following 

quasi-recursive asymptotic expansion:  
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                 (3.61) 

subject to (3.48)–(3.51), (3.58), (3.581), and (3.582).• 
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Corollary 3.8 (analogous to Corollaries 3.5–3.7). By the pertinent instance of (3.7) subject to 

(3.26) and (3.27), it immediately follows from (I.5.64) subject to (I.5.65) that 
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where 

( )2(2)i2)i2( ,),( xtqxtq ∗∗ ′=   for 2=l ,                                             (3.63) 
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(cf. (3.47)–(3.51)). Particularly, equation (3.66) yields: 
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 (cf. (3.511) and (3.512)).• 

Corollary 3.9 (analogous to Corollaries 3.5 and 3.6). By the pertinent instance of (3.7) 

subject to (3.26) and (3.27), it immediately follows from (I.5.66) subject to (I.5.67) that 
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where 

( )2(1)i2)i1( ,),( xtqxtq ′=   for 1=l ,                                             (3.68) 
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( ) ( ) ( )2)i(2)i(2)i( ,,, xtqxtqxtq lll ′′+′=   for each 2ω∈l ,                                (3.69) 

subject to 
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(cf. (3.37)–(3.41) or (3.42)–(3.46)); ‘ 0P ’ is a constant in accordance with Convention 2.1. 

Particularly, equation (3.71) yields: 
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(cf. (3.411) and (3.412) or (3.461) and (3.462)).• 

Corollary 3.10 (analogous to Corollaries 3.7). By the pertinent instance of (3.7) subject to 

(3.26) and (3.27), it immediately follows from (I.5.52) subject to (I.5.53) that for each 3,1ω∈i  and 

each 3,1ω∈j : 
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Particularly, equation (3.76) becomes 
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(cf. (3.511) and (3.512)).• 

Corollary 3.11. In accordance with (3.6), (3.37)–(3.41), (3.47)–(3.51), (3.56), and (3.72)–

(3.76), for each 3,1ω∈i , for each 3,1ω∈j , for each 22, ERxt ×∈ , and for each [ )1,0∈ε , the 3×3 

momentary depth-integrated radiation (or wave-related) stress tensor ( )2w , xtS ij



, which is defined by 

(2.48), is expanded into the following recursive asymptotic series in powers of the latent parameter ε: 
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‘ 0P ’ is a constant in accordance with Convention 2.1. By (3.40) at 1=l , equation (3.771) becomes 
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At the same time, by the first equation (3.17) and by equation (3.411), it follows that  
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Hence, by equations (3.40) at 2=l , (3.48), (3.73), and (3.772′), equation (3.772) can be written as 
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The expression on the right-hand side of equation (3.773) can be particularized likewise by making 

use of (3.40), (3.41), (3.50), (3.51), (3.56), (3.75), and (3.76). However, I shall not bother to do so, 

because I do not intend to calculate any term of the series (3.77), of the order higher than 2 in terms 

of elementary functions. That is to say, I shall confine to the following approximate asymptotic 

approximation to ),;( 2w kaxtS ij



 both in the case of a PPPMGWW and in the case of PSPMGWW: 
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subject to (3.771) or (3.78) and subject to (3.79).• 

Corollary 3.12. In accordance with the pertinent instances of the general place-holding 

definition (3.8), it follows from Corollary 3.11 that for each 3,1ω∈i , for each 3,1ω∈j , for each 

22 Ex ∈ , and for each [ )1,0∈ε , the 3×3 time averaged depth-integrated radiation (or wave-related) 

stress tensor ( )2w xS ij



, which is defined by (2.49), is expanded into the following recursive 

asymptotic series in powers of the latent parameter ε: 
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subject to (3.773), (3.78), and (3.79). Hence, both in the case of a PPPMGWW and in the case of 

PSPMGWW, the 3×3-tensor ),( 2w kaxS ij



 in the first non-vanishing approximation in powers of ka 

can, in accordance with (3.80) and (3.81), be written as: 
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Comment 3.5. Making use of the appropriate corollaries that have been made explicit above 

in this subsection, one can deduce an infinite sequence of asymptotic continuity equations for each 

depth-integrated continuity equation occurring in section 2. However, I shall not bother to do these 

trivial deductions here.• 
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4. The 3×3 time averaged depth-integrated radiation stress tensor of a 

PPPMGWW and that of a PSPMGWW in the first non-vanishing 

approximation with respect to ka 

 

Convention 4.1. Henceforth, I shall use the definitions (I.7.38) and (I.8.30), i.e, 

0tanh),()( >== kdgkdkk dd ΩΩ ,                                           (4.1) 

cos  sin, 11 == −
 ττ ,                                                       (4.2) 

respectively, without any additional comments.• 

4.1. The case of a PPPMGWW 

1. Given { }1,1 −∈µ , the following four trains of equations are tokens of slightly modified 

(enriched) trains (I.10.22)–(I.10.25) respectively:  
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2. Under the pertinent instances of the general (place-holding) definition (I.10.28) or (2.8), it 

follows from (4.3) and (4.4) that  
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because depth-integrating ( )kaxtl ,; 2)(Φ  or ( )2)( , xtlφ  between -d and 0 reduces to calculating the 

elementary integral:  
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∫ ,                               (4.8) 

which does not affect any trigonometric functional forms involved. At the same time, it follows from 

(4.5) and (4.6) that 
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Equations (4.9) and (4.10) are tokens of (I.10.29) and (I.10.30) respectively. Also, equation (4.10) 

agrees with equation (4.12) in Longuet-Higgins and Stewart [1962], which was deduced there from 

intuitive considerations. Given ( )∞∈ ,0a , given ( )∞∈ ,0k , it follows from (4.10) that 
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3. By (4.7) and (4.9), it follows from (3.86) and (3.85) at 1=l , subject to (3.78) and (3.83) 

that 
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4. In accordance with (4.3) and (4.4), the operation of depth-integration of any pertinent bulk 

functional form will always apply to a constituent combination of elementary hyperbolic functional 

forms ‘ )(cosh dzk + ’ and ‘ )(sinh dzk + ’, whereas the next operation of time-averaging the 

resulting expression will always apply to constituent elementary trigonometric functional forms such 

ac‘ [ ]22)(sin xnktkm ⋅Ω ’ and ‘ [ ]22)(cos xnktkm ⋅Ω ’, where m>0 and n>0 are strictly positive 

natural numbers  Hence, the two operations are commutative, i.e. schematically 

FF




= .                                                                 (4.13) 

This rule allows avoiding calculation of depth-integrating functional forms that will vanish after their 

subsequent time-averaging. 

5. By (4.2), it follows that 
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Making use of (4.14) and also of the equation 12 =µ , and letting that 
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it follows by (4.3) that 
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which incorporates both equations (I.8.35a) and (I.8.35b) for the sake of convenience in the 

following reasoning. By (4.16), it follows that 
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             (4.17) 

where  

( ) 222 )(, xktkxt ⋅−= Ωα  ,                                                   (4.18) 

for the sake of brevity. In this case, 

kdkdkd
kd

kdkdkdkd 2sinh
2
1coshsinh

cosh
coshsinhcoshtanh

2
2 === ,                  (4.19) 

– in agreement with (I.8.44)  ̧

( ) ( ) ( ) ( ) { }1,1each for   (b),  sin2
2
1  (a),  2cos1

2
12 −∈== −± µaaτaτaµaτ µµµ  ,         (4.20) 

– in agreement with (I.8.40), and also 

( ),for   (c),  1sinhcosh

(b),  2coshsinhcosh  ,(a)  2sinh
2
1coshsinh

22

22

dzk +==−

=+=

dbaa

aaaaaa
                     (4.21) 

– in agreement with (I.8.42a). Hence, equation (4.17) for each 3,1ω∈i  and each 3,1ω∈j  reduces to 
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( ) ( ) ( )
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                         (4.22) 

because 12 =µ . From (4.22), it immediately follows that 

( ) ( )[ ]

( )[ ]{
( )[ ]}
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                          (4.23) 

– in agreement with (I.8.45). 

6. For convenience in further computations, I shall make explicit the special expressions for 

two simple integrals, which will be most useful in the sequel. Namely, for each ),0( ∞∈k : 

( ) ( )[ ] ( )

( ) ( )[ ] (b),  2sinh
2
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2
1 2cosh
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−
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                 (4.24) 

( ) ( )[ ] ( )[ ]
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          (4.25) 

( ) ( )[ ] ( )[ ]
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4
1
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4
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          (4.26) 

where  

( ) 





 ±=± kd

kdkdm
2sinh

21
2
121 ,                                                (4.27) 

so that 
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( ) ( ) 122 11 =+ − kdmkdm .                                                    (4.28) 

The physical sense of the quantities of ( )kdm 21  and ( )kdm 21− , defined by (4.27), is established by 

(I.9.1)–(I.9.5), (I.9.9)–(I.9.12), and (I.9.13)f, and  it can be summarized as follows. 

7. The group and phase speeds ),(g dkc  and ),(p dkc  of a PPPMGWW are defined in terms 

of its cyclic frequency ),( dkΩ , given by (4.1), thus: 

( ) ,02),(
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2
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1
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1
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
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
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Ω
d

           (4.29) 

k
dkdkc ),(),(p

Ω
=d ,                                                        (4.30) 

so that 

0
),(
),(

)2(
p

g
1 >=

dkc
dkc

kdm ,                                                    (4.31) 

and hence 

),(
),(

1)2(
p

g
1 dkc

dkc
kdm −=− .                                                    (4.32) 

8. By (8.25) and (8.26) it follows from (8.22) and (8.23) that 

( ) ( ) ( )[ ],22
2

, 13312
0

)2( kdmkdmnn
k
gxte jiji

t
ij −+=′ ddρ

 ,                                 (4.33) 

2
9

)2k( 4
),(

k
gxte

t ρ
=′ ,                                                         (4.34) 

the understanding being that 

0 ,each for  32,1 =∈=  ni
k
kn i

i ω .                                               (4.35) 

9. By (4.20), it follows from (4.5) that 

( ) ( ) ( ) ( ) ( )

( )[ ],)(2cos1
2
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2
2
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             (4.36) 

whence 
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( ) ( ) ( ) 2
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2
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2
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)1( 2
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==Ζ ζ .                                   (4.37) 

By (4.34) and (4.37), it follows that 
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tt ρρζρ  .                                  (4.38) 

10. Thus, by (4.7) at 2=l , (4.10)  ̧(4.33), (4.37), and (4.38), equation (3.87) reduces to 
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              (4.39) 

where ‘S’ has, for more clarity, been furbished with the superscript ‘p’, standing for “progressive”. In 

separate components, (4.39) can be written as” 
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,
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                          (4.40) 

11. By (3.47)–(3.49), (3.57)–(3.581), and (4.36)–(4.38), it follows that 

2
0)2(pw)2(k 4

1 gaEE ρ==


,                                                   (4.391) 

so that p
)2(E



, defined as 

2
0)2(pw)2(k

p
)2( 2

1 gaEEE ρ=+=






,                                             (4.392) 
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is the time-averaged depth-integrated total volumetric energy density of the progressive (indicated 

by the superscript ‘p’) water wave in question. This is the pertinent interpretation of the factor 

‘ 22
0gaρ ’ occurring in the final expressions of the trains (4.39) and (4.40). 

12. By the relations 

( ) ( ) (b),  0
2sinh

1lim  ,(a)  
2
12lim2lim 11 ===

∞→−∞→∞→ kd
kdmkdm

kdkdkd
                       (4.41) 

the first two of which follow from (4.27) by the l’Hospitale rule and the last one is self-evident, or 

alternatively by the relations (4.29)–(4.32) subject to  

0tanhlim),(lim)( >===
∞→∞→∞ gkkdgkdkk

kdkd
ΩΩ d ,                           (4.42) 

which is a token of (I.7.79) that follows from (4.1) (or (I.7.38)), it follows from (4.39) that for each 

3,1ω∈i  and each 3,1ω∈j : 
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             (4.43)• 

 

4.2. The case of a PSPMGWW 

The tensor ( )kaxS ij ,2)2(w



 of a PSPMGWW is calculated in accordance with the same scheme 

as that of a PPPMGWW, although details of the calculation are of course different. 

1. Given { }1,1 −∈µ , given { }1,1 −∈ν , the following four trains of equations are tokens of 

slightly modified (enriched) trains (I.10.32)–(I.10.35) respectively: 
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             (4.45) 
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( ) ( ) ( ) ( )
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                      (4.47) 

2. As before, depth-integrating ( )kaxtl ,; 2)(Φ  or ( )2)( , xtlφ  at { }2,1∈l , subject to (4.44) and 

(4.45),. between -d and 0 reduces to calculating the elementary integral (4.8), so that the pertinent 

homograph of equation (4.7) is semantically sound: 

( ) ( ) 0,,; 2)(2)( =′=Φ′
t

l

t

l xtkakaxt φ






  for each { }2,1∈l ,                               (4.48) 

At the same time, it follows from (4.46) and (4.47) that 

( ) ( ) ( ) ( ) 0)(, 222)1(2)1( =⋅=Ζ=Ζ − xktkaxtx
tt
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( ) ( ) ( )[ ]22
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⋅+−=Ζ=Ζ nd ,                 (4.50) 

( ) ( ) ( ) ( ) ( ) 0,;,,,; 2)2(2)2(
2

2)1(2)1( =Ζ===Ζ
tttt

kaxtxtkaxtkakaxt 


 ζζ .                   (4.51) 

Equations (4.49) and (4.51) are tokens of (4.9) and (4.11) and also those of (I.10.38) and (I.10.40) 

respectively. The interval of  values of the functional form ( )txt 2)2( ,Ζ  is given by (I.10.391).  

Under the general definition 
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(see (10.42)), it follows from (4.50) that 
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2sinh4
,

2

2)2(

2

−=Ζ                                                (4.53) 

(cf. (4.10)). Consequently, given ( )∞∈ ,0a , given ( )∞∈ ,0k , it follows from (4..53) that 

( ) 0
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(cf. (4.101)). 

3. By (4.47) and (4.49), it follows from (3.86) and (3.85) at 1=l , subject to (3.78) and (3.83) 

that 
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which is a homograph of (4.12). 

4. The item 4 of the previous subsection applies to the case of a PSPMGWW. 

5. By (4.2), it follows that 

( ) ( )2222 xkkxk ii ⋅=⋅∇ −νν τντ  for each { }2,1∈i .                                   (4.55) 

Making use of (4.55) and (4.15) it follows by (4.3) that 
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                (4.56) 

which incorporates both equations (I.8.57a) and (I.8.57b) for the sake of convenience in the 

following reasoning. By (4.56), it follows that 
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             (4.57) 

whence, by (4.19), 
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         (4.58) 

because 12 =ν . By (4.19), (4.21,a), (4.24,a), (4.25), and (4.26), depth-integrating both sides of either 

equation (4.57) or (4.58) between –d and 0 yields: 
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6. By the pertinent instance of definition (2.8), it follows from the instance of the equation 

(4.20,a) with tk)(Ωα =  that 
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( ) ( )[ ]
2
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Hence, time-averaging equations (4.59) and (4.60) yields: 
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subject to (4.35). By the following instances of equations (4.20),  
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equations (4.62) and(4.63) can be reduced further thus: 
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7. By (4.61) and by (4.64,a), it follows from (4.46) (or (I.8.48)) that  

( ) ( ) ( ) ( )[ ]22222
22

22
2

)1( 2cos1
4
1)(1, xk
k

xktk
k

xt
tt

⋅−=⋅= − νtΩtζ νµ .             (4.67) 

Hence, by (4.66) and (4.67), it follows that 
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                 (4.68) 

6. By (4.52), it follows that 
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( ) ( ) 02sin2cos 22

2222 =⋅=⋅
xx

xkxk .                                           (4.69) 

Hence, upon averaging with respect to 2x , equations (4.65)–(4.68) become: 

( ) ( ) ( )kdmkdmnn
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8. By (4.48) at 2=l , (4.53), and (4.70)–(4.73), upon averaging it with respect to 2x , equation 

(3.87) becomes 
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              (4.74) 

where ‘S’ has, for more clarity, been furbished with the superscript ‘s’, standing for “standing”. 

Comparison of ( )
t

kaxtS
ij

,; 2
p

)2(w



, defined by (4.39), and ( )
2

)2(w
,; 2

s
xt

kaxtS
ij



, defined by (4.74), shows 

that the latter differs from the former by the factor 21 . It goes without saying that the limiting values 

of the two quantities as kd→∞ are interrelated likewise. 

9. Namely, in analogy with item 11 of subsection 4,1, using (4.71) and (4.72) instead of 

(4.34) and (4.38), one finds that 

( ) ( ) 2
02)2(pw2)2(k 8

1,,
22

gaxtExtE
xtxt

ρ==
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,                                      (4.741) 

so that ( )
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
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is the 2x -averaged time-averaged depth-integrated total volumetric energy density of the standing 

(indicated by the superscript ‘s’) water wave in question. This is the pertinent interpretation of the 

factor ‘ 42
0gaρ ’ occurring in the final expression of the train (4.74). 

10. By (4.41) and (4.42), it follows from (4.74) that for each 3,1ω∈i  and each 3,1ω∈j : 

( ) ( ) ( ) ( )33

2
0

2
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2
s 2

8
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2

)2(w

2

)2(w jiji

xt
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nngaxtskakaxtS

ijij
ddρ

+==
→∞→∞





              (4.75) 

(cf. (4.43)).•s 
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5. Progressive and standing monochromatic gravity waves on a water 

layer on a liquid layer with a mildly varying bed  

 

5.1. Formal empiric rules of generalization of basic characteristics of a PPPMGWW 

or PSPMGWW in the first non-vanishing approximation with respect to ka on a liquid 

layer of a constant depth to the respective characteristics of a priming progressive 

or standing quasi-plane monochromatic gravity water wave (PPQPMGWW or 

PSQPMGWW) on a water layer with a mildly varying bed 

Definition 5.1. 4) By (4.29) and (4.31), given d ∈ +∞( , )0 , the values of the functional form 

‘ ),( dkΩ ’, as defined by (4.1) (originally by (I.7.38), monotonically increase from 0),0( =Ω d  to 

+∞=+∞ ),( dΩ  as k  increases from 0 to +∞. Hence, given d ∈ +∞( , )0 , given ω ∈ +∞( , )0 , the 

equation  

ωΩ =),( dk                                                                 (5.1) 

has a unique solution with respect to ‘ k ’, which will be denoted by ‘ ( )dK ,ω ’, so that 

ωΩ =),( dk  if and only if ( )dKk ,ω= ,                                         (5.2) 

the understanding being that ( ) 0, >dK ω  (cf. Corollary I.9.2). Given ω ∈ +∞( , )0 , let for each 

22 Ex ∈ : 

( ) ( ) ( )),,, 222 xhKxx (=2 ωωκωκ = ,                                            (5.3) 

so that 

( ) ( ) ( ) ( )
( ) ( ) ,),,),

),,),),),

2221

22212222

xhxh

xhxhxhxh

((
((((

ωκωκ

ωκνωκνωκνωκ

=

==




                           (5.4) 

where 2ν  is an arbitrary unit vector, defined as 

22 ,ννν = ;                                                                (5.5) 

it goes without saying that  

( ) 0, 23 =xωκ .                                                              (5.6) 

2) Let, also,  

( ) ( )( ) ( ) ( )( ) ( )2p22122g2g ,,2)(,,, xCxhxmxhxcxC ωωκωκω == ,                          (5.7) 
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( ) ( ) ( )( ) ( )2
22p2p ,

,,,
x

xhxcxC
ωκ
ωωκω == ,                                        (5.8) 

subject to (4.27)-(4.32). Thus, ( )2g , xC ω  and ( )2p , xC ω  are respectively the wave group speed and 

the wave phase speed of a certain priming progressive quasi-plane monochromatic gravity water 

wave (PPQPMGWW) on a liquid layer with a mildly varying bed ( )2xhz −=  (to be specified).• 

Definition 5.2: The empiric syntactic rule of the generalization. 1) In agreement with the 

pertinent previous notation, given 1ων ∈ , for each νω∈l , ( )kaxtF l ,;)(  and ( )kaxtF l ,, 2)(s  are scaled 

asymptotic approximations of lth order with respect to ka to a given momentary bulk functional form 

( )kaxtF ,;  and to a given momentary free-surface functional form ( )kaxtF ,, 2s  respectively, so that 

( ) ( ) ( ) ( )∑∑
∞

=

∞

=

=
νν l

l
l

l
l xtfkakaxtFkaxtF ,,;~,; )()(

 ,                                      (5.9) 

( ) ( ) ( ) ( )∑∑
∞

=

∞

=

=
vl

l
l

l
l xtfkakaxtFkaxtF 2)(s2)(s2s ,,;~,; 

ν

,                                (5.10) 

where ( )2)( , xtf l  and ( )2)(s , xtf l  are the respective non-scaled asymptotic approximations of lth order. 

In this case,  

( ) ( )kaxtkaxtF ,;,; 22s Ζ=  or ( ) ( )[ ] ( )kaxtzkaxtFkaxtF ,;2s 2
,;,; Ζ==                       (5.11) 

Relation (5.9) implies that  

( ) ( ) ( ) ( )∑∑
∞

=

∞

=

=
νν l

l
l

l
l xtfkakaxtFkaxtF 2)(2)(2 ,,;~,;







                                 (5.12) 

subject to (3.1)–(3.3), (3.7)–(3.9), (3.20), and (3.21). Also, by the pertinent instances of 3.8), it 

follows from (5.9), (5.10), and (5.12) that 

( ) ( ) ( ) ( )∑∑
∞

=

∞

=

=
νν l

l
l

l
l xfkakaxFkaxF )()( ,~,  ,                                       (5.13) 

( ) ( ) ( ) ( )∑∑
∞

=

∞

=

=
νν l

l
l

l
l xfkakaxFkaxF 2)(s2)(s2s ,~,  ,                                   (5.14) 

( ) ( ) ( ) ( )∑∑
∞

=

∞

=

=
νν l

l
l

l
l xfkakaxFkaxF 2)(2)(2 ,~,







.                                      (5.15) 

2) Besides the independent variables occurring in the postpositive parentheses after each 

upper case or lover case functional variable occurring in the relations (5.9)–(5.15), the respective 

functional form is supposed to depend on the four parameters: 

50 



   

‘ɷ’, ‘k’,  ‘d’, ‘ 2k ’,                                                        (5.16) 

subject to (5.2), which should be added to the pertinent list of  independent variables after a 

preceding semicolon. Thus, for instance, 

( ) ( ) ( ) ( )
( ) ( ),,,,;;,

,,,,;,;,; ,,,,;,;,;

2)()(

2)()(2

kdkxtfxtf
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=
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                (5.17) 
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d



=

==
                  (5.18) 

so that the definiendum of each one of the six of definitions (5.17) and (5.18) is the abbreviation of 

its definiens that is obtained  by omission of the list (5.16). 

3) The functional form that is obtained by furnishing the basic functional variable or constant 

of any given full or abbreviated functional form of those occurring or obviously understood in the 

previous item with a superscript tilde ~ is understood as one, in which the last three parameters of the 

list (5.16) are mentally replaced in accordance with the following definitions: 

( )2, xk ωk= , ( )22 xhd =d , ( )222 , xk ωk= .                                       (5.19) 

Once the substitutions (5.19) are actually (syntactically) executed, the superscript tilde should be 

omitted.  

4) The above rule applies also to any other appropriate original functional form. For instance, 

in accordance with (5.7) and (5.8), 

( ) ( )( ) ( ) ( )( )
( ) ( ) ( )( ).,22

,)(,,, ,)(,,,

221
~
1

22p
~
p22g

~
g

xhxmkdm

xhxcdkcxhxcdkc

ωk

ωkωk

±± =

==
d

dd

                        (5.20) 

5) The tilde-carrying variant of an initial uniform-bed-related functional form is called the 

mental non-uniform-bed-related interpretand of the latter functional form. The tilde-free variant of 

an initial uniform-bed-related functional form subject to the syntactic (actual) substitutions (5.19) is 

called the syntactic non-uniform-bed-related interpretand of the latter functional form.• 

Hypothesis 5.1: The empiric semantic rule of the generalization. Both the mental and the 

syntactic non-uniform-bed-related interpretand of the first non-vanishing asymptotic approximation 

with respect to ka to a characteristic of a PPPMGWW or PSPMGWW on a water layer of a constant 

depth is a semantically sound (meaningful, having a denotatum) characteristic of a priming 

progressive or standing quasi-plane monochromatic gravity water wave (PPQPMGWW or 

PSQPMGWW) on a liquid layer with a mildly varying bed, such that, e.g., 
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( ) 122 <<∇ xh  for each  22 Ex ∈ .                                             (5.21) 

In this case, all higher asymptotic approximations with respect to ka to the given characteristic of the 

given PPPMGWW or PSPMGWW are disregarded.• 

Comment 5.1. In accordance with (4.3) and (4.16), 
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ii
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iiii

δ

δ

      (4.23) 

Hence, for instance, ( )kaxt ,;)1(Φ , ( ),,)1( xtφ , each scaled velocity component ( )kaxtV i ,;)1( , and each 

non-scaled velocity component ( )xtv i ,)1(  decrease with z decreasing from 0 to –d either as 

kd
dzk

cosh
)(cosh +  or as 

kd
dzk

cosh
)(sinh + , i.e. mainly as ( )kzexp . Therefore, the sufficient criterion (5.21) of 

mildly varying can intuitively be replaced with this sufficient one: 

( ) ( ) ( )( ) 1,exp 2222 <<−∇ xhxxh ωκ  for each 22 Ex ∈ .                              (5.24) 

The bottom of a water layer, whose depth satisfies the criterion (5.24), is called an effective mildly 

varying one. Particularly, criterion (5.24) is satisfies if the minimum depth mh  satisfies the condition 

∞→mh .• 

Example 5.1. In the result of substitutions (5.19),equations (4.39) and (4.74) become 

( )( ) ( )( ) ( )[ ] ( )
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
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

               (5.25) 
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              (5.26) 

respectively.• 

 

5.2. An empirical relation between the longshore sediment transport rate and the 

revised radiation stress tensor of the representative PPQPMGWW 

Inman and Bagnold [1963], Komar and Inman [1970], and others have suggested that the 

potential transport rate I ( )ω  of the immersed weight of sand along the surf zone due to a real 

progressive quasi-plane wave of a cyclic frequency ω  and of an amplitude a is given by the 

empirical formula 

( )b2,)()( xLKI ωωω = ,                                                    (5.27) 

where  

( ) ( ) ( ) ( ) ( )222g22w2 , cos ,sin,,, xxxCxExL )( wαwαwww


= .                           (5.28) 

subject to (5.7). In this case, ( )22w , xE )( w


, defined as 

( )
2

,
2

0
22w

gaxE )(
ρw =



,                                                      (5.29) 

is the time-averaged depth-integrated total volumetric energy of the PPQPMGWW, ( )2, xωα  is the 

angle between the local wave vector ( )22 , xωκ  and the unit vector ( ) ( ) ( )222122 , xNxNxN =  of the 

inland normal to the depth contour at the point x 2 , positive counterclockwise; both vectors are 

parallel to the XY-plane. The subscript ‘b’ to ‘ x 2 ’ in (5.27) indicates that L  must be evaluated at the 

breaker depth contour. If ( )22w , xE )( w


 is measured in joule per meter squared, C xg ( , )2 ω  in meter 

per second, and I ( )ω  in newton, then K( )ω  is an empirical dimensionless constant coefficient of 

the order 1. Thus, equation (5.27) subject to (5.28) and (5.29) is a scaling relation, which takes into 

account both the energy density flux into the serf zone and its orientation relative to the breaker 

depth contour. This relation is often called “the CERC formula”, “CERC” being an acronym of 

“Coastal Engineering Research Council”. All equivalent counterparts of equation (5.27) subject to 
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(5.28) and (5.29) that occur in the literature are as a rule written with the help of one or another 

notation. It is hoped that the reader will easily recognize (5.27) subject to (5.28) and (5.29) as an 

adequate version of any one of those in use. The interested reader will find a discussion of some 

physical mechanisms underlying the CERC formula, e.g., in Komar [1976, pp. 204–213]. 

If all depth contours are parallel to the shore line, it is convenient to choose a new coordinate 

system in such a way that its X-axis is directed shoreward, whereas its Y-axis is parallel to the shore 

line and oriented so as to form a right-handed coordinate system along with the above X-axis and 

along with the Z-axis oriented vertically downward. In this case, (5.28) can be written as 

( ) ( ) ( ) ( ) ( )2g22w22212 ,,,,, xCxExxxL )( wwwνwνw


= .                                (5.30) 

 By (4.31) and (5.25), equation (5.30) becomes 

( ) ( ) ( )212)22p2 ,,, xSxCxL ( ωωω


= .                                             (5.31) 

Hence, (5.27) takes the form 

( ) ( )b212)2b2p ,,)()( xSxCKI ( ωωωω


= ,                                          (5.32) 

Relative to a coordinate system with arbitrary oriented axes X and Y in the horizontal plane, equation 

(5.32) can be rewritten in covariant form as 

( ) ( ) ( ) ( )∑∑
= =

=
2

1

2

1
b2)2b2b2b2p ,,)()(

i j
ij(ji xSxNxNxCKI ωωωω



.                          (5.33) 

In this case, it is tacitly assumed that the transformation from the original coordinate system to the 

new one has been made, and that the meaning of the variables ‘ i ’, ‘ j ’, and ‘ x 2 ’ has been changed 

accordingly. Thus, equation (5.33) is an empirical scaling relation between the longshore transport 

rate of the immersed weight of sand on the one hand, and the 2×2-TADIRST (time-averged depth-

integrated radiation stress tensor) of the representative progressive quasi-plane mode on the other 

hand. Instead of the empirical coefficient ‘ K( )ω ’, one can introduce another coefficient ‘ ′K ( )ω ’ by 

the equation 

))(),(2()()( b2b21 xhxmKK ωκωω ′= .                                          (5.34) 

In this case, equation (5.33) becomes  

( ) ( ) ( ) ( )∑∑
= =

′=
2

1

2

1
b2)2b2b2b2g ,,)()(

i j
ij(ji xSxNxNxCKI ωωωω



.                         (5.35) 

54 



   

Since (5.27) subject to (5.28) is a scaling relation, therefore the fact that the right-hand side of (5.27) 

is expressed in terms of the radiation stress tensor components either by (5.32) or by (5.33) or else by 

(5.35) seems to be natural. At the same time, when written in any one of the above three forms, , the 

CERC formula acquires a new sense value. 
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6. Historico-philosophical remarks regarding radiation stress tensors of 

water waves 

 

6.1. “Radiation stress tensor” paradoxes 

I have already mention in Comment 2.7 that in the literature on water wave dynamics, there 

are several different, but intuitively as if the same, definitions of a 2×2 TADIRST in the XY-plane of 

the second order with respect to ka, which are regarded by their authors as unique adequate 

logographic interpretands of Longuet-Higgins and Stewart’s wordy definition of the generic name 

“radiation stress tensor”. This results in the phenomenon of paradoxical uses of the latter term, 

which I shall call “radiation stress tensor” paradoxes (“RST” paradoxes). In this case, in the 

different articles on the matter different notations are used. Therefore, in order to make explicit at 

least some of the “RST” paradoxes I shall, for the sake of being specific, consider the following 

three-stage definition of his ‘ Sij ’ by Mei [1989]. 

1) «For the convenience of vertical integration, the vertical and horizontal directions are 

distinguished. Specifically, we denote the vertical velocity by w and the vertical coordinate by 

z, the horizontal velocity components by iu  ( 1,2=i , uu =1 , vu =2 ), and the horizontal 

coordinates by ix  ( 1,2=i , xx =1 , yx =2 ). We define the mean velocity iU  ( 1,2=i ) by 

integrating iu  over the instantaneous water depth and then over the time period T, tat is, 

( ) 1,2        ,1,,, =
+

= ∫
−

idzu
h

tzyxU
h

ii

z

z
,                                     (2.1) 

where ( )tyx ,,ζ  is the free-surface displacement, ζ  is its time mean, and ( )yxh ,  is the sill 

water depth. Physically, ( )hUu ii += ζρ  is the mean rate of mass flux across a vertical plane 

of unit width along ix =const. The vector ( )21,UU  may, therefore, be called the mass flux 

velocity, which depends only on the horizontal coordinates and the long time scale. Denoting 

the deviation from the mean by iu , we have 

( )tzyxuUu iii ,,,+= .                                                  (2.2) 

It follows from the definition that 
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0=∫
−

ζ

h
idζu .                                                         (2.3)» 

(ibid. pp. 453–454)) 

2) «… the following definition has been introduced 

[ ] ( ) ij
h

jiijij hgdzuuPS dzρρd
z

2

2
+−+= ∫

−

.                                  (2.25) 

Physically, ijS is the ( )ji,  component of the stress tensor, representing the excess momentum 

fluxes.† Since  

( ) ( )∫
−

−=+
ζ

ζρζρ

h

dζζghg 2

2
 

is the total mean hydrostatic pressure over the mean depth, ijS  may be written 

( ) ∫∫∫
−−−

+











−−=

ζζζ

ρδζρ
h

jiij
hh

ij δζuuδζζgPδζS .                               (2.26) 

Thus, ijS  represents the sum of the ith component of the excess hydrostatic pressure on, and 

the net momentum flux across, a surface normal to the jth direction. 
†The definition of ijS  is slightly different from Phillips [1977, Eq. (3.6.12).The difference is 

of the fourth order for the infinitesimal waves.» (ibid. pp. 457–458) 

3) «It is straightforward to show that the radiation stresses are 
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kkgAS
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ij
ji

ij

δ

δρ

                            (3.10) 

(Longuet-Higgins and Stewart, 1962, 1964).» (ibid. p. 465) 

In referring to any one of the above cited numbered equation, I shall prefix its double numeral 

with the letter ’M’. Each one of the subscripts ‘i’ and ‘j’ occurring in the above quotations takes on 

values in the set { }2,1 . Also, Mei’s variable ‘ζ’ has the same range as Longuet-Higgins and Stewart’s 

(briefly LH&S’s) variable ‘ζ’ and the same range as my variable ‘Ζ’. Hence, the definiens of Mei’s 

definition (M2.25) of his radiation stress tensor Sij  subject to 2,1ω∈i  and 2,1ω∈j  contains the wave-

dependent term 
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ijhg δζρ 2)(
2

+ ,                                                             (6.1) 

i.e. ijhg δρ 20 )(
2

+Ζ  in my notation, which is subtracted from the term 

[ ]∫
−

+
ζ

ρδ
h

jiij δζuuP                                                             (6.2) 

instead of the wave-independent term ( )
t

ij xtS 2e ,


 (see (2.42e)) subject to 2,1ω∈i  and 2,1ω∈j . 

Accordingly, my equations (4.9) and (4.10), being tokens of equations (I.10.29) and (I.10.30) 

respectively, should be written in Mei’s notation thus: 

0)1( =ζ ,                                                                   (6.3) 

kh
kA
2sinh2

2

)2( −=ζ .                                                          (6.4) 

In this case, with an accuracy to the ambiguous usages both of ‘ζ ’ and of ‘=’, equations (6.3) and 

(6.4), i.e. my equations (4.9) and (4.10), agree respectively with the statement that ζ = 0  before 

equation (3.18) in LH&S [1960] and with equation (4.12) in LH&S [1962], which was deduced there 

from intuitive considerations. The former statement of LH&S means that their depths function h  is 

the same as that of Mei. At the same time, in connection with the latter result of LH&S, it is 

noteworthy that, in accordance with the subject matter of sub-subsection I.10.5.2 (e.g.), the velocity 

potential Φ ( )2  of the second order approximation with respect to ka is, like )1(Φ , bounded as a 

function of time, so that 

( )
0

,)2( =
∂

Φ∂
t

t
xt

.                                                            (6.5) 

Otherwise, the whole of the second-order approximation would be incorrect in principle. Therefore, 

for computing Ζ ( )2 , one should at first compute Φ ( )2  in order to prove (6.5). Hence, Ζ  cannot, in 

principle, be computed in the second-order approximation with respect ka  in the framework of the 

linear theory, unless of course (6.5) is taken for granted. Accordingly, it is accidental that equation 

(4.12) in Longuet-Higgins and Stewrt [1962], along with (6.5), turns accidentally out to be true. 

Occurrence of A2 in (6.4) explicitly demonstrates that the term (6.1) is, not only wave-related, 

but that it is of the order of (kA)2, i.e. of the order of the entire Sij . Therefore, when used in its 
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natural (default) sense as “net wave-induced”, the qualifier ‘radiation” is not applicable to the tensor 

‘ Sij ’ defined by (M2.25) or (M2.76). That is to say, either one of Mei’s last two definitions disagrees 

with LH&S’s original wordy definiens of their 2×2 time-averaged depth-integrated radiation stress 

tensor LS
ijS  (see Comment 2.7) and is therefore semantically incorrect as a logographic interpretand 

of ‘ LS
ijS ’. At the same time, Mei explicitly states that, firstly, his Sij  represents “the excess 

momentum fluxes” (see the first line below (M2.25)) and that, secondly, the final expression for his 

‘ Sij ’, given by (M3.10), is due to LH&S. This is actually the main reason for confusion and for the 

creation of the pertinent radiation stress paradox. 

Comparison of the separate components of ijS , given by (M3.10), and the respective 

components of ( )kaxS ij ,2
22

)2(w
×



, given by (4.40) subject (4.31), (5.7), and (5.8) (see (4.12)), shows that, 

up to the different notations used in these two cases, 

( ) ( )kaxSkaxSSS yxxyyxxy ,, 2
22
)2(w2

22
)2(w

×× ===


.                                       (6.6) 

whereas 

( )kaxSS xxxx ,2
22
)2(w

×≠


 and ( )kaxSS yyyy ,2
22
)2(w

×≠


.                                     (6.7) 

Since Mei’sefinition of ‘ ijS ’ differs from my definition of ‘ ( )kaxS ij ,2
22

)2(w
×



’ (cf. (2.49), (2.51), and 

(4.12)) and since the methods of calculation of the components of the two tensors are different, 

therefore the relations (6.7) are not surprising.  

Surprising is Mei’s statement that his definition (M2.25) or (M2.26) of ‘ ijS ’ results in 

equation (M3.10), i.e. in the same values of ‘ ijS ’ as those resulted from the completely different 

definition of ‘ ijS ’ by LH&S. Mei does not make explicit any derivation of equation (M3.10) from his 

definition (M2.25) or (M2.26). Therefore, there are two options to explain his paradoxical statement. 

First, Mei correctly performed all calculations leading from (M2.25) or (M2.26) to (M3.10), while 

LH&S committed some errors in their calculations, which were not detected by their followers 

including Mei. In this case, the coincidence of the above two final results is accidental. Second, Mei 

did not performed all necessary calculations by himself, but rather he was confident both that his 

definition of ‘ ijS ’ was an adequate logographic interepretand of ‘ LS
ijS ’ (see Comment 2.7) and that 

the result of calculations of LH&S of their LS
ijS , which were expected to be subjected by that time to 
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25-years interpersonal verifications, were correct. Therefore, Mei just quoted the supposedly correct 

result of LH&S for their LS
ijS  as the unavoidable result of his own definition of ‘ ijS ’. In this case, the 

possibility that LH&S had erred is not excluded, and this is what had unfortunately happened. 

I have already indicated previously that intuitive considerations can be a useful heuristic tool 

in calculating linear characteristics of a non-linear phenomenon or in calculating bilinear 

characteristics, which are expressible in the framework of the pertinent linear approximation, – such 

bilinear characteristics, e.g., the volumetric kinetic energy density or the volumetric energy density 

flux of ideal fluid. If, however, calculating a bilinear characteristic of interest requires knowledge of 

the velocity potential of second order with respect to ka then the missing information is unavoidably 

compensated by making apparently plausible but often incorrect ad hoc assumptions. Accordingly, in 

such cases intuition turns often out to be, not only useless, but harmful. Therefore, one of the main 

objects of my developing the recursive asymptotic theory of nonlinear surface gravity water waves on 

a water layer with an even or infinitely deep bottom has been to avoid, as far as possible, making in 

the sequel any ad hoc non-systematic assumptions. 

At the same time, rigorous (syntactic) systematic rules of deductive inference can result in 

some relations, which are not predictable intuitively, but which become intuitively comprehensible 

after they are made explicit formally. Ones of such results are, in my view, the expression (4.39) (or 

its equivalent (4.40)) for the 3×3 TADIRST ( )
t

ij kaxtS ,; 2)2(w



 of a PPPMGWW in the second order, 

i.e. first non-vanishing, approximation with respect to ka (see equation (4.12)) and the expression 

(4.74) for the 3×3 hotison(ally averaged (HA) TADIRST ( )
2

,; 2)2(w

x
t

ij kaxtS


 of a PSPMGWW in the 

same approximation (see equation (4.54) being s homograph of (4.12)). The diagonal elements of 

each one of the above two RST’s involves the constant ‘P0’, such that 00 =P  if the part of space 

above the free upper surface of the water layer is vacuous, whereas a0 PP = , where aP  is the 

atmospheric pressure on the free water surface, if the above-mentioned part of space is occupied by 

atmospheric air. In this case, since aP  has a prepositive sign ‘–’, opposite to the prepositive signs of 

all other terms contributing to any diagonal element of each given RST, one can thought that aP  

produces surface tension of some kind, which tends to straighten (suppress, diminish) the existing 

surface water waves. In this connection, the following question of pure academic interest can e raised  
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Let in general 00 >P  be external pressure on the free (upper) surface of the water layer, and 

let, for the sake of being specific, the coordinate system be chosen so as  

1=xn  and 0=yn .                                                          (6.8) 

It follows from (4.43) and (4.75) that every component of ( )
t

kaxtS
ij

,; 2
p

)2(w



 or ( )
2

)2(w
,; 2

s
x

t
kaxtS

ij



 

converges. Moreover, given  

0>= kddd ,                                                                (6.9) 

given 0>d  ̧by (4.27), it follows from (4.39) or (4.40) and from (4.74) independently of a that 

( ) ( ) 0,;
2
1,;

2

)2(w)2(w 2
s

2
p ==

xtt
kaxtSkaxtS

xxxx



                                          (6.10) 

if and only if 
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if and only if 

( ) ( )δρδ zz gδuδPP 000 , == δ                                                   (6.14) 
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2
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
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

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δδ
δ

δδ muz
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In this case, use of (4.27) has been made for developing the universal functional forms ( )δxu  and 

( )δzu .  

Given 0>= kddd , it follows from (6.11) and (6.14) that 

+∞==
∞→∞→ zdxd

PP 00 limlim .                                                     (6.16) 

Assuming therefore that d<∞, let us consider the equation 

( ) ( )δ
δ

δ
δ
δδ zx uu =−=+= δ 12sinh1

2
2sinh .                                       (6.17) 
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This equation can be rewritten as 

02
2

2sinh
=−

δ
δ .                                                          (6.18) 

It is clear that 2
2

2sinh
−

δ
δ  monotonically increases with δ monotonically increasing from 0 to ∞. 

Therefore, equation (6.18) has a unique solution ∗= δδ δ . This solution has the property that 

( ) ( ) ( )∗∗∗∗ == δδδ ,,, 000 δPδPδP zx
δ ,                                             (6.19) 

the understanding being that at this p0ressure 
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6.2. “Amicus Plato, sed magis amica veritas” 

1. The noble Latin dictum, which is taken as the heading of this subsection, is translated into 

English as: «Dear is Plato, but dearer still is truth» and also, less pretentiously, by any one of the 

following sentences: «Plato is my friend, but truth is a better friend», «Plato is my friend, but truth is 

more my friend [than he is]», or «Plato I love, but I love truth more». That Latin dictum is in turn a 

translation from Ancient Greek into Latin of the phrase credited to Aristotle, who as though said it 

inorder to express his uncompromising rejection of Plato’s teaching of Universals (for greater detail, 

see Iosilevskii [2016b, Essay 5, subsection 2.2, p. 112 f]). At the same time, according to the online 

«Dictionary of Phrases and Fable» of Wikipedia, the above Latin dictum is a free translation of a 

phrase of «Nicomachean Ethics» (1096a15) by Aristotle, which is literally translated as: «Where both 

are friends, it is right to prefer truth». In any case, my usage of the Latin dictum as the heading of 

this subsection ix an allegoric one, under which I shall make explicit some most conspicuous 

inconsistencies of the four articles by Longuet-Higgins and Stuart (briefly LH&S) [1960, 1961, 1962, 

1964] that have resulted in their expressions for the TADIRST of a PPPMGWW and for the 

HATADIRST of a PSPMGWW, – the incorrect expressions that were canonized about 55 years ago. 

I shall also make a few remarks regarding the old article Tadjbaksh and Keller [1960], which 

concerns with some relevant aspects of PSPMGWW’s. 

The above-mentioned objects of this subsection are not of course objects of the recursive 

asymptotic theory of gravity surface water waves (RATOGSWW, briefly RAT) that I have developed 

in I and in this article. I have developed this theory, firstly, for the sake of completeness as another 
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peculiar branch of the perturbation WKB (LG) method and, secondly, as a reliable rigorous 

(syntactic) alternative of the presently common unreliable intuitive (semantic) method. Analyzing or 

revising any article published in the literature on water wave dynamics previously in the framework 

of the intuitive method is beyond the scope of the RAT, except the papers of LH&S for the following 

reason. On the one hand, the TADIRST of a PPPMGWW and the HATADIRST of a PSPMGWW 

are minor characteristics of surface water waves of gravity. These characteristics are distributed and 

are not therefore measurable immediately and straightforwardly. But on the other hand, the RST’s of 

water waves are secondary characteristics of water waves, which are deduced from the basic 

equations of hydrodynamics and therefore they must be well-defined (unique). 

One of the most general laws of philosophy is the triad of motion of thought: thesis-

antithesis-synthesis due to the German philosopher Georg Wilhelm Friedrich Hegel (1770–1831). 

The above triad is interpreted as the dialectic principle of unity, or identity, of opposites due to 

another German philosopher Johann Gottlieb Fichte (1752–1814), a contemporary of Hegel. In a 

sense, Hegel’s triads and its interpretation by Fichte were foreshadowed by the principle of golden 

mean of ancient Greek philosophers and also by the following two Latin dicta: «In medio stat 

veritas» – «The truth stands in the middle» and «In medio stat virtus» – «Virtue stands in the middle» 

or «Virtue is in the moderate». Aristotle represents the principle of golden mean and discusses its 

importance for ethics in his «Nicomachean Ethics» (cf. Iosilevskii [2016b, Essay 5, subsection 4.2, p. 

168 f]). At the same time, golden mean is not applicable to the RST of a water wave: the RST either 

is correct or is not correct, but not both at the same time. And if it is incorrect then it is necessary to 

explain why, when possible. Needless to say that there is nothing personal in my criticism of 

inconsistencies of articles by LH&S. They are pioneer in the field but they have committed some 

errors. Somebody has to correct their errors. Unfortunately, it is me who happens to do this job. I 

may also err, particularly in my attempt to explicate errors of LH&S or mutual inconsistencies of 

some of their statements. If this happens, somebody else will correct errors of my own. And so on. 

2. I distinguish between the qualifiers “true” and “valid” and hence between the respective 

substantives “validity” and “truth”. In Latin, e.g., there are special words for “true” and “truth’ on the 

one hand and there are some other special words for “valid” and “validity” on the other hand, – in 

accordance with the following vocabulary entries of the English-Latin part of the Latin-English 

dictionary by Simpson [1968]: 
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«true, (1) = in accordance with fact, verus, iverax(=truthful)’ to be –. in parenthesis, as an 

admission, quidem; as –I live, supporting a statement, ita vivam ut; with indic.; as an 

answer, see of YES. (2)  = genuine, real, verus, sinserusm, germanus. (3)  = loyal, fidus, 

fidelus. 

truth, as a quality, veritas; the – , in a particular case,  = the fact (s), verum, vera (= n. sing., 

or plur., of veus) sometimes veritas; in accordance with –, ex veritate (Sall.); in –, 

enimvero; see also TRULLY. 

valid, (1) of arguments, reasons, etc., firmus, gravis, iustus, certus, ligitimus. (2) of laws, 

ratus, to be –, ratum esse, valěre; to make –, ratum facěre, ratum esse iuběre.  

validity, (of  reasons, etc.) gravitas, pondus (-ěris, n.); otherwise rendered by adj.» 

 

The interested reader will find a discussion of the difference between the senses of the words “valid” 

and “validity” on the one hand and the senses of the words “true” and “truth” on the one hand,  in 

trial formal logic (TFL), in Iosilevskii [2016a]. For my purpose at hand, it is sufficient to notice that 

every euautographic (genuinely non-interpreted syntactic) relation (contrasted to “euautographic 

term”) of that logic, having academic or practical interest, is classified in accordance with a certain 

built-in algebraic (and hence analytical, not tabular) decision method (ADM) either as a valid one or 

as an antivalid one, or else as a vav-neutral (vav-indeterminate) one, i.e. as one being neither valid 

nor antivalid. In this case, the negation of a valid relation is an antivalid relation and vice versa, 

whereas the negation of a vav-neutral relation is another vav-neutral relation. A euautographic 

relation is said to be: (i) invalid if it either is antivalid or vav-neutral, (ii) non-antivalid if it either is 

valid or vav-neutal, (iii) vav-unneutral (vav-determinate) if it either is valid or antivalid. A 

euautographic relation or term of TFL is just a semantically insignificant chip (fish) that is analogous 

to a chessman. In order to be interpreted semantically, some selected valid and vav-neutral 

euautographic relations and also the master (decision) theorems of the latter relations are replaced, in 

accordance with certain rules of substitution, by certain semantically significant relations as their 

semantic interpretands. In this case, the semantic interpretands of valid relations, both of slave ones 
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and of master ones, are said to be universally (tautologously, tautologically) true, whereas the 

semantic interpretands of some vav-neutral relations, which are taken for granted to be true, are said 

to be veracious, i.e. accidentally true.  Consequently, all mathematical postulates, permanent ones, 

called mathematical axioms, and temporary (ad hoc) ones, called mathematical hypotheses, are 

semantic interpretands of vav-neutral euautographic relations. Accordingly, all mathematical 

theorems, i.e. true mathematical relations that are proved from mathematical postulates or from other 

mathematical theorems, or from both, are also semantic interpretands of some vav-neutral 

euautographic relations of TFL. The recursive asymptotic theory of gravity water waves that is 

developed in I and in this article is a mathematical theory and therefore all its true relations 

(postulates and theorems) have the above character. 

3. I have already indicated previously that Longuet-Higgins and Stewart [1960, 1961, 1962, 

1964], to be refferred henceforth to as LH&S1–LH&S4 in that order, seem to have been the first 

writers to introduce the term ‘radiation stress’ and to define its physical sense. Here follows a brief 

review of those aspects of the above papers, which are relevant to the radiation stress paradoxes of 

progressive water waves. 

Equation (3.14) of LH&S1 is a definition of the quantity, which the authors denote by ‘ Sx ’ 

and which they commonly call ‘a radiation stress’. Also, in accordance with that paper, Sx  is the 

〈x,x〉-component xxS  of a time-averaged 2×2 tensor, which the authors denote by ‘S’, and which they 

call “the stress tensor” (ibid., p. 577), – instead of the presently common term “the radiation stress 

tensor”. None of the three other components of the tensor is defined in the paper formally. However, 

equation (3.14) of LH&S1, which is actually the definition of ‘ Sxx ’, unambiguously indicates that 

any component Sij  of the tensor should be defined analogously. By equation (3.34) in LH&S1, the 

authors suggest the well-known expressions for all the four components Sij  with i ∈{ , }1 2  and 

j ∈{ , }1 2  in the case of a real priming progressive plane mode (monochromatic wave) of an 

amplitude a  and of a wave number k , that travels in the direction of the X-axis. Since then these 

expressions are widely cited and used in the literature for more than 55 years. It has been shown in 

subsection 6.1 that the above expressions are incorrect. Still, LH&S1 do not make explicit any details 

of the calculations, in the result of which they arrive at their final expressions for the radiation 

stresses. One cannot therefore put his finger on a specific error, or errors, which the authors have 

committed. 
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No essentially new results relevant to radiation stresses are reported in LH&S2. In this paper, 

the expressions for the radiation stress components as computed for a real progressive plane mode in 

LH&S1 are just cited in connection with some applications. Also, in this paper, the radiation stress 

tensor of a real progressive plane mode has, for the first and for the last time, been mentioned as a 

3×3 tensor, whose all 〈i,x〉 and 〈x,i〉components with 3,1ω∈i  equal null (ibid., equation (6.2)). Since 

then the radiation stress tensor has never been mentioned in the literature as a 3×3 tensor, but rather it 

has always been treated as a 2×2 tensor. 

In their paper LH&S3, the authors consider some further applications of their radiation stress 

Sx  due to a real progressive plane mode. The definition of ‘ Sx ’ as given by equation (3.31) in 

LH&S3 essentially differs from the definition of the same symbol as given previously by equation 

(3.14) in LH&S1. Nevertheless, in the case of a real progressive plane mode, the next formula (3.32) 

in LH&S3 assigns the same denotatum to ‘ Sx ’ as that obtained in LH&S1. The assignment of the 

denotatum to ‘ Sx ’ is made as a citation of the corresponding result of LH&S1 without any 

calculations. Thus, the formulae (3.31) and (3.32) in LH&S3, along with the reference to LH&S1 as 

the source of formula (3.32), evidence that the authors did not notice the substitution, which they had 

involuntarily and erroneously made for the original definition of ‘ Sx ’ occurring in LH&S1. At the 

same time, it is worthy of noticing the amazing fact that, in LH&S3, equation (3.32) subject to 

definition (3.31) turns out to be syntactically correct. This correctness of (3.32) is, however, 

accidental because it is a result of two errors, one of which has been made in LH&S1, and the other 

in LH&S3. Among some other unfortunate coincidences of circumstances, the apparent correctness 

of (3.32) subject to (3.31) might, probably, have contributed to the creation of the paradox in 

question. 

Paper LH&S4 is the last one he series of original papers of these writers, which are concerned 

with the notion of radiation stresses. In this paper, the original results of LH&St relevant to their 

theory of radiation stresses and of some other nonlinear effects in water waves are formulated in the 

most complete form. In particular, in this paper, the writers give the explicit definitions of all the four 

components Sxx , Syy , and S Sxy yx=  of their time-averaged radiation stress tensor. These definitions 

are in agreement with the explicit definition of S Sx xx=  in LH&S1. Also, in LH&S4, the authors 

make explicit some details of their calculations, so that their most essential errors can be revealed. In 

the sequel, the original results of LH&S will therefore be cited mainly from LH&S4. 
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Incidentally, Mei’s definition (M2.25) of ‘ Sxx ’ coincides with the definition of ‘ Sx ’ as given 

by equation (3.31) in LH&S3. Still, Mei has likely not noticed that the definition of ‘ Sx ’ in LH&S3 

essentially differs from the definition of ‘ Sx ’ in LH&S1 or from the definition of ‘ Sxx ’ in LH&S4. 

He has not, also, noticed that no calculations of any radiation stresses are reported in LH&S3. The 

value of the only radiation stress component Sx , which is mentioned in that paper, is just cited from 

LH&S1 in no connection with the modified definition of the quantity. Also, Mei has not noticed that 

his own definition of ‘ Sxx ’ disagrees with the definition of the same symbol in LH&S4 and that, 

hence, it disagrees with the definition of ‘ Sx ’ in LH&S1. This is why Mei accompanies his equation 

(m3.10) with a reference to two mutually contradictory papers LH&S3 and LH&S4 as a single 

whole, while LH&S are mentioned as discoverers of the formula. in any way, the fact that Mei's final 

expression for ‘ Sij ’ coincided with the expression that was derived in LH&S1 and re-derived in 

LH&S4 can be regarded as accidental. 

No velocity potentials are written down in LH&S4. Still, equations (3) and (4) on p. 531 of 

LH&S4 indicate that the PPPMGWW, dealt with in that paper, are presumabbly described by the 

velocity potential defined as 

)sin()(cosh 
 sinh

),()1( tkxhzk
khk

axt ss
−+−=Φ .                                 (6.21) 

This definition can be regarded as a particular case of equation (4.3), subject to (4.1) and (4.2), which 

corresponds to 

1=µ , h d= , ),( dkΩσ = , 0,2 kk = .                                       (6.22) 

Indeed, by (4.1) and (6.22), it follows that 
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which is in agreement with the pertinent factor occurring in (4.3) 

According to equations (21) and (36) on pp. 535 and 536 of LH&S4, the radiation stress 

tensor components Sij  as computed supposedly with the help of (6.21) and of some other 

assumptions (see below) in the second-order asymptotic approximation with respect to ‘ ka ’ are 

given by 
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According to the last equation (6.211), equation (6.23) is written in a coordinate system whose axis X 

is collinear with the vector k 2 . In a coordinate system, whose axis X is arbitrarily oriented in the 

equilibrious plane relative to the vector k 2 , equation (6.24) turns into equation  (M3.10). 

In deducing (6.23), LH&S employed the equation 

‘ p w gz p+ = − =ρ ρ2
0 ’,                                                  (6.24) 

which occurs as equation (12) on page 533 of LH&S4 and which the writers deduced from some 

unspecified intuitive considerations in the second-order cumulative asymptotic approximation with 

respect to ‘ ka ’. This equation is wrong because it contradicts the time-averaged unsteady Bernoulli 

equation in the same approximation. Indeed, in accordance with (I.5.51) subject to Convention 2.1, 

the time-averaged of the unsteady Bernoulli equation in the second-order asymptotic approximation 

with respect to ‘ ka ’ can straightforwardly be written as.  
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– in accordance with section I.10. In a coordinate system, satisfying the last equation (6.22), equation 

(6.25) can be written as: 
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or, in notation of LH&S4, as: 

( ) gzPwup ρρ −=++ 0
22

2
1 ,                                                 (6.28) 
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 instead of (6.24). It is clear that equations (6.24) and (6.28) are mutually inconsistent. Formally, 

assuming that equations (6.24) and (6.28) are both true and also assuming that 00 =
P , one finds that 

u t x w t x2 2( , ) ( , )=  for each Ex∈ , which is an absurd. Hence, (6.24) is false (antitrue). 

Incidentally, equations (6.25)–(6.27) and hence equation (6.28) apply both in the case of a 

PPPMGWW and in the case of a PSPMGWW. However, in the former case, 
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by (6.23), and hence 
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If equation (6.28) were used instead of equation (6.24) in equations (14) and (30) on pp. 534 and 535 

of LH&S4 then the authors would likely had arrived at the same RST components as those suggested 

by my recursive asymptotic theory. 

4. In LH&S4, besides the TADIRST of a PPPMGWW, an attempt was made to calculate the 

HATADIRST of a PSPMGWW, but again from intuitive consideration. Just as in the former case, 

the authors have failed to get reliable final results in the latter case. Unfortunately, the notation that is 

used in LH&S4 is ambiguous (not self-consistent) and confusing. Therefore, I feel that an attempt to 

explicate all inconsistencies of LH&S4 in terms of the completely different and partly homographic 

notation of my recursive asymptotic theory would have been bothering and counterproductive. In 

order to justify the above-said, here follows just one example. 

By its definition, the variable ‘ζ’ of LH&S4 is sense-concurrent to, i.e. it has the same range 

as, the variable ‘Ζ ’ of my recursive asymptotic theory. In the most general case of a PSPMGWW, 

)2(Ζ , i.e. Ζ  in the second-order asymptotic approximation with respect to ka, has rigorously been 

proved to be determined by equation (4.47), so that its time-averaged and its horizontal and time 

averaged are given by equations (4.50) and (4.53) respectively. In contrast to (4.50), the time-

averaged variable ‘ζ ’ of LH&S4, being sense-concurrent to ‘ Ζ ’ of this exposition, is asserted (from 

unknown intuitive considerations) to be given in the same approximation by equation (10), occurring 

on p. 538 of LH&S4 and having the form 

ζ = a k kh kx2 2 2coth cos ’,                                                   (6.31) 
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subject to  the very last definition (6.22). This equation is not a misprint, because the absence of any 

constant on its right-hand side is predetermined by the statement  

“...the horizontal average of ζ  is identically zero...”,                           (6.311) 

which occurs ibidem (on the same p. 538 of LH&S4). The origin of both (6.31) and (6.311) remains 

unknown, and their appearance in LH&S4 is surprising, especially taking into account that in the 

case of a PPPMGWW, the parallel equation for (4.12) of LH&S3: 

kh
ka

2sinh2

2

−=ζ ,                                                           (6.32) 

which is sense-concurrent to equation (4.10) of this exposition, is correct. 

5. Previously, an attempt to compute ‘ ),( 2xtΖ ’ in the second and third-order approximations 

with respect to ka  for a PSPMGWW on a water layer of a finite depth was made by Tadjbakhsh and 

Keller [1960]. The method used by the writers reminds the method of Bogolubov and Mitropolsky 

[1961] in the sense that it is a fitting procedure rather than a genuine asymptotic method. All 

calculations are made by the former writers in terms of some non-conventional dimensionless 

independent and functional variables. In this case, the time variable has a peculiar property that it is 

scale depending on an unknown frequency and hence it actually depends on the specific 

approximation with respect to ‘ ka ’, in which the frequency is calculated . Everybody is of course 

free to use his own notation as he pleases.  However, interpretation of the final results of Tadjbakhsh 

and Keller [1960] in terms of the ordinary dimensional variables of hydrodynamics is not 

straightforward. Since no results of that paper have been canonized, therefore their review is beyond 

the scope of this exposition. For the reader, who will wish to learn the above paper  ̧it is noteworthy 

that the term ‘ ( )ω ω0
2

0
2− − ’ in equation (30) of Tadjbakhsh and Keller [1960] is misprinted. That term 

must have the form ‘ ( )ω ω0
2

0
2+ − ’, which immediately follows from comparison of equations (30) 

and (28) of that paper. 
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