Depth-integrated characteristics of nonlinear water waves

Yakov A. losilevskiit

Abstract

This exposition has the following main objects in view. (1) All main depth-integrated time-
dependent and time-averaged characteristics, — as the velocity potential, velocity, pressure,
momentum flux density tensor, volumetric kinetic, potential, and total energies, Poynting (energy
flux density) vector, radiation (wave) stress tensor, etc, — of the ideal (inviscid, incompressible, and
irrotational) fluid flow in an imaginary wave-perturbed infinite water layer with an arbitrary shaped
bed and with a free upper boundary surface, and also the pertinent depth-integrated time-dependent
and time-averaged differential continuity equations, — as those of the mass density, energy density,
and momentum flux density (Euler’s and Bernoulli’s equations), etc, — are rigorously deduced from
the respective basic local (bulk and surface) characteristics and from the respective bulk continuity
equations, with allowance for the corresponding exact kinematic boundary conditions at the upper
(free) and bottom surfaces and also with allowance for the corresponding exact dynamic boundary
condition at the free surface, which follows from the basic Bernoulli equation. (2) The recursive
asymptotic perturbation method with respect to powers of ka that has been developed recently by the
present author for the local characteristics and bulk continuity equations of the ideal fluid flow in the
presence of a priming (seeding) progressive, or standing, monochromatic gravity water wave
(PPPMGWW or PSPMGWW) of a wave number k>0 and of wave amplitude a>0 in an imaginary
infinite water layer of a uniform depth d>0 is extended to flow’s momentary and time-averaged
(TA), depth-integrated (DI) characteristics and to their continuity equations, particularly to the 3x3

radiation, or wave, stress tensor (RST). (3) The extended recursive method is applied to
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PPPMGWW’s and PSPMGWW?’s with the purpose to obtain their main TADI characteristics in
terms of elementary functions. (4) The first non-vanishing asymptotic approximation of a
characteristic, particularly that of the 3x3-TADIRST, of a PPPMGWW or PSPMGWW is
generalized to a priming progressive, or standing, quasi-pane (PPQP or PSQP) MGWW. (5) The
longshore wave-induced sediment transport rate, expressed by the so-called CERC (Coastal
Engineering Research Council) formula, is briefly discussed in its relation to the (x,y)-component of
the 3x3-TADIRST of the pertinent PPQPMGWW. (6) The presently common 2x2-TADIRST’s of
progressive and standing water waves, which have been deduced by various writers from intuitive
considerations and have been canonized about 55 years ago, are revised in accordance with the 3x3

ones of the recursive asymptotic theory.

MSC numbers: 76B15, 34E05, 34E10, 42B05, 76M35.
PACS numbers: 47.35.+i, 05.45.-a, 45.10.-b, 02.70.-c



1. Introduction

In my resent paper losilevskii [2017], to be cited henceforth as I, a recursive asymptotic
theory has been developed for local (bulk and surface) characteristics of an ideal (inviscid,
incompressible, and irrotational) nonlinear gravity wave motion on an infinite water (liquid) layer of
a constant depth d with respect to powers of a dimensionless real-valued scaling parameter ‘ka’,
where k>0 is the wave number and a>0 the amplitude of a priming (seeding) progressive, or
standing, plane monochromatic gravity water wave (briefly PPPMGWW or PSPMGWW
respectively). The method, by which the nonlinear water wave problem has been treated in | from
scratch, can be regarded as a peculiar instance of the general perturbation method, which is known as
the Liouville-Green (LG) method in mathematics and as the Wentzel-Kramers-Brillouin (WKB)
method in physics. Broadly speaking, this exposition is a continuation of I, in which the recursive
asymptotic theory, developed in 1, is extended to any momentary or time-averaged depth-integrated
characteristic and depth-integrated continuity equation, of a nonlinear gravity wave motion induced
by a PPPMGWW or PSPMGWW. To be more specific, the plan of this study, outlined in its
Abstract, will be followed closely.

The notation of paper I retain, and it will, as a rule, be used throughout the exposition without
any further comments. This applies particularly to the conventional set-theoretic notation (see, e.g.,
Halmos [1960] and to the Special Quotation Method (SQM), which is used for distinguishing
between use and mention of graphic symbols; both are important parts of the underlying language of
I. Still, for the reader’s convenience, | shall, from time to time, recall some elements of the notation
of I. In referring to numbered articles (as sections, subsections, equations, corollaries, definitions,
etc) of paper I, the numeral name of an article will be preceded by the Roman numeral “I’. For
instance, “(1.6.14)” or “Corollary 1.6.1” stands for equation (6.14) or Corollary 6.1 in I. Whenever
confusion can result, the end of an article as a comment, preliminary remark, proof, etc will be

marked by a heavy dot ‘e’, — just as in I.



2. Basic depth-integrated continuity equations

2.1. Preliminaries

Definition 2.1 (a definition schema). Let * F(t,x)’ be a real-valued functional form which,

along with its first-order partial derivatives, is defined for each <t,52>eRx§2 and for each

z e[-h(x,),Z(t,x,)] (i.e. for each <t,5> e D (—=h,Z), in accordance with Definition 1.3.2). Then

Z(t,x,) zZ
F=F(tx,)= jp(t,g)dzejF dz, (2.1)
h

“hix,) s
the understanding being that ‘F’ is a placeholder (ellipsis), which should be replaced by a specific
base letter (as ‘@, ‘V’, ‘E’, ‘P, etc) with some or no labels. The functional form “ F(t,x,)’ (or the
associated function F of the form) is said to be the depth-integrated of the functional form “ F(t,x)’
(or, correspondingly, of the function F ).e

Comment 2.1. When standing alone, the place-holding symbol * F * is ambiguous, because it
either is an abbreviation of the respective functional form ‘If(t,gz)’, as stated by the train of
definitions (2.1), or it is a functional constant that denotes the associated function F of the
functional form * If(t,gz) ", It is hoped that this ambiguity will be solved by the context, in which that
symbol occurs. e

Lemma 2.1: Let “z,(t,x,)” and “z,(t,x,)’ be given real-valued functional forms, which,
along with their first-order partial derivatives, are defined for each <t,52> eRxE,. Let“F(t,x) bea

real-valued functional form which, along with its first-order partial derivatives, is defined for each

<t,52>eRx§2 and for each zefz(t,x,),z,(t,x,)], the understanding being that

7,(t,X,) > 2,(t,X,) . Given (t,x,) e RxE,, let

-~ . N 7,(t.x,) z,
a2 Flal)nin)= [Foods[Fe. @2
)

Zl(ter 2y

subject to the pertinent version of Comment 2.1. Then
F iF
—=|—dz+(F),
3 J a2+ (P,

,

2,
ZE_(F)Z:QE’ (2.3)
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V,F= ijF dz+(F),., V2, - (F),., V,z foreach je{l2}. (2.4)

Proof: The lemma immediately follows from the Leibnitz rule of differentiation of a definite

integral with variable limits, and also from the chain rule of differentiation of a composite functione

Corollary 2.1.
F = F(t,x,)= Ft,X,;-h,Z) = F(t,x,;-h(x,), Z(t, x,)) (2.5)
and hence
F T 2

E:_J;EdzﬂF)Z:ZE, (2.6)

Z
V,F= jij dz+(F),,V,Z+(F),_,V,h foreach je{12}. (2.7)

-h

Proof: The corollary immediately follows from Definition 2.1 by Lemma 2.1 at z, = —h and
z, = Z, the understanding being that the function h is independent of “t ’.e
Definition 2.2. If a real-valued functional form *G(t)’, depending on the time-valued

variable ‘t’ and perhaps on some other variables, is integrable on any finite interval of time

continuum X (from Greek ‘Xpovoc’ \xronos\, meaning time) then

T/2
G=G(t) = I|m— je(t)dt (2.8)
-T/2
which is basically the same definition as (1.10.28). Consequently, if
G =H(®)= 6Hat(t) 2.9)

while the functional form is bounded on X, then it follows from (2.8) that

Hit )t = lim J' a:t(t) dt = IlmT{ (TEJ— H(—Iﬂ=0- (2.10)e

T—)ooT 12 T—>o

I

H



2.2. The depth-integrated continuity equation for the mass density

Theorem 2.1. In accordance with Definition 2.1, let

Z(t.x,)
V,(t.x,)= IVj (t,x)dz foreach j e a,,.
*h(ﬁz)

Then for each for each (t,x,) e RxE,:

2 —_
M+Zvjvj(t,gz)=o,
a Pt
which is the depth-integrated of equation (1.4.3), i.e. of this one:
3
zvjvj(talz)zoi
j=1

Proof: It follows from (2.12;) that

Z 3 2 Z Z 2 Z
[Yvyidz=> [VV dz+ [V, dz =" [V, dz+(Vs),, —(Vs),_, =0.
—hij=l =1l —n -h i=1 —h

At the same time, equation (2.7) with F =V, yields
2 _ 2 Z 2 2
DVN =D [V A2+ V),V Z+ 2 V),V h
j=1 =1 h i=1 i=1
By (2.13), equation (2.13;) can be rewritten thus:
2 _ 2 2
YV, =1 DVVZ-V,| +|>VVh+V,| .
j=1 =1 =7 =1 z=-h
Owing to equations (1.4.70) and (1.4.71), namely these ones

2
(Z;vjvjh +V3J =0,
J:

z=-h

/4 2
= (Zlvjvjz —V3J =0,
J:

=7

(2.11)

(2.12)

(2.12,)

(2.13)

(2.13,)

(2.137)

(2.135)

(2.13,)

which are the kinematic boundary conditions at the bottom and upper surfaces of the water layer

respectively, equation (2.13,) immediately turns into (2.12). QED.e

Comment 2.2. Equation (2.12) can be rewritten as

2
%wozvjv?(%):("

j=1

(2.14)



where for each (t,x,) e RxE,:

z(t.x,)
ﬁo(t’&)é Po IdZ = po[Z(t’Xz)‘i' h(Xz)];

-h(x,)

(2.15)

£o (t,gz) is the water mass column per unit area of the XY-plane at a temporo-spatial point {t,&} .

Comment 2.3. Under the natural assumption that, given x, € E,, Z(t,gz) is bounded for

each t e R, it follows from the pertinent instance of (2.10) that

t /2
Tox) = LX) L L7 22) g

B ot ToeT 7, ot
Hence, it follows from (2.12) that
2 =
2V, (x,)=0
j=1
subject to
— _ T/2
VJ(Xz)EVj(t’Xz) ET"L[‘O_ J.V](t’XZ)dt’
-T/2

which is the pertinent instance of (2.8).e

2.3. The depth-integrated continuity equation for the energy density

Theorem 2.2. In accordance with Definition 2.1, let

_ z(t.x,)
Ek(t’lz): _[Ek(t1l)d2,
-h(x,)

2(t.x,) Z(t.x,)

X (t.x

_ 1

E,(tx,)= [E(z)dz=p,g [zdz =§pog[zz(t,zz)— h?(x, )],
(x (x

~hlx,) -hlx,)

where
£ = B0 = 5 a[Vo 0] =3 alv6.0].
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(2.17)

(2.18)

(2.19)

(2.20)

(2.21)

(2.22)

(2.19,)



E, =E,(2)=-R,(2)= po0z, (2.20)
E=E(t,X) = E (t,) +E,(2) = E,(t.X) + po0Z, (2.21y)

Q,;2Q,t,x)2V,(P+E,+p,02)=V,(P+E +E,)=V,(P+E)

ab

- : (2.22)
ZVJ(Po(t)— Po E] =Q,;(t.x)+ Ry(t), foreach jew,,,

in accordance with (1.4.40)—(1.4.42), and (1.4.61) or (1.4.61a) respectively; ® = (D(t,x) is the velocity
potential and P,(t) is defined by (1.4.47)(1.4.49).

Then for each (t,x,) e RxE,:

E (t,X,) Fo ~ At x
ELke), 50,0, 0x)= Lzl )+ REIZLS) 223)
j=1
_ ),
—O’E(t’XZ) +Zvaj(t152): _Po(t)—éZ(t,ZZ) ; (2.23a)
d j=1 d
(2.23) is the depth-integrated of equation (1.4.60), i.e. of this one
3
E 3 v, =0. (2.23))e
a =
Proof: It immediately follows from (2.23;) that
z 3 z 2 Z Z
J‘(@Jerijjdz = J@dz+ZIVJQj dz + jV3Q3 dz
“h a j=1 —h a J -h (2 23 )
Z éE 2 Z . 2
= [Eedz ) [v,0,02+(@),, (@), =0
-h a i=l-n
At the same time, equation (2.6) with F = E, and equation (2.7) with F =Q); yield
, _
xE, . & 124
J.h— dz = 7_(Ek )Z=ZE, (2234)
2 Z 2 _ 2 2
2 IVij dz=3v,Q-> Q) ,vz- > )i, (2.235)
i=1h i=1 i=t i=1
respectively. Hence, the final equation of the train (2.23;) can be written thus:
E, - A
7k+Zvai—RB—RT:0, (2.23¢)

where



Ao nZEemeen]] o

R, E(Ek%+inij—Q3l_z :{Ek%+(Po(t) ?J[Z:v V,Z-V ﬂ
= {(Ek -Ry(t)+ po%?j%+(Po(t)—po %D](%+gvjvjz —vsﬂ

R s GO T S P10

=7

=7

(2.237)

(2.23)

In developing the final result in the train of equations (2.23;), use of the kinematic boundary

condition (2.133) has been made. In developing the final result in the train of equations (2.23g), use

has been made of the kinematic boundary condition (2.13,) and of the dynamic boundary condition

(1.4.67), namely of this one:

AaD(t, x) 1

Z(t, x )_——{ —E (L x)} =—— [Pt )], 0.

- g a Po z=7(t,%,) 0 i A
Equation (2.23¢) subject to (2.23;) and (2.23¢) coincides with (2.23).
From (2.21) subject to (2.20), it follows that
E A OE, (t,x
GE('[,KZ): 8Ek(t,§2)+ o —2) OE, (t,x )+pogZ(t Zz)az(t’ﬁz).
ot ot ot ot ot

By (2.24), equation (2.23) turns into (2.23a). QED.e

Comment 2.4. Equation (2.20) can be rewritten as

E,(t,x,) = E,\, (t.%,)+ Eo(x,),

where

Z(t.x,) z(t.x,)

1
E J. P dZ—pog J.ZdZ—EpogZ (tX)

0
0
E _[ p dZ—pog J.zdz——zpogh( )
h(& _h Xz)
Consequently, equation (2.21) can be written as:

Bt %)= Eetix;)+ Byt X0)= Byt X )+ Epu (1., )+ B (X, ) = B, (1., )+ B, ),

where

(2.230)

(2.24)

(2.25)

(2.25w)

(2.25€)

(2.26)



B, (t.x,) = Bt x,)+ B, (t.X,). (2.27)
According to (2.19)-(2.21), E, Ek, and Ep are respectively the depth-integrated total, kinetic, and

potential energy densities of the perturbed liquid layer; E_, defined by (2.25w), and EW, defined by

pw 1
(2.27), can respectively be called the depth-integrated wave-related total and potential energy

densities of the perturbed liquid layer; and E.,, defined by (2.25€). can be called the depth-integrated

pe?
equilibrium-related potential energy density of the perturbed liquid layer. At the same time, it is

understood that if the liquid layer is in equilibrium then its depth-integrated potential energy density

equals E_., whereas

pe?
®=E,=E =E,=V,=Q,=Q,,=2=C,, (2.28)
where C, is the null-valued constant function (see subsection 2.4 for greater detail).

By (2.25w) and (2.27), equation (2.23) can alternatively be written as:

E, X)) S ~ a(t, x

%+Zlvjqj(t,gz)=—a(t)%. (2.23b)e
J=

Convention 2.1. In paper I, * P,(t) ’ is an arbitrary real-valued functional form independent of

‘x” and hence possibly depending only on ‘t” — the form, which had appeared in the process of
integration of the Euler equation (1.4.38) subject to (1.4.39) so as to result in its first integral (1.4.46),
being the pertinent general unsteady Bernoulli equation. Immediately after deducing the latter

equation, ‘P, (t)’ was specified by definitions (1.4.47)—(1.4.49), according to which “ P,(t)* can take
one of two values, namely (a) PR,(t) =0 if the part of space above the upper boundary surface
z=7(t,x,) of the liquid layer is vacuous or (b) P,(t) = P,(t)if the above part of space is occupied
with air producing a given atmospheric pressure Pa(t) at z= Z(t,gz). In the latter case, | have tacitly
assumed that P, (t) is the same at least for z €[Z,,Z,,], where Z is the infimum and Z,, is the
supremum of Z(t,gz); I have also neglected the surface tension of the liquid. Now, it is natural to
assume that P,(t) remains constant, P,, within a span of time, in which some bulk characteristics of

the fluid flow in the liquid layer significantly change. Consequently, I shall henceforth assume that

‘Py(t)’ is a two-valued constant ‘PF,” such that P,=0 or P, =P,. Alternatively, for the sake of
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definiteness and for avoidance of triviality, 1 may, without loss of generality, assume that the

definition P, = P, is the only one to hold,e

Comment 2.5. Besides (2.16), it is clear that

T/2

7 tx) L 1T 7 x,)

ot T 3 at

dt=0. (2.29)

Under the evident assumption that the functions E, , E, and E,, are bounded, so that

E(tx,) _E(x) _E(x,)
ot ot ot

averaging each one of equations (2.23), (2.23a), and (2.23b) subject to Convention 2.1 with respect

=0, (2.30)

to t yields:

Zzlvjaj(lz)zo- (2.31)e

2.4. The depth-integrated Bernoulli equation

Definition 2.3. In accordance with Definition 2.1, let

Z(tvﬁz)

oft,x,)= [oft,x)dz, (2.32)
*h(lz)
~ Z(t.x,) Z(t.x,)
d(t,x,) = jcb(t,x)dZZ j aq)g’l)dz, (2.33)
_h(lz) —h(lz)
the understanding being that
@(t,g)z%té), (2.34)

Plt.x,)= [P(tx)dz, (2.35)
—h(lz)
Z(tvﬁz)
Rtx,)= [Rtx)dz, (2.36)
—-h(x,)
_ Z(t:Xz)
Po(t,lz)E R jdz = PO[Z(t,§2)+ h(lz)]; (2.37)



where, in accordance with (1.4.50)—(1.4.52) subject to (1.4.40)-(1.4.42) (or (2.19:)—(2.21,;)) and
(1.4.47)—(1.4.49) and also subject to Convention 2.1,
P(t,X) = P, — py®(t, ) ~ E(t,X) = P, - py®(t, X) — E, (t, ) ~ E, (2)

2.35
@g’” _%Po[zq)(t,g)]z i (2.35,)

the understanding being that P(t,x) is the total pressure at a temporo-spatial point (t,x) of the

=R +REtXx)+ Phs(z): R =

perturbed liquid layer, P,(t,X), defined by (1.4.52), i.e. as:

Y2 vt oF . (236)

is the dynamic pressure at that point, and Phs(z), defined by (1.4.41), i.e. by (2.20,), is the hydrostatic

R(t,x)= _pod)(th) —-E (t,X) =—p,

pressure at each temporo-spatial point (t,x) of the perturbed liquid layer, which is located in the

horizontal plane with the applicate z. Each equation of the train (2.35;), whose left-hand side is
P(t,x), is a version of the unsteady Bernoulli equation for the fluid flow in the perturbed liquid
layer — the equation being the first integral of the Euler equation (1.4.24). Equation (2.37) is
analogous to (2.15).

By (2.19;)-(2.21;) and (2.33), definitions (2.35) and (2.36) subject to (2.35;) and (2.36,)

become
ﬁ(t152): ﬁo(tilz)_ po&)(tvlz)_ E(t’ﬁz)

=R[Z(t, x,)+ h(x,)]- p®(t,x,) - Ek(t,zz)—%po[zz(t,xz)— h2(x, )] (2.38)

- Rzl b+ B x)- L7

ISd(tllz): _poq)(tyﬁz)_ Ek(ta&)- (2.39)
the understanding being that the train of equations (2.38) presents three versions of the depth-
integrated Bernoulli equation, whereas equation (2.39) defines the depth-integrated dynamic

pressure in the perturbed liquid layer.e

2.5. The depth-integrated momentum flux density tenor and the momentary and time-
averaged radiation (wave) stress tensors
Definition 2.4. In accordance with Definition 2.1, let for each i< @, ,, for each jew,; and

for each (t,x,)e RxE,:
12



(2.40)

S (t’ﬁz)z u(t’X)d
-h(x,)
Z(tvﬁz)
Elj (t’ 52) = Elj (t’ K) dZ (241)
-h(x,)
where, in accordance with (1.4.55), (1.4.56), and Convention 2.1, for each z (= h(x, ), Z(t, x, )]
S, (t,x)= [P, — pyd(t, X)b, + [E”tx) (6,%)5,]-E,(2)8, - 645,5) 2.0,
40,
[P = Po ( ]5 +[E Ek tvl ij]_pogz(é‘ij_é‘i35j3)7
(2.41))

E( )5pOV(t,X)iVj(t,z)zpO[ViCI)(t,z)][Vj(D(t,Z)J,
subject to (2.19;), (2.20;), and (2.34). The 3><3—tensorSij(t,5) thus defined is called the bulk

momentum flux density tensor of the perturbed liquid layer at a given temporo-spatial point (t x)

By (2.40,), definition (2.40) yields
] E t X )(é‘ij_é‘i3§j3)

s:,-<t,zz>={ﬁoa,zz)—pﬁ»ax }a +Ey (e x) -
:{Po[z( ,)+h(x,)]- p,d(t, }5” [E,th t,x,)5 ] (2.42)
—EPOQ[Z t,X,)- K5 — 0,30, )

subject to (2.19), (2.20), (2.33), (2.37), and (2.41). The 3x3-tensor S; (t, x,) thus defined is called the
depth-integrated momentum flux density tensor of the perturbed liquid layer at a given instant t e R

along the given vertical line L(x, ), defined as
(2.43)

L(x,)= {Z|Z e (h(x,), Z(t,gz)]}c E

at a given point x, e E,.e
Comment 2.6. In accordance with the instance of definition (2.6) with F =, it follows

Z(tvlz) Z(tvlz)
éq)(t’X) dz + [d)(t,x)]z:z(t,xz) éz(;&)
B (2.44)

‘i)(t,lz) = —a X
-h 52) *h(lz)

from (2.32) that

whence
(2.45)

the understanding being that
13



Z(t, g)z%tt’*). (2.46)e

Corollary 2.2. 1) Here follow the individual components of the 3x3-tensor S;(t,x,) versus

the respective components of 3x3-tensor S (t.x):

Sij = §ji = (ﬁo - po&))gij + (Eij - I§l<§ij )_ Epé‘ij

> ~ ~ 1 ) .
= [PO(Z+ h)_po®]5ij + (Eij - El<5ij')_§pog(z2 —h? i1 €@, | €@ ,, (@)

(2.42")
Ss =S, =E,=E,icam,, j=3 (b)
S=P —p®—E, +Ey=P(Z+h)—p,d-E, +E,,i=j=3. ©)
Sy =Sy = (Po ~ po®)5; + (Eij - Echij)— E.d;
= (PO - pOCb i+ (Eij - Eké‘ij)—pogzé}j, lem,, jeaw,, @) (2.40,)
S:=S; =E;=E;icem,, =3, (b)
Sy =P, —p,®-E +E, iz j=3. (©)

2) It is understood that h(x,)>h_ in (2.42") and that z>-h_ in (2.401), where h_ is the
infimum of all values of “h(x,) . Therefore, S(t,x,), defined by (2.42',a), Sy(t.x,), defined by
(2.42'c), and S;(t,x), defined by (2.40y,a), become unbounded as h,, — oo . That is to say, S; (t,x,),
defined by (2.42), and S; (t,g), defined by (2.40), do not exist in the case of infinitely deep water.e

Definition 2.5. In agreement with Comment 1.4.2, if the liquid layer is in equilibrium (at
rest), so that for each (t,x,)e Rx E, and each z e (- h(x, ),0]:

o(t,x)=0, V(t,x)=0=(0,00), Z(t.x,)=0, (2.47)
then equations (2.40,) and (2.42) become

Seij (t’X)E Poé}j —,0092(5” _5}35'3): R - Ep(z)(é}j _5}351'3)' (2.40,€)

J

0
§eij (t’lz ) = I Seij (t,l) dz
(x,) (2.42¢)

_ - 1
= POe(XZ)é‘ij - Epe(ﬁZ)(é‘ij _5}3513): Poh(lz)@j +§Pogh2(52)(5ij _5}3513)'

the understanding being that E,,(x, ) is defined by definition (2.25¢) in Comment 2.4, whereas

ﬁOe(ﬁz)E R jldz = Poh(lz); (2.37¢)

-h(x,)
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It goes without saying that the 3x3—tensor Se”( ) defined by (2.40:¢), is the bulk momentum flux
density tensor of the equilibrious liquid layer at a given temporo-spatial point (t,g), whereas the
3x3-tensor Seu( 2), defined by (2.42¢), is the depth-integrated one at a given instant t € R along
the given vertical line L,(x, ), defined as:
L.(x,)= {7z e (- h(x,)0]}c E (2.43¢)
at a given point x, € E,.e
Definition 2.6. In accordance with (2.40), (2.42), and (2.42e), the 3x3-tensor SW”( )

which is defined for each i € w, ,, for each j e w, ,, and for each (t,x,)e RxE, as:

Suit:X )ESA--(t Xz)= S5 (xz)
[PZt X ,00 t X ]5 (t X )5 ] E/70922('[42)(6}1' _5i35j3) (2.48)

=[F30( ]5 [E,th (6,08, |- B, (6%, )0, — 5.46,5),

is called the full, or 3x3, momentary radiation, or wave-related, stress tensor at a given instant t e R

along the given vertical line L(gz), defined by (2.43) at a given point x, € E,; the subscript ‘w’ in

[ o b 11
Swu B POW '

and * Epw ’ is an abbreviation for “wave”. In writing (2.48), | have tacitly made use of

definition (2.25w) of Comment 2.4, whereas:

Z(tvlz)
(x;)= R, [dz=RzZ(tx,), (2.37w)

0

B

ow

which is analogous to (2.37e). In contrast to S;(t,x,), defined by (2.42), S, (t.x,), defined by

(2.48), exists in the case of infinitely deep water.e
Definition 2.7. 1) In accordance with the pertinent instances of (2.8), it follows from (2.48)

that for each i € @, ; foreach jew,, and for eachx, € E,:

= l:POZ(XZ)_pOCB(XZ)}é‘ij + Eij (Zz - Ek(lz)é}j]_ Pogzz(lz)(é}j _5i35j3) (2.49)
= l:s()W(XZ)_IOO(’:I\)(XZ)Jé‘ij + Eij (Zz)_ Ek(xz)é‘ij]_ E ( )(5 @3513)
the understanding being that
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= t

B(x,)= bl x,) = dltx,) - [0 o 2t %) | (2.50)

by the pertinent instance of (2.6). The 3x3-tensor SWU( ) defined by (2.49), is called the full, or

3x3, time-averaged depth-integrated radiation, or wave-related, stress tensor of the perturbed liquid

along the given vertical line L(gz), defined by (2.43) at a given point x, € E,.

2) The 2x2-tensor $22(x, ), defined as

wij

gjﬁz(gz)é §W,J( ,) for each i € @, for each jew,, and for eachx, € E,, (2.51)
is called the abridged, or 2x2, time-averaged depth-integrated radiation, or wave-related, stress
tensor of the perturbed liquid along the given vertical line L(gz), defined by (2.43) at a given point
X, €E,.o

Definition 2.8. Definitions (2.48), (2.49), and (2.51) can be provided with the following

wordy interpretations.

1) For each i€ @,,, for each je @, and for each (t,x,)e RxE,, the 3x3-tensor S, (t,x,)
is the excess of the momentary depth-integrated momentum flux density 3x3-tensor S;(t,x,) due to

the presence of waves as compared to that in equilibrium, S (x,).

2) For each i e, for each jem,;, and for each x, € E,, the 3x3-tensor S, (x,) is the

wij
excess of the time-averaged depth-integrated momentum flux density 3x3-tensor §ij (52) due to the

presence of waves as compared to that in equilibrium, S (x,).

3) For each icw,, for each jea, and for eachx, < E,, the 2x2-tensor 827(x,) is the

wij
excess of the abridged, or 2x2, time-averaged depth-integrated momentum flux density tensor §ij (52)

due to the presence of waves as compared to that in equilibrium, Se”( ) o

Comment 2.7. Longuet-Higgins and Stewart [1960; 1961, p. 575 f; 1962; 1964, pp. 532, 535,
and 536 f] seem to have been the first writers to introduce the notion of radiation stress for gravity
water waves and to calculate the latter from intuitive considerations for a progressive wave in the
first non-vanishing approximation with respect to ka, By “radiation stress” they meant the time-

averaged depth-integrated wave-related 2x2 horizontal momentum flux density tensor, which they
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denoted by *S;” (not to be confused with my homograph *S; *) subject to ie @, and je @, and

which they characterized in their paper of 1964 wordily as “the excess flow of momentum due to the
presence of waves”. This description will be referred to as Longuet-Higgins and Stewart’s wordy

definiens of their 2x2 time-averaged depth-integrated radiation, or wave, stress tensor (2x2

TADIRST) and be denoted by ° SLS’ Since then, in the literature on water wave dynamics, there

appeared several different intuitive logographic (formulary) definitions, — e.g. those of Phillips [1977,
p. 62, equation (3.6.12)], Mei [1989, p. 457, equation (2.25)],], and Dingemans [1997, part 1, p. 193,
equation (2.446), or p. 211, equation (2.501)]. — of a 2x2 time-averaged depth-integrated tensor,

which is equivocally denoted by *S;; * subject to i e @, and j € @, and which its author or authors

call by the generic name “radiation stress tensor”, thus regarding its definiens as an adequate
logographic interpretand of the above wordy definiens. It is, however, amazing that all those
different definitions result, as stated by their authors, in the same expression for the 2x2 TADIRST
as that obtained initially by Longuet-Higgins and Stewart, in spite of the fact that the latter
expression is debatable. In this connection, it is worthy to emphasize that the 2x2 TADIRST is
always calculated as an approximate and tacitly asymptotic quantity of the order of (ka)* and
simultaneously as an approximate and tacitly asymptotic quantity of first order with respect to an
unspecified small parameter of mild depth variation, so that intuition is unreliable basis for dealing
with such calculations. At the same time, in the absence of rigorous syntactic rules of calculation,
one can easily overlook some contributions of the required order (ka)®. 1 shall therefore discuss the
present situation in the matter of radiation stresses after |1 deduce a comparable concrete expression

for the 2x2 TADIRST from the recursive asymptotic theory in question.e

2.6. The depth-integrated continuity equations for the momentum flux density and for
the momentary radiation (wave) stress

Theorem 2.3. For each i € e, ; and each(t,x,) e RxE,:

N(t.x,) +ZV§

~[R + (R tX)) +pogh ]v +PVth2) (2.52)

-[pogz(t,m (P(t.X),_, ]a.a,
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which is a tautological equation, being the depth-integrated one of the tautological continuity

equation for the momentum flux density (1.4.53) or (1.4. 57) i.e. of the equation

3
6V t x z (2.52)

=1 J

subject to (1.4.55) and (1.4.56), i.e. subject to (2.40,) and (2.41,), in the perturbed liquid layer. Owing
to Corollary 2.2(2), equation (2.52) does not hold ash,, — «

Proof: It immediately follows that for each i e o, ;:

Z 3 2 Z z 2 Z
[>visydz=> [V dz+ [V,S,dz= [V S;dz+(S),, ~(S) - (2522)
h

—h = =l -h ~h =1 -
Hence, by (2.52;) and (2.52,), it follows that
3 av 2
j ,00—+ZV S, dz_j ,OOEHLZVJ.Sij dz+(S,;),_, —(Sis),_, =0. (2.525)
~h Zh j=1

At the same time, equation (2.6) with F =V, and equation (2.7) with F =§; yield

Z
N, a
—dz= 2.52
J;] d )Z V4 d ( 4)
Z 2 2 _ 2 2
IZVjSu dz=3 VS - Z(Sij )z:zviz - Z(Si,- )z:—hvjh ) (2.52s)
“hi=tl j=1 j=1 j=1
respectively. Hence, the final equation of the train (2.523) can be written thus:
N &
pOEJerjs” —Rg —Ry; =0, (2.52)
=
where, in analogy with (2.18;) and (2.18s),
2
Ry = (Z S;Vh+ S”j
j= z=-h
. 2 .
= (R = p® —E, + pyghW,h+ S EV h+ Ey + (P, — p® — E, )5, (2.527)
j=t z=-h

= [Po +(P, )z:—h + pogh]vih + [Po +(P, )z:—h ]5i3’
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(V—+Zs”vjz S, J

=Z

= (P, - p,®—E, pogZ)VZ+V.%+ZE”VJZ E,— (P — p,@-E, i% (2.525)
=7

= [Po + d =7 Pogz]viz - [Po d z=z]5i3 =RViZ- (Po + pogZ)é}3.

In developing the equation trains (2.52;) and (2.52g), use has been made of the equations:

2
ZEUVJthE —{ {Z;vjvjmv?,ﬂ =0, (2.52)
1= z=—h
ﬂZ 2
+ZE“VJZ = {E+Z;VJVJZ—V3J =0, (2.5210)
1= =7

which hold owing to the kinematic boundary conditions (2.133) and (2.13,) respectively. Also, in
developing the final result in the train (2.52g), use has been made of the dynamic boundary condition
(2.23y) subject to (2.36;) . By (2.527) and (2.52g), it follows that
Ry + Ry =[P, +(P,),__, + pyghVh+ [P +(R),_ 16+ PV.Z— (P, + p,92)5,
=[P, +(R,),__, + pyghV;h+ PV, Z~[p,0Z - (P, |6 (2.5211)
=[P, +(R,),__, + p,ohVh+PV.Z-[(R),_, - (P,),__, .
Equation (2.526) subject to (2.5211) coincides with (2.52). QED.e
Corollary 2.3. a) For each i € @, ,, equations (2.42) and (2.52) become

S, (%) = B2t %)+ h(x,)]- oo (t, 1), + [ (t,,)~ Ex(t,%,)5 ]

1 (2.423)
P2t )1 )
ﬁ\/ t x2
— == V. S t x
Z y (2.52a)
—PV,Z(t,x,) [P + (R, x)) o+ o006 ) h(x,)

for each (t,x,) € Rx E,, while equation (2.40,) becomes

S,(t,x)= [P, —Pod)(tyl)]@j +[Eij (t,x)- E, (t, x)5, ] Po926; (2.40,a)

for each (t,x,) e Rx E, and each z € [-h(x,),Z(t, x,)].

b) For i =3, equations (2.42) and (2.52) become

19



§3j(t152): {PO[Z(t,XZ)-F h(ﬁz)]‘ﬂoqg(tvﬁz)}ésj + [Esj(t’ﬁz)_ Ek(t152)5sj]

(2.42D)
el %) -1 ()Pl 0,)

)39 5, 1) =pigzit ) R, (2.520)

for each (t,X,) € Rx E,, while equation (2.40;) becomes
S, (t,%) = [B, - o ®(t, ), + [Es, (t. %) E, (6. X)55, |- 20926851 55) (2.40,b)
for each (t,x,) e Rx E, and each z e [-h(x,) Z(t,x,)].
c) If
h=C,,ie. h(x,)=d foreach x, cE,, (2.53)
where *d ” is a constant so that V;h(x,)= 0, then for each i € w,, and each(t,x,) e Rx E,, equations
(2.42) and (2.52) become
5, (%)= By (tx,) - ot x, }5 +[E, (tx,) - Ey ] E, (%), — 5.0,
~ Bzt x)+ d]- et x,)p, [E” (t.x,)- E, (61,5, ] (2.42¢)

_Epog[z taﬁz —d 55,-_‘5‘i35j3)7

O—&Z(t’&hivjsiﬁ(t,g =PV (LX)~ 002t ) - (Rt ), B (2520)

while equation (2.40;) remains unaltered.e

Theorem 2.4. For each i€ o, ; and each{t,§2> eRxE,:

N(t’xz) : 3
22243V S, x
po ét ; j ]( 2) (253)
= (Ryt0),_y, V(x4 RV 2L 5, )~ 0,026 ,)— (Ry4.)), o, i
which is a tautological continuity equation, being the full momentary depth-integrated radiation
stress-tensor S,,;(t,x, ), defined by (2.48). In contrast to equation (2.52), equation (2.53) exists in the

case of infinitely deep water (cf. Definition 2.6).

Proof: It immediately follows from (2.42e) that

Zz: PVh( )+%pogvih2(lz)- (2.54)
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Subtraction equation (2.54) from (2.52) yields (2.53).e
Corollary 2.4. It has been shown in paper I that all wave-related bulk characteristics of fluid
flow in the perturbed liquid layer decrease exponentially as e (k>0, z<0) with |z| increasing (see

(1.7.32) and (1.7.78)). Therefore, it is natural to assume that V(t, x, ) (e.g.) is bounded and that hence

t

@\Z(t,gz)
a

in accordance with Definition 2.2. Consequently, averaging of equations (2.52) and (2.53) with

=0, (2.55)

respect to t yields:

ivjs:ij(lz) = [Po + (Ed (X))z?h(;z) + pogh(ﬁz )]Vih(ﬁz)‘*‘ Poviz(ﬁz)

= [po0Z(x,)- (B)),_ s B

évjswi,- (%) = (B (X)),__y Vi )+ PV, Z (%)~ 000706, ) - (B (X))o s (257)

(2.56)

respectively.e
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3. Asymptotic power expansions of the depth-integrated functional

forms

3.1. A general algorithm for the asymptotic power expansion of a depth-integrated
wave-related functional form

Definition 3.1 (a modification of Definition 2.1). 1) Unless stated otherwise, | shall
henceforth assume in accordance with (1.4.73) that h=C,, i.e. h(x,)=d for each x, € E,, where
“d’ is a constant, while C; is the constant function of x,, every value of which equals d.
Accordingly, ¢ =ka, where k>0 is the wave number and a>0 is the amplitude of a priming (seeding)
progressive, or standing, plane monochromatic gravity water wave (briefly PPPMGWW or
PSPMGWW respectively).

2) Let ‘F(t;g,g)’ be a real-valued functional form which, along with its first-order partial

derivatives, is defined for each <t,52>eRx§2 and for each ze[-d,Z(t x,)] (i.e. for each

{t,x) € D§ (-C4,Z), in accordance with Definition 1.3.2), and also for each ¢ [0,1). Then

Z(t;x,,¢) z
F=F(tx,e)= _[F(t;g,g)dz = |Fdz=F'+F", (3.1)
“h(x,) “d
F'=F/(t;x, ¢)= IF(t;g,g)dz = IFdz, 3.2)
“h(x,) “d
~ ~ Z(t;x,,¢) z
F'=F'(tx,e)=  [F(txe)dz = [Fdz, (3.3)
0 0

the understanding being that ‘F’ is, as before, a placeholder (ellipsis), which should be replaced by a

specific base letter (as ‘®°, V’, ‘E’, ‘P’, etc) with some or no labels. The functional form

‘ If(t;gz,g)’ (or the associated function F of the form) is, as before, said to be the depth-integrated
of the functional form F(t;g,g)’ (or, correspondingly, of the function F ).e

Corollary 3.1. 1) In accordance with Hypothesis 1.4.2, the functional form F(t;x,,&) as
specified by (3.3) can, with the help of the Leibnitz rule (cf. Lemma 2.1), be expanded into the

Maclaurin series with respect to Z(t; x,, ), so that

22



00

F'(t;x,,& mz;)(m+1)lF(m) t;X,,&)Z™ (t; X5, ), (3.4)

where

FM(tx,,6)= {%} for each me @, FO(t;x,,6)=[F(t;x,€)],_, (3.5)
z=0

(cf. (1.4.85) and (1.4.86)). At the same time, by Hypothesis 1.5.1(1), for each (t,x,)e RxE, and for

each £ [0):

Z(t;ﬁz’ ) Z[ool] t; sz ZE g(n) X, ) (3.6)

whereas by Definition 1.5.1, subject to Hypothesis 1.5.1(2), given a bulk characteristic of the wave-
related fluid flow F(t;x,¢), there exists a natural number vew, such that for each <t,52> eRxE,,

for each z e (- d, Z(t; x,,&)], and for each & €[01):

o0

F(t;x,e)~ F,(tixe)=> e"f(t.x). (3.7)

n=v

As a consequence, it follows from definition (3.2) that
F(t; X, 6)~ Ry (tiX,e) =D &' )t x,) (3.8)
l=v
where

0
fiy (t,x,) j fo (t,x) dz for each | e o, . (3.9)

—d

By (3.7), it also follows from definition (3.5) that

F(m)(t;lzﬂg) F[go 3](t X5 ) Zgn f(g;)(tvlz)' (3.10)
where for each ne w, :
n | ™ (t,X)
£, 52):{%—>m} foreachm e o, 9 (t,x,) =[f,,, €.%)] . (3.12)
z=0

2) On the other hand, the variants of (1.6.14) (subject to the abbreviation Z(t,x,) = Z(t; x,,£))
and (1.6.15) with ‘m+1" in place of ‘m’, yield

2"t x,,6) ~ ig'm*l ™ (t,x,) for each me @), (3.12)

I =m+1
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where

P ly-11,-1

i)=Y S D) NSRRIV RIS IR UL A1 CE TN

lp=ml,_4=m-1 1,=21=1

for each m € @, and foreachl_ , € o,

m+1?

the understanding being that

& (t,x,) =0 for each me w, and for each | € @, ,, (3.13))
& (t%,)= ¢, (t.x,) for m=0 and for each |, € o, (3.14)
-1
&y (tx Zg(, (6 X2)¢ 0, (tx,) for m=1 and for each |, € w, , (3.15)

I;-11,-1
4/(73; t, Xz 22503 1,) t X )é/(l 1)(t X )gu)(t Xz)
2,1 (3.16)
for m =2 and for each |, € w,,
in accordance with the pertinent variants of (1.6.15¢) and (1.6.16)—(1.6.18). In turn, equation (3.15) for

each |, e w, ,, €.9., yields

S =4n $o =2ube Yo = 2nées T4 (3.17)
whereas equation (3.16) for each |, € @, 5, €.9., yields
G =G 68 = %ath G = %Gt + ). (319)
in agreement with (1.6.19) and (1.6.20). Also, in general, given m € @, , it follows from (6.13) that
Sy (%) = €57 (6 %) =[Gt )™ (3.19)

in agreement with the pertinent variant of (1.6.21).

3) By(3.10) and (3.12), the asymptotic expansion of the functional form If”(t; 52,‘9), defined
by (3.4) , in powers of ¢ can be constructed in analogy with asymptotically expanding either one of
the functional forms A,(t,x,) and A,(t,x,) (abbreviations of A,(t;x,,&) and A,(t;x,,£)) in
subsections 1.6.1 and.l.6.2. The above asymptotic expansion is the object of the following theorem.e

Theorem 3.1. For each (t,x,) e Rx E, and each ¢ €[0,1):

F/(t:x,. 6)~ F[g:v+l] tX,,6)= z (3.20)

where
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f (t.X,) = Z q)'z f& Ot x,)¢ 00 (6 x,) foreach lew,,, (3.21)

Note. In writing equations (3.20) and (3.21), it is tacitly assumed that, given vewy, for each
(t,x,) e Rx E, and each z e (- h(x,). Z(t;x,,£)]:
f,(t,x)=0 foreach ne @, , (3.200)
(cf. (3.13p)). Therefore, without altering the final result, the lower limits of summation with respect
to g and n in equation (3.20) can be any natural numbers of the set «,, and, consequently, the lower
limit of summation with respect to | in equation (3.21) can be any natural numbers of the set a ., .

Proof: 1) By (3.10) and (3.12), and in analogy with (1.6.22) or (1.6.23), it follows that for
each me w;,:

FO (X, )2 (6, )~ {Ze f(tx, }{ e )}

m+1 =m-+1

=3 S O ) (X, )

ln=m+l n=v

(3.22)

The final expression in (3.22) can be developed further in analogy with item b of the proof of

Theorem 1.5.2 as follows. Let 1 =1 _, +n,sothat | € o,

m+1+v !

because | =m+1+v when | ,,=m+1
and n=v. If ‘I’ is employed as a new variable of summation instead of ‘I _,’, sothat | _, =1-n,

then the domain of values of the variable ‘n’ is determined by the conjunction of two relations: (i)

New,,ie. v<n<oo,and (i) n=l-m-1atl ,=m+1. Hence, v<n<l-m-1,ie. neo,

v,l-m-1"

Therefore, relation (3.22) becomes

o I-m=
FOx,6)z™Ex,,6)~ Y Zlg fEV (%, )C 5™ (8, x, ) for each m e (3.23)

I=m+1l+v n=v

(cf. (1.6.24) and (1.6.25)). Hence, equation (3.4) yields

e ) l-m-1

"(t;x,,& e F M (t, x, )¢ (3.24)
S B, £ i )
(cf. (1.6.26)—(1.6.31)).
2) Let ‘q’, defined as g =1—-m -1, be a new variable of summation to be employed in (3.24)

instead of “m’. Therefore, (i) g=v when | =m+1+v and (ii) q=1-1 when m=0, so that q € ®,-, ,
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At the same time, since 1 =m+1+q, therefore | =v+1 if m=0 and g=v, so that | e w, . Also,

m=1-qg-1. Hence, (3.24) reduces to
= ) 1-1 1 q
F"(t;§2,8)~ z g —Z f(g)iqil)(t152)4(71;§>(t152) (3.25)

(cf. (1.6.32) and (1.6.33)), which is equivalent to (3.20) subject to (3.21). QED.e
Corollary 3.2. By (3.8) and (3.16), it follows from (3.1)—(3.3) that relation (3.7) holds with

f)(t.X,) = (. %,), (3.26)
fo,(t.x,) = i, (t.x,) + T (t,x,) foreach lew,,,, (3.27)
subject to subject to (3.9) and (3.21).e
Corollary 3.3.
f(:i+1) (t XZ) Z(V+1 q)|z f(g/) q)(t’XZ)é/(T/::T(taXz) (3 28)
= (05 (0%) =[ o, €0 o tx,),
v+l
f("”+2) (t X2) Z( +2— q)|z f($11)/+1_q)(t’XZ)é/(?/:ZZ—_nq; (thZ)
- l v+l
2| f((vl)) (t, 52)4/(22) (t’ﬁz)"'iz f(Eg) (t, XZ)g(dviZ—n) (t,x,) (3.29)

== f(‘f))(t %) (6 X,) + T (6 X, 5 (6 %,) + 0 (6 X,)¢ 0 (5 X,)

== f&) (t, %) (6 X,) + TVt X, 0 (1 X5) + £ (1, X,) gy (E,X,).

Proof: Equations (3.28) and (3.2) are instances of (3.21) at |=v+1 and at |=v+2
respectively. In developing the final expressions in (3.28) and (3.29), use of (3.14) at |, e{1,2}, of

(3.15) at I, e{1,2}, and of (3.19) at m €{0,1} have been made.e

3.2. Asymptotic power expansions of specific depth-integrated functional forms
Corollary 3.4. 1) All pertinent logographic operata, i.e. equations and logographic terms, of
the previous subsection apply with each one of the following triples of functional variables or base

symbols of functional variables:
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<CD’¢(|)i ’1>' <cD, é(l)i ’l>’ <Vi ’V(I)i ’1>’ <Ek’ek(|) :2>’ <Q*i ) q*(l)i '2>’ <Q| ) q(l)i ’1>’ (3 30)
<Pd, pd(l),1>, <Sij,s(l)ij ,1>, <Eij,e(|)ij ,2>, foreachiewm ;andeach j € w,,, '
in place of the triple of placeholders
(F, fayv). (3.31)
2) According to the above item 1, the subject matter of the previous subsection applies to any
quintet of functions

(F, TP fyv), (3.32)

or actually to the quintet of functional forms, of which those functions are associate, and which are
based on a certain well-defined basic asymptotic power series (3.7) for the pertinent bulk
characteristic F(t;x,,&).

3) All basic asymptotic power expansions in the range of the place-holding (abstract) relation
(3.7), except that for Cb(t,g), defined by (2.34), are given in subsection 1.5.4. At the same time, it
immediately follows from (1.5.8) by (2.34) that

(i)(t,l) = Cb(t;l,g) - (i)[oo,l] (t;l, 5) = Zgn(&(n) t,x), (3.33)
n=1
subject to
: t,
Py (1, X) = %(Z) foreach ne w,, (3.34)e

Comment 3.1. In accordance with the dynamic pressure P,(t,x), defined by (1.4.52) or
(2.361), p,®(t,x) can be called the volumetric dynamic energy and be, accordingly, denoted by
“Ey(t,Xx) 7, ie.

E,(t,X) = p,d(t,X). (3.35)
Consequently, definition (1.4.52) or (2.36;) turns into the equation

P (X) =—E,(00) - E (LX) =000 - [V 0T (3:36)

In principle, the velocity potential d(t,x) of liquid flow is defined with an accuracy to an arbitrary

time-dependent functional form @,(t) (cf. Comment 1.4.2), so that .both P,(t,x) and E,(t,x) are
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defined with an accuracy to p,®,(t). However, in paper | and in this exposition | have from the very
beginning tacitly assumed that @, (t) =0.e

Corollary 3.5. By the pertinent instance of (3.7) subject to (3.26) and (3.27), it immediately
follows from (3.33) subject to (3.3) that

D(t,x,) = D(t;x,,8) ~ Dyt X, 6) = D 'dy (6, x,) (3.37)
1=1
where
éu) (t’lz) = é(i)(tflz) for 1 =1, ) (3-38)
¢3(|)(t,§2)= é(;)(tdz)"' ¢;('|,)(t’&) foreach | e w,, (3.39)
subject to
¢(|) t,X,) I¢(,)(t X) dz foreach | € w,, (3.40)
- I-1
= q)l IVt X, (t,x,) for each | € w, . (3.41)
q:l

Particularly, equation (3.41) yields:
85t %) = 45 (1. X,)¢ &y (t.%,) = ¢5(‘3)(t,52)9"(1)(t,52) =-g¢a(tx,) at1=2, (3.41)

95(t.x) 2(3 i (‘f)q>(t,x2)§(§i;‘;><t,x2)
g=1

(%)(t X)) (6 X,) + = Z B (. X, 5 (. X,) a1,
ALlo)e

((11)) (t, Xz)é/(;?(t’ﬁz) +¢£(&? (t’52)é’(<21)>(tl2) + ((7?)) (t, X2)§8> (t,x,)

l -
((11)) (t, X2)§(1) (t,x,) + ¢((1(;) (t, Xz)g(z) (t,x,) + ¢((20)) (t,lz)é/(l) (t,x;,)atl=3.

In developing the final result in the train (3.41,), use of (1.6.52;) has been made.
Corollary 3.6 (analogous to Corollary 3.5). By the pertinent instance of (3.7) subject to
(3.26) and (3.27), it immediately follows from (1.5.43) subject to (1.5.44) that

0

Vilt x,) 2 Vit X, 6)~V, i[0,2] (t:x,.¢ EZ i (t,X,) foreach i e, (3.42)

I=1

where
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V(l)i(t’lz) =\7('1)i(t,52) for 1 =1,
V(I)i(t,gz):v(’l)i(t,éﬁ Vi (t,x,) for each | € @, ,

subject to

0
Uyi(t.X;) = [V (t,x) dz for each I e e,
4

iy (t,x,) W v((,'w,q Dt x,)¢50 (t,x,) foreach | e o,
g=1 \! ™ n=1

(cf. (3.37)—(3.41)). Particularly, equation (3.46) yields:
\7(”2)|( ) ((10))| (t, Xz)éﬁ?ﬁlz) = [V(l)i(tilz)]zzog(l) (t,x,) at1=2,

2

" (2 q) <3-0>

V(3)|(t X ) 2 (3_ ) (tX2)S 0 (EX,)
2

5"((11))' (t, x2)§(2§>(t,x2)+i§v((3§i (t, X2) S omy (6 X,)

vm.(t X080 (6 X,) + V(6 X4 5 (6%,) + V() (6, X,)S ) (t %,)
1 -
= EV((::LL))l (tiﬁz)g(i) (t,X,) +V((8)i (t,%,)¢ 5 (LX) +V((g))i (t, X)) (t,x,)atl =3

(cf. (3.41;) and (3.41,)).e

(3.43)

(3.44)

(3.45)

(3.46)

(3.464)

(3.46,)

Corollary 3.7. By the pertinent instance of (3.7) subject to (3.26) and (3.27), it immediately

follows from (1.5.49) subject to (1.5.50) that

E( )Eé(tlzﬂ) Ek[ooZ]tXZ' EZ k(l)
1=2

where
0 3
B (t.X2) = 8Ly (6, X,) j e (t,X)dz = pgjz Vi (t, %) Pdz for | =
—d i=1l
B (t.X,) =6y (t.X,) + 61y (t. X, ) for each | € @,
subject to
011 3
6.0t X,) J'ek(,)(t X)dz =—p9J'Z;ZI“v(m),(t X)V_mi (t, X)dz for each | € w,,
gm=l i=
< 1-q-1 |
ef(n t,X,) Zeﬁ(n? J(t,%,)¢ T (t,x,) for each | € w,.

q:2 I q)
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Particularly, equation (3.51) becomes

élZ(S)(t Xz) elgl(%)) (t, Xz)é/(i)b (t,x;) = [ek(Z) (tilz)]zzog(l) (t,x,) atl, =3, (3.511)
3

& (tx,)=> ———

q=2 (4 q)'

= _ek(Z) (t, Xz)é’(<22)> (t,x,) "'izelﬁ?%) (t’lz)é/(ffn) (t,x,)
n=2

Zeﬁ%a?’(t,xz)ca‘i‘n? (t, X,)

(3.51,)e

1 <Z>

26822) (1. X))o (6 X,) +e8) (1, X,y (8 X,) + 60 (6, X)) (tX,)
1 .
zeii)Z)(t X)) G [t X,) + 650 (1, X,)¢ o (8 X,) + €0 (1, X,) iy (t,X,) at | = 4

Comment 3.2. 1) In accordance with (1.4.41) or (2.20,), Ep(z) has no asymptotic series in

powers of ¢ or, in other words, it is of the order of ¢°. Therefore, the subject matter of subsection 3.1

is not applicable with “E,” in place of ‘F’. Nevertheless, in accordance with (2.20), Ep(t,gz) exists

and it can be expanded into a quasi-recursive asymptotic series in powers of e.
To be specific, comparison of (2.20), (2.25), (2.25w), and (2.25e) with (3.1)—(3.3) shows that

Ep(t’lz)z E;;(XZ)—F E[’J’(t'XZ)z Epe(lz)—i_ Epw(tfx2)' (352)
where
0
E)(x,)=Ey(x,) = [E,(2)dz = pyg jzdz———pogd2 (3.53)
—d
_ z(t.x,) z(t.x,) 1
En(t.x,)=E = [E,(2)dz=pyg j 2dz =2 pogZ°(t,x2), (3.54)

0

In this case, at m =1, relation (3.12) subject to (3.13) becomes
2t x,. 6 Zg'zg(?; (3.55)
subject to (3.15).and (3,17), Hence, (3.54) and (3.55) yield
E1(0) = B 1) 3 0270 2) -5 20 X0 S Gt Ko il (359

where | have set | =1, and m=1,. This is a genuine power asymptotic expansion for E;’(t,xz) or

E, (t.X,). In accordance with (3.53) and (3.56), E,(t,x,), defined by equation (3.52), can be

expanded into a power series in & thus:
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E,(t.,)~ Y ¢80 (t,), (357)

where

~ - B 1 _
ep(O) (thZ) = Ep (KZ) = _Epogdzi ep(l) (t,lg) = O,
(3.58)

1-1

_ 21
&t X,) = EPOQEC(m)(t,AZ)g“u_m)(t,xz)for eachl € w,.
For instance, in accordance with (3.17,), the second equation (3.58) at | =2 and at | =3 becomes
_ 1
ep(z)(t152) :Epogé/(zl)(t,lz)' (3.581)

€5 (1. X2) = 2098 ) (1. X)) (1, X,), (3.58)
respectively. Owing to the fact that the term of the order of &' is absent in the series (3.57), the latter
is not recursive, but it can be qualified quasi-recursive.e

Comment 3.3. In accordance with (3.35), multiplication of all terms of equations (3.37)-
(3.41,) by p, results in the equations pertinent to the recursive asymptotic expansion of E,(t,x,).
Particularly, comparison of (3.41;) and (3.58;) shows that

€ (1, X,) = =26, (1, X,) . (3.59)e
Comment 3.4. In accordance with (1.4.42) or (2.21;), E(t,x) has Ep(z) as one of its two

summands, whereas E, (t, X), being its second summand, has a recursive asymptotic power series in

¢, which begins with a term of the order of &%, in accordance with (1.5.49) and (1.5.49). Therefore, the

subject matter of subsection 3.1 is not applicable with ‘E’ in place of ‘F’ either. However, in
accordance with (2.26), (2.27), (2.49), and (2.50), E(t,x,), defined by (2.21), has the following

quasi-recursive asymptotic expansion:
E(t'52)~ Zgléu)(t’lz) , (3.60)
1=0

where

€0y (1, X,) =€, (1, X;) =0, € (1, X;) =€) (L, X,) + €, (1, X,),
€y (1 X) =€) (1, X,) + €,y (1, X,) = €y (1, X,) + €y (1, X,) + €, (1, X) (3.61)
foreachl € w,,

subject to (3.48)—(3.51), (3.58), (3.58;), and (3.58,).e
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Corollary 3.8 (analogous to Corollaries 3.5-3.7). By the pertinent instance of (3.7) subject to

(3.26) and (3.27), it immediately follows from (1.5.64) subject to (1.5.65) that
Qui(t%,) = Qu(ti X, 8) ~ Quipu gt X206 EZ Gy (L X,) foreach iea,,, (3.62)
1=2
where
G (t.X,) = Qliy(t. ;) for 122, (3.63)
Gy (£ X, ) = Gy (t,é)jt Gl (t, x,) for each | € oy, (3.64)
subject to
011
a. «(1)i t X jq ()i (t,x)dz =—p, Izv(m).(t X)¢(l m) (t,x)dz
: man (3.65)
-1 )
==y [ 2 Vi (t. )i (t, X)dz For each | € w,,
—dn=1
1-1
q”(l)u t, X —Zqil(n)qi_l) (t’lz)él(fl—_n?(tvxz) for each | € w, (3.66)
] (Rl ) Lo
(cf. (3.47)—(3.51)). Particularly, equation (3.66) yields
0l (t’Xz): qg?;)i(tlz)é’(i)b(t X,) = [q*(z)i(tizz)]hoé/(l) (t,x,) at 1= (3.661)
3
)= 3 S AR G ()
1 <Z> <l1>
= —!CLE?Z)i (tvlz)é/(zi (t,x,) "‘inz::q>f?r)1)i(tvﬁz)é/(in)(tiﬁz) (3.662)

(o (0 X2) S (1 X0) + Al (6 X)) (. X,)

qi?z)l (t XZ)é/(i) (t7x2) + q*(z)i 1 A (2)
ot X;)8 ) (LX) + qu(()s))i (t, %)t x,)atl =4

qi%g.(t X)) (t,%,) + a0 (¢,

(cf. (3.51;) and (3.51,)).e
Corollary 3.9 (analogous to Corollaries 3.5 and 3.6). By the pertinent instance of (3.7)

subject to (3.26) and (3.27), it immediately follows from (1.5.66) subject to (1.5.67) that
Qroy(tiXs. e EZ Gy (t.%,) foreach ie w,,

Qt:x)= 0 ix,.0)-

(3.67)

where
Gy (. X2) = Gy (8, X, ) for 1=1, (3.68)
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Gy (t.%,) = q(’l)i(t,éﬁ Giyi (t,x,) for each 1 € , (3.69)
subject to
Quyi (t, X)) = PV (6, X,), Gy (8 X5) = i (t, X,) + BV (t, X,) for each | € o, (3.70)
-1
o= ( q)'
(cf. (3.37)—(3.41) or (3.42)—(3.46)); “P,” is a constant in accordance with Convention 2.1.

~N"

Aoy (t,x,) S, x,)8 T (t, x,) foreach | e w, (3.71)

(1-n)

Particularly, equation (3.71) yields:
q(ﬂz)u(t X ) Q((lo))u (t,lz)é'(i§>(t,§2) = [q(l)i(tvlz)]zzog(l)(talz) at1=2, (3.711)

2

ql(

<Z> 1 2 >
q(‘ii. (t.X,)¢ (t,zz)+£quﬁii (t, X2) omy (8 X,)
n=l

~"

q(3)| t X

X, )é}?—?? (t,Xx,)
]

(3.712)
q(l).(t X,)8 05 (6X,) + 0@ (6, X585y (6 X,) + 0y (6, X, 5y (%)
=g (t, X,) 8 (6 X,) + 9 (t, X,) o (t, X,) + a0 (1, X,) o (8, X,) at 1 =3
q(l). ' X2) 8y (6 X5) + Gy (8, X5) G ) (€, X,5) + Gy (8, X5) Sy (8 X,

(cf. (3.41;) and (3.41,) or (3.461) and (3.46,)).e
Corollary 3.10 (analogous to Corollaries 3.7). By the pertinent instance of (3.7) subject to
(3.26) and (3.27), it immediately follows from (1.5.52) subject to (1.5.53) that for each ie @, and

each jew,,:
Eu(t’X) = E (t X 5) [oo 21ij t X21 E Z (|)IJ (372)
1=2
where
€y (1 X, ) = 03y (L. X,) Ie(z)., (t,x)dz = p, J'v(l),(t XV (t, X)dz for 1 =2, (3.73)
By (1. X, ) =€y (t, X, )+ & (t, X, ) for each | € @, (3.74)
subject to
0 0
& (6.X2) = [ €4y (t:)dZ = oy [V (6. )V, (1. X)0z for each | € v, (3.75)
Zd Zd
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1-1

&y (6. x;) =T e((,'mj‘ D(t,%,)¢ T (t,x,) foreach | € o, (3.76)
q:Z Q) n=2
Particularly, equation (3.76) becomes
s (t.X2) = 630 (1 X,)C G (6. %2) = [eyy (6.X2)] S (. X,) at 1, =3, (3.761)
3
ek(4) t X Z 4 Ze((r?)l?)(t Xz)éV(TnT(t,Xz)
= Q)
—588’)., (t, xz)é(2§>(t,xz)+iZeéﬁiij (6. X2) o (6. X,)

n=2 (3.76,)

e(z)u (t, X2)§(<22)> (t,x,)+ e((g))ij (t,lz)é’élf (tx,)+ e((:s?))ij (t,lz)g(ff (t,x,)
1 -
=5 e(%))” (thZ)é’(i) (t,x,) + e((g))ij (t,%,)8 5 (L, X,) + e((’g))ij t,x))Cy(t x,)atl =4

(cf. (3.51;) and (3.51,)).e
Corollary 3.11. In accordance with (3.6), (3.37)—(3.41), (3.47)—(3.51), (3.56), and (3.72)—

(3.76), for each ie w,, for each jeaw,,, for each (t,x,) e RxE,, and for each £<[01), the 3-3
momentary depth-integrated radiation (or wave-related) stress tensor SWIJ (t 52), which is defined by

(2.48), is expanded into the following recursive asymptotic series in powers of the latent parameter &:

o0

wu (t XZ) Swu (t;XZ!g) - §W[oo,l]|] t X21 E Z W(l)lj (377)

=1

where
Swi (t:Xz)E {Poé’(l)(tlﬁz)_%’o@'l) (t,x,) i forl =1, (3.77,)
Sw()i (t X )E {Poé,(z) (t’lz)_po [&(’2) (t,x,)+ é(g) (t:lz)J}éij

2%, N0, — 55, )+ s (1., )— Bl (1., )5, For 1 22 17
Pogé/(z) i3 +e(z)u X5 )= €\l X, Joy; TOr 1 =

Sw(1yi (t Xz) {P é/(l)(t 52)—p0[¢?(;)(t,52)+¢?(',') (tnlz)J}gij

’Oogé/(i)2> t X )<5 5 5]3)+e(l)u(t X )_{_e(l)u(t X ) (3773)

[ek(l) X, )+ €y (6, X,) ]5,] for each | € w;;

‘P, is a constant in accordance with Convention 2.1. By (3.40) at | =1, equation (3.77,) becomes

Sw@i (t Xz) {P§(1)(t X2)= Po J-¢5(1) (t,x) dz:|5ij forl =1, (3.78)
d
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At the same time, by the first equation (3.17) and by equation (3.41,), it follows that

Y 1 < 1 1

¢(2)(tyﬁz)+§g§(2§ (t Xz) gé/(i)(tvlz)"‘zgé’(zl)(tyﬁz)=_Eg§(i)(tllz)- (3.772)
Hence, by equations (3.40) at | =2, (3.48), (3.73), and (3.77,), equation (3.77,) can be written as

w(2)|J t X, lP 4(2) t, X ) po¢(2)(t Xz) ek(Z)(t X )d;k

+—Pog§(i)(tvﬁ )(5 +6, 5;3)+e(2)-1(t X )

|:P 4(2) t, X — Lo I¢(2) (t,x) dZ——,Og J.Z[V(l)l(t X)] dz |5,

—di=1

} (3.79)

+2p0Ch X0, + 0.0, j Vion (6 XV (t, )z For 1 =2,

The expression on the right-hand side of equation (3.773) can be particularized likewise by making
use of (3.40), (3.41), (3.50), (3.51), (3.56), (3.75), and (3.76). However, | shall not bother to do so,
because | do not intend to calculate any term of the series (3.77), of the order higher than 2 in terms

of elementary functions. That is to say, | shall confine to the following approximate asymptotic

approximation to S

wij

(t; x,,ka) both in the case of a PPPMGWW and in the case of PSPMGWW:

(t Xp) = S (t;x,,ka) = §w[2,l]ij (t;ﬁza ka)E §w(l)ij (t;&rka)"' §w(2)ij (t;szka)' (3.80)

wu wij

where
SHW(I)IJ (t X21ka) (ka) W(I)u( Zz) foreach | € {1,2}, (3.81)

subject to (3.771) or (3.78) and subject to (3.79).e
Corollary 3.12. In accordance with the pertinent instances of the general place-holding

definition (3.8), it follows from Corollary 3.11 that for each i€ w,,, for each jew,,, for each

X, € E,, and for each ¢ e [0,1), the 3x3 time averaged depth-integrated radiation (or wave-related)

stress tensor SW,J( ) which is defined by (2.49), is expanded into the following recursive

asymptotic series in powers of the latent parameter &:

= = <t = /-\— ) —
SWij (ZZ)E Swu(XZ' )E Swu (t X2’ ) Sw[oo 1]ij (XZ"C")E Sw[oo,l]u t XZ’ = Z §W(I)u ' (382)
1=1
where
_ 1 T/2
Swini (X2) = Sy (X ) —!I Isw(,)” t, X, )dt foreach | € w,. (3.83)
—T 2
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subject to (3.773), (3.78), and (3.79). Hence, both in the case of a PPPMGWW and in the case of
PSPMGWW, the 3><3-tensor§Wij (x,,ka) in the first non-vanishing approximation in powers of ka

can, in accordance with (3.80) and (3.81), be written as:

§wij (Xz , ka) ~ Syi2.1ji (521 ka) = §w(1)ij (52’ ka)+ Aw(2)ij (Zz, ka) , (3.84)
where

§w(|)ij (52’ ka) = (ka)|§

w(l)ij

(x,) for each I e {1,2}, (3.85)

subject to (3.83) at | € {1,2}. That is to say,
= D ——
Sw(l)ij (Xzaka) = Sw(l)ij (t;ﬁz’ka) = kagw(l)ij (taﬁz )t

_ ' (3.86)
= ka{Poé/(l)(trlz )t — Py (1, X,) }5” forl =1,

= e ——
Sw)ji (52’ ka) =Sy (t;lz’ ka) = (ka)2 Sw()i (tvlz )t
T—t
= (ka)z {|: RS (t:ﬁz )t — PP (1, X;) —Ey) (tiﬁz )t}éh (3.87)e

— ¢

1 — -
+Epog§(21)(taﬁz) (5ij +5i35j3)+ €2 (tvlz )t}foﬂ =2

Comment 3.5. Making use of the appropriate corollaries that have been made explicit above
in this subsection, one can deduce an infinite sequence of asymptotic continuity equations for each
depth-integrated continuity equation occurring in section 2. However, | shall not bother to do these

trivial deductions here.e
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4. The 3x3 time averaged depth-integrated radiation stress tensor of a
PPPMGWW and that of a PSPMGWW in the first non-vanishing

approximation with respect to ka

Convention 4.1. Henceforth, I shall use the definitions (1.7.38) and (1.8.30), i.e,

Q(k) = Q(k,d) = ,/gktanhkd >0, (4.1)
7, =sin, 7, =cos, (4.2)

respectively, without any additional comments.e
4.1. The case of a PPPMGWW
1. Given ue {1,—1}, the following four trains of equations are tokens of slightly modified
(enriched) trains (1.10.22)—(1.10.25) respectively:
D, (t, )= @, (t;x, ka) = kagy (t. x,)

- g coshk(z+d) (4.3)
" \@nhkd  coshkd -~ (220t -k, x,),

D, ('[, X) =D, (t; X, ka) = (ka)2 ) (t, X)

2
_ Ha_ / K cosh k(z+d) (4.4)
2cosh kd sinh 2kd \ tanh kd

(- 2sin 2[2(Kk)t -k, - X, |+ sin[@(K)t + 2k, - X, |+ 3sin[@(K)t - 2k, - X, ]}

0 kar,
Z(l)(t X ) Z(l)(t X2!ka) kaé/(l)(talz) ¢((1))( __Ea[@l)(til)]z_o

(4.5)
1 [CD 1 [(D

1

oltxka)] , =—=[d, )], =ar (@Kt-k;x,)
Zy (tfﬁz) =Zy) (t;ZZf ka) = (ka)2 ¢ (taﬁz)
a’k
= —m{u [~ (2 + cosh 2kd )cos 2(2(k)t — k, - X,) (4.6)

+c0s(2(K)t + 2k, - X, )+ 3cos(2(k)t — 2k, - x, )]
2. Under the pertinent instances of the general (place-holding) definition (1.10.28) or (2.8), it
follows from (4.3) and (4.4) that

@}, (t:x,.ka) = kagdy,(t,x,) =0 foreach I < {L.2}, @.7)

37



because depth-integrating @, (t;x,.ka) or g, (t,x,) between -d and O reduces to calculating the

elementary integral:
‘ 1r. o 1.
[coshk(z+d)dz = E[s,mh k(z+d)[°, = - sinhkd, (4.8)
—d

which does not affect any trigonometric functional forms involved. At the same time, it follows from
(4.5) and (4.6) that

+ +

Z, (t;lz’ka)l = kaga) (tvﬁz )l =0, (4.9)
2
Z(z)it;Zkaa)t = (ka)zé’(Z)(tlz )t = _—.a K : (4.10)
2sinh 2kd
Zy (tiﬁzika)l = kaé;(l) (t. %, ) = (kay é;(z) (t. %, )l = Z(z)(t;ﬁp ka)L =0. (4.11)

Equations (4.9) and (4.10) are tokens of (1.10.29) and (1.10.30) respectively. Also, equation (4.10)
agrees with equation (4.12) in Longuet-Higgins and Stewart [1962], which was deduced there from
intuitive considerations. Given a e (0,0), given k € (0, ), it follows from (4.10) that
imZ,, [t %, ka) = (ka)’ lim &) (t.x,) = —5@0%: 0. (4.10,)
3. By (4.7) and (4.9), it follows from (3.86) and (3.85) at | =1, subject to (3.78) and (3.83)
that

Sy (Xo,ka) = S, (6:X,,ka) = KaS, gy (LX,) =0. (4.12)

4. In accordance with (4.3) and (4.4), the operation of depth-integration of any pertinent bulk
functional form will always apply to a constituent combination of elementary hyperbolic functional
forms ‘coshk(z+d)’ and ‘sinhk(z+d)’, whereas the next operation of time-averaging the
resulting expression will always apply to constituent elementary trigonometric functional forms such
ac*sinmQ(k)t ¥ nk, - x,]” and *cos[m2(k)t ¥ nk, - x,]’, where m>0 and n>0 are strictly positive

natural numbers Hence, the two operations are commutative, i.e. schematically

F=F. (4.13)
This rule allows avoiding calculation of depth-integrating functional forms that will vanish after their
subsequent time-averaging.
5. By (4.2), it follows that
Vir ()t —K, - X,)=—wk_ (Q2(K)t -k, - X,) for each i e {1,2}. (4.14)
38



Making use of (4.14) and also of the equation z* =1, and letting that
k,=0, (4.15)

Oy (t, X) 1 [ g
V(l)i(t’X):vi¢<l)(t’Z): (gx. " kcoshkd \ ktanhkd

[k coshk(z +d)r_, ()t —K, - X, )— kS5 sinhk(z + )z, (Q(K)t =k, - X,)] (4.16)

foreachie w,,,

it follows by (4.3) that

which incorporates both equations (1.8.35a) and (1.8.35b) for the sake of convenience in the

following reasoning. By (4.16), it follows that
€2 (t'l) = PV (t’x)v(l)j (tyﬁ)

= Aol kk. cosh’k(z+d)z_ *(alt,x
Kk cosh? kdtanhkd [ (+d)z., (altx.) (4.17)
— 1k(k,5,, + K5, )Jcoshk(z + d)sinhk(z + d)z_, (alt, x,))r, (@(t,x,))
+ 1°k? 88,3 5inh? k (z + d)rﬂz(a(t,xz))]for eachi € e, and each j € m,,,
where
alt,x,)= Q) -k, -x,, (4.18)
for the sake of brevity. In this case,
; 2
tanhkd cosh?kd = SIMNKACOshTkd _ i cosh kd = ~sinh 2kd | (4.19)
coshkd 2

— in agreement with (1.8.44),
1 1.
. (a)= 5(147 ucos2a) (a), rﬂ(a)rfﬂ(a):ESIHZa (b), foreach e {1,-1}, (4.20)
— in agreement with (1.8.40), and also

sinhacoshazisinh 2a (), cosh? ar +sinh?a = cosh2a (),
2 (4.21)
cosh?a —sinh?a =1 (c), for f=k(z+d),

— in agreement with (1.8.42a). Hence, equation (4.17) for each i € @, ; and each j € , ; reduces to
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€)ii (tal) = PV (tvl)‘/(l)j (t,ﬁ)

- % lkik; cosh?k(z + d)[t-+ cos(2(K)t — k, - X, )]

1 . .
—Eﬂk(kiajg 1K, )sinh 2k(z + d)sin 2(2(K)t =k, - X,)
+k?6,,8,;sinh? K (z + d)[L— pcos(2(k)t -k, 'Xz)]}v

because u* =1. From (4.22), it immediately follows that

1 3 3
ek(Z)(tvl) Engze(z)”(t X E Z[ (1)| ]2
i3 i3

___ P9 2 e
~ 2ksinh 2kd feosh k(Z”')[1+ﬂ‘>°52(~0(|<)t K, %, )]

+sinh?k(z +d)[1— ucos2(2(k)t -k, 'Xz)]}

_ m[cosh 2k(z +d) + pcos2(2(K)t - K, - X, )],

— in agreement with (1.8.45).

(4.22)

(4.23)

6. For convenience in further computations, | shall make explicit the special expressions for

two simple integrals, which will be most useful in the sequel. Namely, for each k € (0,) :

0
jsinh 2K(z +d)dz = %[cosh 2K(z+d)°, = 2—1k(cosh 2kd ~1) (a),

j cosh2k(z+d)dz =— o [smh 2k(z +d)[=, %sinh 2kd (b),

0
jcosh k(z+d)d :%I [cosh2k(z +d)+1)dz = k[S|nh2k(z+d)] % +;d
=i(sinh 2kd + 2kd)=i(1+ _zijsinh 2kd siml(zkd )sinh 2kd,
4k 4k " sinh2kd 2k
17 1
jsmh k(z+d)d :Ej'costh (z+d)- 1]dz_—[smh2k(z+d)] -5d
:i(sinh 2kd—2kd)=i(1— 2 )sinh 2kd zim_l(zkd)sinh 2kd,
4k 4k sinh 2kd 2k
where
m+1(2kd):£(1ir _de j
- 2 sinh 2kd
so that
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m, (2kd )+ m_, (2kd ) =1. (4.28)
The physical sense of the quantities of m,(2kd) and m_,(2kd), defined by (4.27), is established by

(1.9.1)—(1.9.5), (1.9.9)—(1.9.12), and (1.9.13)f, and it can be summarized as follows.
7. The group and phase speeds ¢, (k,d) and c,(k,d) of a PPPMGWW are defined in terms

of its cyclic frequency Q2(k,d), given by (4.1), thus:

qag(k d) a,/gktanhk \/_ tanhk
cy(k,d) =
cosh kd tanhk

_ /gktanhkd (1+ kd jz Q(k’d)(lJr kd j (4.29)

2k cosh? kdtanhkd 2k cosh? kdtanhkd
_ _Q(k,d)(“ _ 2kd J: Q(k,d) m,(2kd)> 0,
2k sinh 2kd k
¢, (k.d)= @ (4.30)
so that
k,d
m(2kd) = 289 g (4.31)
c,(k,d)
and hence
c,(k,d)
m_, (2kd) =1--2 : (4.32)
c,(k,d)
8. By (8.25) and (8.26) it follows from (8.22) and (8.23) that
&y (LX) = fz’ﬁg [nin,m,(2kd )+ 648 5m ,(2kd ), (4.33)
By G X) =22 (4.34)
(2) - 4k2
the understanding being that
.E%foreachlea)lz,n =0. (4.35)
9. By (4.20), it follows from (4.5) that
Zty(t.x,) = 24y (6 X, ka) = (ka) ¢4t x,) = @’z *(2(K)t -k, - x,)
(4.36)

- %a2[1+ pCos2(2(K)t -k, - x, )]

whence
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Z(l)(t Xkaa) (ka)zé/(zl)(tﬁz) :Eaz- (4.37)

By (4.34) and (4.37), it follows that

1
2 PoCa () ~Eg ) =205 -5 —o, (4.38)

10. Thus, by (4.7) at | =2, (4.10), (4.33), (4.37), and (4.38), equation (3.87) reduces to

B S— -
SP,. (X, ka)= Sp(z)i_ (t:x,.ka) = (ka)’s”  (t.x )

=P Zy(t.x, i5 += pogZ(l)(t X )5,35]3+(ka) 8l (1, X, )

Pak ) ,009 (4.39)
=—— 0" 5 4+ a°0,,0 5 +2"— nnm (2kd +0,30;5m ,(2kd
2sinh 2kd ij pog i3%j3 [ ) ( )]
0,98’ Pk ( j
= - o; +nn.m,(2kd 2kd 0,30 3 |,
2 { pogsinh de ij i l( ) ( ) i3%j3

where ‘S’ has, for more clarity, been furbished with the superscript ‘**, standing for “progressive”. In

separate components, (4.39) can be written as”

2 Pk
SP22 (x  ka =P8 m (2kd) - — s
w(2)u( 2 ) 2 il l( ) pogSInthd ij

foreachie w ,andeach je w , (a),

S e (x,,ka)= §5(2>3i (x,,ka)=0foreachiew,, (b), (4.40)

— 2
SP (x,.ka)= poda | _ I?Ok + m71(2kd)+l
Hs 2 Po9sinh 2kd 2

2
S . S B TR S
2 sinh 2kd \ p,9

11. By (3.47)—(3.49), (3.57)~(3.58y), and (4.36)—(4.38), it follows that

= 1
Ek(Z) = Epw(Z) = Zpogaz, (4.39:)

so that E(‘;) , defined as

= = 1
Eg = Ek(2) Eove) Zzpogaz, (4.39,)
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is the time-averaged depth-integrated total volumetric energy density of the progressive (indicated

by the superscript ‘°’) water wave in question. This is the pertinent interpretation of the factor
‘poga2/2 > occurring in the final expressions of the trains (4.39) and (4.40).

12. By the relations

lim m,(2kd )= fim m_,(2kd) == (a) 0 (b), (4.41)

1
smh 2kd
the first two of which follow from (4.27) by the I’Hospitale rule and the last one is self-evident, or

alternatively by the relations (4.29)—(4.32) subject to

2,(K) = lim 2(k,d) = lim \/gktanhkd = /gk >0, (4.42)

which is a token of (1.7.79) that follows from (4.1) (or (1.7.38)), it follows from (4.39) that for each

iew, andeach jew,,:

lim S° __(t;gz,ka)t = (kay’ lim s (tx,) = p"i (nn +25,6,,) (4.43)e

kd—w Wi d—o Wi

4.2. The case of a PSPMGWW
The tensor SW(Z)Ij (x,,ka) of a PSPMGWW is calculated in accordance with the same scheme
as that of a PPPMGWW, although details of the calculation are of course different.
1. Given ue{l,-1}, given v e {1,-1}, the following four trains of equations are tokens of
slightly modified (enriched) trains (1.10.32)—(1.10.35) respectively:
Dy, (t, )= @y (tix, ka) = kagy, (t.x,) =D, (t; x,k,,a) = kady ,, (t, x,)

g coshk(z+d) (4.44)
200t (K, - X, ),
qanhkd  coshid "2t ;- x,)

2
O (t.X)2 D, (t x ka) = (ke (¢ x )= — -2 (2cosh2kd -1) | gk
@tX)= Pt xka)= (@) gy (tx) =~ o\ tanhkd (4.45)
-coshk(z +d)[L—vcos2(k, - x, )[2sin 2(k)t —sin 22(k)t]

=—pa

ka ;o
L, (taXz)E Z, (t;Xz , ka) =kag, (tiﬁz) g ((1))(t : __[¢(1) ]
1r. 1. r, (2(K)t
= —E[q)a)(t;x, ka)] , = —a[cb(l)(t, x) = \/gkgihkd (ﬁ )rv(kz x,)  (4.46)

-%iﬁ% 2000z, (k; - x;)=ar_, (k) (K, - x,),
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Zy, (tiﬁz)E Z (t;lsza) = (ka)zé/(Z) (t’&)
o ak
~ 12sinh 2kd
+4u(2cosh 2kd — 1)L - vcos2(k, - X, )|cos 2(k)t
+ p[L—2cosh 2kd + v(5cosh 2kd + 2)cos 2(k, - X, )]cos 22(K)t.

{~3[L+vcosh 2kd cos 2(k, - X, )] (4.47)

2. As before, depth-integrating @, (t; x,,ka) or ¢ (t,x,) at | € {L2}, subject to (4.44) and

(4.45),. between -d and 0 reduces to calculating the elementary integral (4.8), so that the pertinent

homograph of equation (4.7) is semantically sound:

o, (t; gz,ka)L = kaé])(t,gz)l =0 foreach | € {1,2}, (4.48)

At the same time, it follows from (4.46) and (4.47) that

z(1) (Zz) =Zy (t’lz )t = af—y(g(k)t)tfv (kz ‘Zz) =0, (4.49)

= - t a’k
Z(x,)2Zy(tx,) = —M[H vcosh 2kd cos2(k, - x, )], (4.50)
Z(l) (t;ﬁzika)l = kaé;a) (tvﬁz ) = (ka)z 4;(2) (tvﬁz )l = Z(z)(t;ﬁzv ka)L =0. (4.51)

Equations (4.49) and (4.51) are tokens of (4.9) and (4.11) and also those of (1.10.38) and (1.10.40)

respectively. The interval of values of the functional form Z(Z)i X, it is given by (1.10.39,).

Under the general definition

F(x,)" = I|m lim

Xy =0 Xy —o

X1/2 Xy/2
F(x, )dx,dx, (4.52)

1782 _X,/2-X,/2

(see (10.42)), it follows from (4.50) that

(X2 a’k
Z it, ) =—— = 453
@ X2 4sinh 2kd (4.53)
(cf. (4.10)). Consequently, given a € (0,), given k e (0,), it follows from (4..53) that
limZ,, (t, x ')tzz ——Iima—zk——o (4.53,)
dose @ d-= 4sinh 2kd R

(cf. (4.10,)).
3. By (4.47) and (4.49), it follows from (3.86) and (3.85) at | =1, subject to (3.78) and (3.83)
that

—_ )t
Sw(l)lj (Xz!ka) = Sw(1)ij (t;lzyka) = ka§w(1)ij (tyﬁz )t =0, (4.54)
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which is a homograph of (4.12).
4. The item 4 of the previous subsection applies to the case of a PSPMGWW.
5. By (4.2), it follows that
vz, (K, X, )=k, (K, - x,) foreach ie {1,2}. (4.55)
Making use of (4.55) and (4.15) it follows by (4.3) that

8¢(1)(t,§) 1 g
(t,x)=V.d.(t,x)= -— ‘/ t
Vin (t.X) = Vidy (t.%) X, H K coshkd \ ktanhkd r(20t)

[k coshk(z +d)e, (k, - X, )+ Sksinhk(z+d)r, (k; - X, )] (4.56)
foreachie w,,,

which incorporates both equations (1.8.57a) and (1.8.57b) for the sake of convenience in the

following reasoning. By (4.56), it follows that
€2)ij (t,X) = PV (tvl)\/(l)j (t,l)
PoY 2 2 2
Q(K)t)vkk. coshk d K, -
~ k? cosh? kdtanhkd 7 ())[ k;cosh®k(z+d)e (ks ;) (4.57)
+1k(k,, + k6,5 Jeoshk(z + d)sinhk(z +d)7_, (k, - X, )z, (K, - X, )

+k?8,,0,,sinh?k(z +d)z,*(k, ~52)]for eachi € e, ; and each j € m,,,

whence, by (4.19),

3
eK(Z) t, X E Z Wi t X)V(l)l t X)
=1 (4.58)

P
=2 (g Joosh?k(z +d)z,2(k, - x, )+ sinh?k(z + d)z,2(k, - X, )}

because v> =1. By (4.19), (4.21,a), (4.24,a), (4.25), and (4.26), depth-integrating both sides of either

equation (4.57) or (4.58) between —d and 0 yields:
e ’;049 (k) m (2kd e 2k, - x,)

cosh 2kd —1
+ 1’k(ki51'3 + kié‘iS)mr—v(KZ 'Xz)TV(Kz '52) (4.59)

+k?3,50 M, (2kd )z, *(K, - X, )]for eachi € @, and each j € w,,,

eho (1.)= 2052 (200t 2k e (o) + L2k ) ()l (460)

6. By the pertinent instance of definition (2.8), it follows from the instance of the equation
(4.20,a) with a = Q(k)t that
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riﬂz(.Q(k)t)t = %bi uecos 2(2(k)t it]: %

Hence, time-averaging equations (4.59) and (4.60) yields:

é('z)ij (LX) 28 [n n;m (de )vaz(Kz 'Xz)

2k?

cosh2kd -1
+ V(“i5ja + njé‘iS)Mr—v(KZ X )7, (K, - X,)

+6,40,;m_, (2kd )z, * (k, - X, )]for eachi € w ; and each j € @,
tr©x) =29 m (2kd ) 2 (k, - x,)+ m ,(2kd)r, (K, - x, ).

subject to (4.35). By the following instances of equations (4.20),

Tivz(KZ '52)= %[11 VCOSZ(KZ ‘52)] (a), TV(KZ ‘Zz)T—V(Kz 'Zz): %SiﬂZ(Kz '52) (b),

foreachv e {1,-1},
equations (4.62) and(4.63) can be reduced further thus:

€Ly tx) = Pod {nin.ml(de)[1+vcosz(K2 X, )]

k2
cosh2kd —1
+ V(ni5j3 + njé‘ls)m

+5.5,,m,(2kd J1—vcos2(k, - x, )] for each i e w, , and each j € @,

& (tx) =29 fm (2kd)+m ,(2kd )+ v[m, (2kd ) —m ,(2kd )]cos 2(k, - X, )}

8k?

sin2(k, - X,)

= 'Oog {1+v -
8k sinh 2kd

7. By (4.61) and by (4.64,a), it follows from (4.46) (or (1.8.48)) that

1
k

Hence, by (4.66) and (4.67), it follows that
1 t t
Epogé/(zl)(tilz) _eK(z)(til>

:%[1_VC052(K2‘Z2)] Ao |:1+V 2kd COSZ(KZ'XZ)}

cos2(k, - X, )}

é/(l)(t X ) (-Q(k)t) (kz-xz)zé[l—VCOSZ(KZ-&)].

8k? sinh 2kd
Vpog 2kd Vpog
- 1- cos2(k, - x,)=—--"2m_,(2kd )cos2(k, - X, )
8k2 ( sinh 2kd (_2 —2) 4k2 71( ) (_2 _2)

6. By (4.52), it follows that
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(4.62)

(4.63)

(4.64)

(4.65)

(4.66)

(4.67)

(4.68)



cos2(k, - x,) - =sin2(k, - x,) =0. (4.69)

Hence, upon averaging with respect to x,, equations (4.65)—(4.68) become:

X3

&y (LX) = P09 nm,(2kd )+ 5,:0;;m_;(2kd) foreach ie @, and each i w5,  (4.70)

k2 i
—
ek(z)(talz) = gli? , (4.71)
___________féz 1
oltx,) = e (4.72)
1 5 t52 — tlz
Epogé/(l)(LXZ) —eptX) = 0. (4.73)

8.By (4.48) at | =2, (4.53), and (4.70)—(4.73), upon averaging it with respect to x,, equation
(3.87) becomes

2 =

X :tfz :t&
j(z)ij(xz,ka) = 5(2)__(t;52,ka) :(ka)2§fv(2m(t,§2)

—x -
PoZ(z)( X ) 5 += Pogz(l)(t X) 5|3513+(ka) e(2)u( )t

Pa’k 1
=—mé}j+§poga25i3§j3+p°g " my(2kd )+ 6,6, ,m., (2kd)]

2
_ P92 {_ Pok 5ij +ninjml(2kd) ( (de) J5|3513j|’

)|

X3

(4.74)

4 o9 sinh 2kd

«Sy

where ‘S’ has, for more clarity, been furbished with the superscript *’, standing for “standing”.

Xz

Comparison of SP  (t; gz,ka)t, defined by (4.39), and S°  (t; gz,ka)t , defined by (4.74), shows
that the latter differs from the former by the factor 1/2. It goes without saying that the limiting values

of the two quantities as kd—oo are interrelated likewise.
9. Namely, in analogy with item 11 of subsection 4,1, using (4.71) and (4.72) instead of
(4.34) and (4.38), one finds that

X2 X5

= % = e
Ek(z)(t’lz) Epw(z)( ) =§poga2, (4.74,)

L)

so that EZ, (t, x X,) , defined as

X, X, X,

1= L= t t 1
E(z)(t X ) = Ek(Z)(tuZZ) + EpW(Z)(t X ) = Zpoga21 (4.74,)
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is the x,-averaged time-averaged depth-integrated total volumetric energy density of the standing
(indicated by the superscript *’) water wave in question. This is the pertinent interpretation of the
factor ‘poga2/4 > occurring in the final expression of the train (4.74).

10. By (4.41) and (4.42), it follows from (4.74) that for each i € w, ; and each je m,,:

X2 . 2
m §° (t,gz)t :%(ninﬁmeﬁjs) (4.75)

t
2 -

li )

kd—oo Wil

limS® (t;x,,ka) =(ka)

kdooo Wi

(cf. (4.43)).es
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5. Progressive and standing monochromatic gravity waves on a water

layer on a liquid layer with a mildly varying bed

5.1. Formal empiric rules of generalization of basic characteristics of a PPPMGWW
or PSPMGWW in the first non-vanishing approximation with respect to ka on a liquid
layer of a constant depth to the respective characteristics of a priming progressive
or standing quasi-plane monochromatic gravity water wave (PPQPMGWW or
PSQPMGWW) on a water layer with a mildly varying bed

Definition 5.1. 4) By (4.29) and (4.31), given d €(0,+x), the values of the functional form

‘Q(k,d)’, as defined by (4.1) (originally by (I.7.38), monotonically increase from Q(0,d)=0 to
0(+00,d) =+ as k increases from 0 to +co. Hence, given d €(0,+x), given @ (0,+x), the
equation
Qk,d)=w (5.1)
has a unique solution with respect to * k *, which will be denoted by * K(@,d)’, so that
Q(k,d) = ifand only if k =K(w,d), (5.2)
the understanding being that K(a),d)>0 (cf. Corollary 1.9.2). Given @ (0,+x), let for each
X, €E,:
w(,%,) 2 [ (,%, ) = K(@,h(x,)), (53)
so that

K, (a)1 h(ﬁz)) = Kz’((a" h@z)) = <V1K(a), h(ﬁz))’ VZK(C‘” h(ﬁz)»

= (K@, h()) i (@, hx,)) 4
where v, is an arbitrary unit vector, defined as
v, Z(v,v,); (5.5)
it goes without saying that
K3(@,%;) 2 0. (5.6)
2) Let, also,
Cy(@,%,) = ¢ (x(@, X, ) h(x,)) = my (2 (@, X, Jn(x,))C, (@, X,), (5.7)
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(0

Cp(a)’ﬁz) =G, (K(a)vﬁz )’ h(ﬁz )) = (—

ox,) (5.8)
subject to (4.27)-(4.32). Thus, C,(,X,) and C,(e,X,) are respectively the wave group speed and
the wave phase speed of a certain priming progressive quasi-plane monochromatic gravity water
wave (PPQPMGWW) on a liquid layer with a mildly varying bed z = —h(gz) (to be specified).eo
Definition 5.2: The empiric syntactic rule of the generalization. 1) In agreement with the
pertinent previous notation, given v e @, for each l e w,, Fy(t;x,ka) and F,,(t,x, ka) are scaled

asymptotic approximations of Ith order with respect to ka to a given momentary bulk functional form

F(t; x,ka) and to a given momentary free-surface functional form F, (t, X5, ka) respectively, so that

8

0

F(t;lv ka) ~ IZ: F(I)(t;X’ ka)E ;(ka)l f(l)(t15)’ (5.9)

Ms

F.(t; x,,ka)~ Zw:FS(,) (t:x,.ka)= > (ka) f (t,x,), (5.10)
I=v

I=v
where f(l)(t,g ) and fs(,)( 2) are the respective non-scaled asymptotic approximations of Ith order.

In this case,
F,(t;x,, ka) = Z(t; x,, ka) or F,(t;x,,ka)= [F(t;x,ka)],_ .y, se) (5.11)

Relation (5.9) implies that

0

(tx,, ka)=> (ka (5.12)

I=v I=v

subject to (3.1)-(3.3), (3.7)—(3.9), (3.20), and (3.21). Also, by the pertinent instances of 3.8), it
follows from (5.9), (5.10), and (5.12) that

Ms

F(t; X, ka) ~

Flxka)~ 3 F,(xka)= S (ka) f, (x (5.13)
I=v I=v

F.(x,.ka)~ > F (x,.ka) = > (ka) T, (x,), (5.14)
I=v l=v

E(Xz’ka)"zl?(n Xzika EZ :(|) (5.15)
|:V =V

2) Besides the independent variables occurring in the postpositive parentheses after each
upper case or lover case functional variable occurring in the relations (5.9)-(5.15), the respective

functional form is supposed to depend on the four parameters:

50



‘o, 'k, d’ k7 (5.16)
subject to (5.2), which should be added to the pertinent list of independent variables after a

preceding semicolon. Thus, for instance,
F(t;x.ka)= F(t;x,ka;,k,d,k, ), Fy, (t; ., ka) = Fy, (t; x,ka; o, k, d, k, ),

= (5.17)
f(l)(t’X): f(|)(tyl,a),k,d,k2),

F(x;.ka) = Fx, kao k. d. k), Fy (. ka) = Fy (x;. kaio k. d K, ) (5.18)
]?(I)(XZ)E ]€(|)(X2;0),k,d,k2),

so that the definiendum of each one of the six of definitions (5.17) and (5.18) is the abbreviation of
its definiens that is obtained by omission of the list (5.16).

3) The functional form that is obtained by furnishing the basic functional variable or constant
of any given full or abbreviated functional form of those occurring or obviously understood in the
previous item with a superscript tilde ~ is understood as one, in which the last three parameters of the
list (5.16) are mentally replaced in accordance with the following definitions:

k= r(w,x,),d 2hy(x,), K, = 55(0,%,). (5.19)
Once the substitutions (5.19) are actually (syntactically) executed, the superscript tilde should be
omitted.

4) The above rule applies also to any other appropriate original functional form. For instance,

in accordance with (5.7) and (5.8),
¢, (k,d) = ¢ (x(@,x,) h(x,)), ¢, (k,d) = ¢, (i@, X, ) h(x,))
m;1(2kd ) = mil(ZK(a)’ X, )h(lz ))

5) The tilde-carrying variant of an initial uniform-bed-related functional form is called the

(5.20)

mental non-uniform-bed-related interpretand of the latter functional form. The tilde-free variant of
an initial uniform-bed-related functional form subject to the syntactic (actual) substitutions (5.19) is
called the syntactic non-uniform-bed-related interpretand of the latter functional form.e

Hypothesis 5.1: The empiric semantic rule of the generalization. Both the mental and the
syntactic non-uniform-bed-related interpretand of the first non-vanishing asymptotic approximation
with respect to ka to a characteristic of a PPPMGWW or PSPMGWW on a water layer of a constant
depth is a semantically sound (meaningful, having a denotatum) characteristic of a priming
progressive or standing quasi-plane monochromatic gravity water wave (PPQPMGWW or

PSQPMGWW) on a liquid layer with a mildly varying bed, such that, e.g.,
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V,h(x, )| <<1 foreach x, € E,. (5.21)
In this case, all higher asymptotic approximations with respect to ka to the given characteristic of the
given PPPMGWW or PSPMGWW are disregarded.e
Comment 5.1. In accordance with (4.3) and (4.16),
O, (tfﬁ) =D, (t;l’ ka) =kad,, (t,x,)

- g coshk(z+d) (5.22)
= 4] QK. d)t—K,-x,),
B\ antkd  coshkd 2Kk o)

Vi (t.x)= Vi (txka)= kav,), (t.x)= kaV,d, (t.x)= kaw(g—)((t’l)

-1 | 9 (4.23)
k cosh kd \ ktanhkd

[k coshk(z+d)z_, ((k,d)t =k, - X, ) - ks, sinhk(z + d)7, (Q(k,d)t — k, - X, )]
foreachie o, ,,

Hence, for instance, @, (t;x,ka), ¢y (t,x,), each scaled velocity component V,;(t; x,ka), and each
non-scaled velocity component v(l)i(t, 5) decrease with z decreasing from 0 to —d either as

coshk(z+d) or as w i.e. mainly as exp(kz). Therefore, the sufficient criterion (5.21) of

cosh kd coshkd
mildly varying can intuitively be replaced with this sufficient one:
V,h(x, Jexp(- x(@, x, )n(x,))<<1 for each x, € E,. (5.24)

The bottom of a water layer, whose depth satisfies the criterion (5.24), is called an effective mildly

varying one. Particularly, criterion (5.24) is satisfies if the minimum depth h, satisfies the condition
h, —©.e

Example 5.1. In the result of substitutions (5.19),equations (4.39) and (4.74) become

§w(2)ij (52 , K(w’ X3 )a) = §w(2)ij (t;ﬁz , K(mvlz )a)l = [K(a’vlz )a]z Sw()i (t’& )t

_ /%ga2 _ Pyx(X,, )
2 { pogsinh ZK(G),Xz)h(Zz)é}j +Viij1(2K(a),§2)h(§2)) (5.25)

[ entonnte )+ £ o)
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X -
X2 t=2 X2

S:W(Z)ij (Zz”((waﬁz)a)i = §w(2)ij (t;ﬁzi’((a’fﬁz)a) = [K(a)’ﬁz)a]zgw@)ij (tiﬁz )t

poga2 POI((X21Q))
i ) G +vivim(2x(@, X, )n 5.26
4 { P,0sinh 2k (@, x, )h(x,) " +v.va1( (@, %, )n(x,)) (5.26)

[ estosnte) S oo

respectively.e

5.2. An empirical relation between the longshore sediment transport rate and the
revised radiation stress tensor of the representative PPQPMGWW
Inman and Bagnold [1963], Komar and Inman [1970], and others have suggested that the
potential transport rate (@) of the immersed weight of sand along the surf zone due to a real
progressive quasi-plane wave of a cyclic frequency » and of an amplitude a is given by the
empirical formula
| (@) = K(o)L(@, X, ), (5.27)
where

L(,%,)= E iy (@,%,)C, (@, X, Sina(o,x, ) cosa (@, ;). (5.28)

subject to (5.7). In this case, EW(Z)(co, X, ), defined as

= _ a2
Ew(z)(a)alz) = pog , (5.29)

is the time-averaged depth-integrated total volumetric energy of the PPQPMGWW, a(a),gz) is the
angle between the local wave vector «,(w,x,) and the unit vector N,(x,)= <Nl(52), N, (x, )> of the
inland normal to the depth contour at the point x,, positive counterclockwise; both vectors are

parallel to the XY-plane. The subscript ‘b’ to *x, ” in (5.27) indicates that L must be evaluated at the

breaker depth contour. If E,,,,(@,X,) is measured in joule per meter squared, C,(x,,®) in meter

per second, and I(w) in newton, then K(w) is an empirical dimensionless constant coefficient of
the order 1. Thus, equation (5.27) subject to (5.28) and (5.29) is a scaling relation, which takes into
account both the energy density flux into the serf zone and its orientation relative to the breaker
depth contour. This relation is often called “the CERC formula”, “CERC” being an acronym of

“Coastal Engineering Research Council”. All equivalent counterparts of equation (5.27) subject to
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(5.28) and (5.29) that occur in the literature are as a rule written with the help of one or another
notation. It is hoped that the reader will easily recognize (5.27) subject to (5.28) and (5.29) as an
adequate version of any one of those in use. The interested reader will find a discussion of some
physical mechanisms underlying the CERC formula, e.g., in Komar [1976, pp. 204-213].

If all depth contours are parallel to the shore line, it is convenient to choose a new coordinate
system in such a way that its X-axis is directed shoreward, whereas its Y-axis is parallel to the shore
line and oriented so as to form a right-handed coordinate system along with the above X-axis and

along with the Z-axis oriented vertically downward. In this case, (5.28) can be written as

L(a), X, ) = Vl(a)’ X, )Vz (0)’ X, )Ew(z)(a)' X, )Cg (a), X, ) : (5.30)
By (4.31) and (5.25), equation (5.30) becomes
L(a)’&): Cp(a)’ﬁz)g(znz(a”lz)- (5.31)

Hence, (5.27) takes the form

I (w) = K(a’)cp(a’lzb )§(2)12(W1Z2b)’ (5.32)
Relative to a coordinate system with arbitrary oriented axes X and Y in the horizontal plane, equation

(5.32) can be rewritten in covariant form as

I () =K(@)C, (0)’ Zzb)zz Ni(XZb)N j (Xzb )§( 2)ij (C‘)vlzb)- (5.33)

In this case, it is tacitly assumed that the transformation from the original coordinate system to the
new one has been made, and that the meaning of the variables “i’,  j’, and * x,’ has been changed
accordingly. Thus, equation (5.33) is an empirical scaling relation between the longshore transport
rate of the immersed weight of sand on the one hand, and the 2x2-TADIRST (time-averged depth-
integrated radiation stress tensor) of the representative progressive quasi-plane mode on the other
hand. Instead of the empirical coefficient * K(w) *, one can introduce another coefficient * K'(w)’ by

the equation

K(@) = K'(@)m, (2x (@, X5,)N (X)) - (5.34)
In this case, equation (5.33) becomes
2 2
l(w) =K (a))C W, X,y ZZN X2b Xzb)s(z)u (a’ Xzb) (5.35)
i=1 j=1
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Since (5.27) subject to (5.28) is a scaling relation, therefore the fact that the right-hand side of (5.27)
is expressed in terms of the radiation stress tensor components either by (5.32) or by (5.33) or else by
(5.35) seems to be natural. At the same time, when written in any one of the above three forms, , the

CERC formula acquires a new sense value.
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6. Historico-philosophical remarks regarding radiation stress tensors of

water waves

6.1. “Radiation stress tensor” paradoxes

I have already mention in Comment 2.7 that in the literature on water wave dynamics, there
are several different, but intuitively as if the same, definitions of a 2x2 TADIRST in the XY-plane of
the second order with respect to ka, which are regarded by their authors as unique adequate
logographic interpretands of Longuet-Higgins and Stewart’s wordy definition of the generic name
“radiation stress tensor”. This results in the phenomenon of paradoxical uses of the latter term,
which | shall call “radiation stress tensor” paradoxes (“RST” paradoxes). In this case, in the
different articles on the matter different notations are used. Therefore, in order to make explicit at
least some of the “RST” paradoxes | shall, for the sake of being specific, consider the following
three-stage definition of his *S; * by Mei [1989].

1) «For the convenience of vertical integration, the vertical and horizontal directions are

distinguished. Specifically, we denote the vertical velocity by w and the vertical coordinate by

z, the horizontal velocity components by u, (i=1,2,u,=u, u,=Vv), and the horizontal
coordinates by x (i=1,2,x =X, X, =Yy). We define the mean velocity U, (i=1,2) by

integrating u, over the instantaneous water depth and then over the time period T, tat is,

Z
Ui(x,y,z,t):g_ih juidz, i=12, (2.1)
h

where ¢(x,y,t) is the free-surface displacement, ¢ is its time mean, and h(x, y) is the sill
water depth. Physically, u, = pUi(g7+ h) is the mean rate of mass flux across a vertical plane
of unit width along x =const. The vector (U,,U,) may, therefore, be called the mass flux

velocity, which depends only on the horizontal coordinates and the long time scale. Denoting

the deviation from the mean by U, , we have
u, =U, +0(x,y,2,t). (2.2)

It follows from the definition that
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¢
ju.dz =0. (2.3)»
-h

(ibid. pp. 453-454))

2) «... the following definition has been introduced

S, = ?[Pﬁij—kplTin]dZ —%(5 +hfs,. (2.25)

Physically, S; is the i, j) component of the stress tensor, representing the excess momentum

fluxes.! Since

B¢ ) = (-2

-h

is the total mean hydrostatic pressure over the mean depth, S;; may be written

S, = [dez - j'pg(f— z)dz}5“+jpﬁ,ﬁjdz : (2.26)

Thus, S; represents the sum of the ith component of the excess hydrostatic pressure on, and

the net momentum flux across, a surface normal to the jth direction.

"The definition of S; s slightly different from Phillips [1977, Eq. (3.6.12).The difference is

of the fourth order for the infinitesimal waves.» (ibid. pp. 457-458)

3) «lt is straightforward to show that the radiation stresses are

2 (kK.
s, = 2 .2,[“ 2kn )M“'ZA
4 k sinh 2kh sinh 2kh

kk. 2C 2C
=E IZJ 9 +5ij 9 _1
2|1 ko C C

(Longuet-Higgins and Stewart, 1962, 1964).» (ibid. p. 465)

(3.10)

In referring to any one of the above cited numbered equation, I shall prefix its double numeral

with the letter ’M’. Each one of the subscripts ‘i’ and ‘j” occurring in the above quotations takes on

values in the set {1,2}. Also, Mei’s variable ‘" has the same range as Longuet-Higgins and Stewart’s

(briefly LH&S’s) variable ‘(" and the same range as my variable ‘Z’. Hence, the definiens of Mei’s

definition (M2.25) of his radiation stress tensor S; subjectto i e w,, and j € w,, contains the wave-

dependent term
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A +hys, (6.1)

i.e. %(Z + h)25ij in my notation, which is subtracted from the term

j [P5ij+plTin ]dz (6.2)

N
instead of the wave-independent term S (t, 52) (see (2.42e)) subject to iem, andjeaw,.

eij

Accordingly, my equations (4.9) and (4.10), being tokens of equations (1.10.29) and (1.10.30)

respectively, should be written in Mei’s notation thus:

5(1)=0, (6.3)
_ A%k

S A 6.4
‘@ 2sinh 2kh (64)

In this case, with an accuracy to the ambiguous usages both of Z and of ‘=", equations (6.3) and

(6.4), i.e. my equations (4.9) and (4.10), agree respectively with the statement that Z: 0 before
equation (3.18) in LH&S [1960] and with equation (4.12) in LH&S [1962], which was deduced there

from intuitive considerations. The former statement of LH&S means that their depths function h is
the same as that of Mei. At the same time, in connection with the latter result of LH&S, it is
noteworthy that, in accordance with the subject matter of sub-subsection 1.10.5.2 (e.g.), the velocity

potential @ ,, of the second order approximation with respect to ka is, like @, bounded as a

@

function of time, so that

t
oD, (t, X
— @2 =0, (6.5)
ot

Otherwise, the whole of the second-order approximation would be incorrect in principle. Therefore,
for computing Z(z), one should at first compute @ ,, in order to prove (6.5). Hence, Z cannot, in

principle, be computed in the second-order approximation with respect ka in the framework of the

linear theory, unless of course (6.5) is taken for granted. Accordingly, it is accidental that equation

(4.12) in Longuet-Higgins and Stewrt [1962], along with (6.5), turns accidentally out to be true.
Occurrence of A% in (6.4) explicitly demonstrates that the term (6.1) is, not only wave-related,

but that it is of the order of (kA)? i.e. of the order of the entire S;; . Therefore, when used in its
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natural (default) sense as “net wave-induced”, the qualifier ‘radiation” is not applicable to the tensor
*S; 7 defined by (M2.25) or (M2.76). That is to say, either one of Mei’s last two definitions disagrees

with LH&S’s original wordy definiens of their 2x2 time-averaged depth-integrated radiation stress

tensor SijLS (see Comment 2.7) and is therefore semantically incorrect as a logographic interpretand

of ‘SU.LS’. At the same time, Mei explicitly states that, firstly, his S; represents “the excess

momentum fluxes” (see the first line below (M2.25)) and that, secondly, the final expression for his
*S; 7, given by (M3.10), is due to LH&S. This is actually the main reason for confusion and for the
creation of the pertinent radiation stress paradox.

Comparison of the separate components of S., given by (M3.10), and the respective

ij

components of S:viﬁ)ij (x,,ka), given by (4.40) subject (4.31), (5.7), and (5.8) (see (4.12)), shows that,

up to the different notations used in these two cases,

Sxy = Sy>< = S:vizzz)xy (521 ka) = S:v€>(<22)yx (Xz,ka)- (66)
whereas
Sxx # S:V3>(<22)XX(ZZ’ ka) and Syy # S:vig)yy(zzf ka) (67)

Since Mei’sefinition of *S; * differs from my definition of *SZ3; (x,.ka)’ (cf. (2.49), (2.51), and
(4.12)) and since the methods of calculation of the components of the two tensors are different,

therefore the relations (6.7) are not surprising.

Surprising is Mei’s statement that his definition (M2.25) or (M2.26) of *S;’ results in
equation (M3.10), i.e. in the same values of “S;;” as those resulted from the completely different
definition of *S;; * by LH&S. Mei does not make explicit any derivation of equation (M3.10) from his

definition (M2.25) or (M2.26). Therefore, there are two options to explain his paradoxical statement.
First, Mei correctly performed all calculations leading from (M2.25) or (M2.26) to (M3.10), while
LH&S committed some errors in their calculations, which were not detected by their followers
including Mei. In this case, the coincidence of the above two final results is accidental. Second, Mei

did not performed all necessary calculations by himself, but rather he was confident both that his

definition of “S; * was an adequate logographic interepretand of ‘SU.LS’ (see Comment 2.7) and that

the result of calculations of LH&S of their S+°

i » Which were expected to be subjected by that time to
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25-years interpersonal verifications, were correct. Therefore, Mei just quoted the supposedly correct

result of LH&S for their SijLS as the unavoidable result of his own definition of *S;; °. In this case, the

possibility that LH&S had erred is not excluded, and this is what had unfortunately happened.

I have already indicated previously that intuitive considerations can be a useful heuristic tool
in calculating linear characteristics of a non-linear phenomenon or in calculating bilinear
characteristics, which are expressible in the framework of the pertinent linear approximation, — such
bilinear characteristics, e.g., the volumetric kinetic energy density or the volumetric energy density
flux of ideal fluid. If, however, calculating a bilinear characteristic of interest requires knowledge of
the velocity potential of second order with respect to ka then the missing information is unavoidably
compensated by making apparently plausible but often incorrect ad hoc assumptions. Accordingly, in
such cases intuition turns often out to be, not only useless, but harmful. Therefore, one of the main
objects of my developing the recursive asymptotic theory of nonlinear surface gravity water waves on
a water layer with an even or infinitely deep bottom has been to avoid, as far as possible, making in
the sequel any ad hoc non-systematic assumptions.

At the same time, rigorous (syntactic) systematic rules of deductive inference can result in
some relations, which are not predictable intuitively, but which become intuitively comprehensible

after they are made explicit formally. Ones of such results are, in my view, the expression (4.39) (or

its equivalent (4.40)) for the 3x3 TADIRST S, (t;x,,ka) of a PPPMGWW in the second order,

i.e. first non-vanishing, approximation with respect to ka (see equation (4.12)) and the expression

X2

(4.74) for the 3x3 hotison(ally averaged (HA) TADIRST S, ; (t; X, ka)ﬁ of a PSPMGWW in the

same approximation (see equation (4.54) being s homograph of (4.12)). The diagonal elements of

each one of the above two RST’s involves the constant ‘Py’, such that P, =0 if the part of space
above the free upper surface of the water layer is vacuous, whereas P, =P,, where P, is the

atmospheric pressure on the free water surface, if the above-mentioned part of space is occupied by

atmospheric air. In this case, since P, has a prepositive sign ‘—’, opposite to the prepositive signs of
all other terms contributing to any diagonal element of each given RST, one can thought that P,

produces surface tension of some kind, which tends to straighten (suppress, diminish) the existing

surface water waves. In this connection, the following question of pure academic interest can e raised
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Let in general P, >0 be external pressure on the free (upper) surface of the water layer, and

let, for the sake of being specific, the coordinate system be chosen so as
n,=land n =0. (6.8)

X5

It follows from (4.43) and (4.75) that every component of §V‘:(2 (t;x,.ka) or §fm (t;x,,ka)

)ij )ij
converges. Moreover, given
0=kd >0, (6.9)
given d >0, by (4.27), it follows from (4.39) or (4.40) and from (4.74) independently of a that

X3

— t1= t
S?  (tx,.ka) =ESW(2W (t;x,.ka) =0 (6.10)
if and only if
PO = F)Ox(d’5)E pogdux(a) (611)
subject to
0. (6)= sinh 26m,(26) _ sinh 25 L 6.12)
o 20
and that
= t 1 =~ 1 X2
Sv’j(zm (t’XZ’ ka) = ESW(Z)ZZ (t’XZ'ka) = 0 (613)
if and only if
R = F>0z(d’5)E pogduz(5) (6.14)
subject to
sinh 26 1) sinh26
0)= 26)+= |= -1. 6.15
0,(0)= 522 m (20) 4 2 |- 5% ©15)

In this case, use of (4.27) has been made for developing the universal functional forms u, (&) and

u,(5).
Given 6 =kd >0, it follows from (6.11) and (6.14) that
!im P, = (!im P, =+x. (6.16)

Assuming therefore that d<oo, let us consider the equation

Ux(5)5 sinh 26 1o sinh 26 B

>3 5 1=u,(5). (6.17)
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This equation can be rewritten as

sinh 26
20

~2=0. (6.18)

It is clear that sinh 26

—2 monotonically increases with & monotonically increasing from 0 to oo.

Therefore, equation (6.18) has a unique solution § = &, . This solution has the property that
P.(d,5)=P,(d,5)=PRy,(d.3.), (6.19)

the understanding being that at this pOressure

$* (tx,ka) =S°P. (t;gz,ka)t _1s (t;gz,ka)r2 _1ss (t;gz,ka)ti2 =0. (6.20)

w(2)xx w(2)zz 2 w(2)xx 2 w(2)zz

6.2. “Amicus Plato, sed magis amica veritas”

1. The noble Latin dictum, which is taken as the heading of this subsection, is translated into
English as: «Dear is Plato, but dearer still is truth» and also, less pretentiously, by any one of the
following sentences: «Plato is my friend, but truth is a better friend», «Plato is my friend, but truth is
more my friend [than he is]», or «Plato I love, but I love truth more». That Latin dictum is in turn a
translation from Ancient Greek into Latin of the phrase credited to Aristotle, who as though said it
inorder to express his uncompromising rejection of Plato’s teaching of Universals (for greater detail,
see losilevskii [2016b, Essay 5, subsection 2.2, p. 112 f]). At the same time, according to the online
«Dictionary of Phrases and Fable» of Wikipedia, the above Latin dictum is a free translation of a
phrase of «Nicomachean Ethics» (1096a15) by Aristotle, which is literally translated as: «Where both
are friends, it is right to prefer truth». In any case, my usage of the Latin dictum as the heading of
this subsection ix an allegoric one, under which | shall make explicit some most conspicuous
inconsistencies of the four articles by Longuet-Higgins and Stuart (briefly LH&S) [1960, 1961, 1962,
1964] that have resulted in their expressions for the TADIRST of a PPPMGWW and for the
HATADIRST of a PSPMGWW, — the incorrect expressions that were canonized about 55 years ago.
I shall also make a few remarks regarding the old article Tadjbaksh and Keller [1960], which
concerns with some relevant aspects of PSPMGWW’s.

The above-mentioned objects of this subsection are not of course objects of the recursive
asymptotic theory of gravity surface water waves (RATOGSWW, briefly RAT) that | have developed

in I and in this article. | have developed this theory, firstly, for the sake of completeness as another
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peculiar branch of the perturbation WKB (LG) method and, secondly, as a reliable rigorous
(syntactic) alternative of the presently common unreliable intuitive (semantic) method. Analyzing or
revising any article published in the literature on water wave dynamics previously in the framework
of the intuitive method is beyond the scope of the RAT, except the papers of LH&S for the following
reason. On the one hand, the TADIRST of a PPPMGWW and the HATADIRST of a PSPMGWW
are minor characteristics of surface water waves of gravity. These characteristics are distributed and
are not therefore measurable immediately and straightforwardly. But on the other hand, the RST’s of
water waves are secondary characteristics of water waves, which are deduced from the basic
equations of hydrodynamics and therefore they must be well-defined (unique).

One of the most general laws of philosophy is the triad of motion of thought: thesis-
antithesis-synthesis due to the German philosopher Georg Wilhelm Friedrich Hegel (1770-1831).
The above triad is interpreted as the dialectic principle of unity, or identity, of opposites due to
another German philosopher Johann Gottlieb Fichte (1752-1814), a contemporary of Hegel. In a
sense, Hegel’s triads and its interpretation by Fichte were foreshadowed by the principle of golden
mean of ancient Greek philosophers and also by the following two Latin dicta: «In medio stat
veritas» — «The truth stands in the middle» and «In medio stat virtus» — «Virtue stands in the middle»
or «Virtue is in the moderate». Aristotle represents the principle of golden mean and discusses its
importance for ethics in his «Nicomachean Ethics» (cf. losilevskii [2016b, Essay 5, subsection 4.2, p.
168 f]). At the same time, golden mean is not applicable to the RST of a water wave: the RST either
is correct or is not correct, but not both at the same time. And if it is incorrect then it is necessary to
explain why, when possible. Needless to say that there is nothing personal in my criticism of
inconsistencies of articles by LH&S. They are pioneer in the field but they have committed some
errors. Somebody has to correct their errors. Unfortunately, it is me who happens to do this job. |
may also err, particularly in my attempt to explicate errors of LH&S or mutual inconsistencies of
some of their statements. If this happens, somebody else will correct errors of my own. And so on.

2. | distinguish between the qualifiers “true” and *“valid” and hence between the respective
substantives “validity” and “truth”. In Latin, e.g., there are special words for “true” and “truth’ on the
one hand and there are some other special words for “valid” and “validity” on the other hand, — in
accordance with the following vocabulary entries of the English-Latin part of the Latin-English

dictionary by Simpson [1968]:
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«true, (1) = in accordance with fact, verus, iverax(=truthful)’ to be —. in parenthesis, as an
admission, quidem; as -l live, supporting a statement, ita vivam ut; with indic.; as an
answer, see of YES. (2) = genuine, real, verus, sinserusm, germanus. (3) = loyal, fidus,
fidelus.

truth, as a quality, veritas; the —, in a particular case, = the fact (s), verum, vera (= n. sing.,

or plur., of veus) sometimes veritas; in accordance with —, ex veritate (Sall.); in —,

enimvero; see also TRULLY.

valid, (1) of arguments, reasons, etc., firmus, gravis, iustus, certus, ligitimus. (2) of laws,
ratus, to be —, ratum esse, valere; to make —, ratum facere, ratum esse iubére.

validity, (of reasons, etc.) gravitas, pondus (-éris, n.); otherwise rendered by adj.»

The interested reader will find a discussion of the difference between the senses of the words “valid”
and “validity” on the one hand and the senses of the words “true” and “truth” on the one hand, in
trial formal logic (TFL), in losilevskii [2016a]. For my purpose at hand, it is sufficient to notice that
every euautographic (genuinely non-interpreted syntactic) relation (contrasted to *“euautographic
term”) of that logic, having academic or practical interest, is classified in accordance with a certain
built-in algebraic (and hence analytical, not tabular) decision method (ADM) either as a valid one or
as an antivalid one, or else as a vav-neutral (vav-indeterminate) one, i.e. as one being neither valid
nor antivalid. In this case, the negation of a valid relation is an antivalid relation and vice versa,
whereas the negation of a vav-neutral relation is another vav-neutral relation. A euautographic
relation is said to be: (i) invalid if it either is antivalid or vav-neutral, (ii) non-antivalid if it either is
valid or vav-neutal, (iii) vav-unneutral (vav-determinate) if it either is valid or antivalid. A
euautographic relation or term of TFL is just a semantically insignificant chip (fish) that is analogous
to a chessman. In order to be interpreted semantically, some selected valid and vav-neutral
euautographic relations and also the master (decision) theorems of the latter relations are replaced, in
accordance with certain rules of substitution, by certain semantically significant relations as their

semantic interpretands. In this case, the semantic interpretands of valid relations, both of slave ones
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and of master ones, are said to be universally (tautologously, tautologically) true, whereas the
semantic interpretands of some vav-neutral relations, which are taken for granted to be true, are said
to be veracious, i.e. accidentally true. Consequently, all mathematical postulates, permanent ones,
called mathematical axioms, and temporary (ad hoc) ones, called mathematical hypotheses, are
semantic interpretands of vav-neutral euautographic relations. Accordingly, all mathematical
theorems, i.e. true mathematical relations that are proved from mathematical postulates or from other
mathematical theorems, or from both, are also semantic interpretands of some vav-neutral
euautographic relations of TFL. The recursive asymptotic theory of gravity water waves that is
developed in | and in this article is a mathematical theory and therefore all its true relations
(postulates and theorems) have the above character.

3. | have already indicated previously that Longuet-Higgins and Stewart [1960, 1961, 1962,
1964], to be refferred henceforth to as LH&S1-LH&S4 in that order, seem to have been the first
writers to introduce the term ‘radiation stress’ and to define its physical sense. Here follows a brief
review of those aspects of the above papers, which are relevant to the radiation stress paradoxes of
progressive water waves.

Equation (3.14) of LH&SL is a definition of the quantity, which the authors denote by *S,’

and which they commonly call ‘a radiation stress’. Also, in accordance with that paper, S, is the
(x,x)-component S, of a time-averaged 2x2 tensor, which the authors denote by ‘S’, and which they

call “the stress tensor” (ibid., p. 577), — instead of the presently common term “the radiation stress
tensor”. None of the three other components of the tensor is defined in the paper formally. However,

equation (3.14) of LH&S1, which is actually the definition of *S_ *, unambiguously indicates that

XX !

any component S;; of the tensor should be defined analogously. By equation (3.34) in LH&S1, the
authors suggest the well-known expressions for all the four components S; with i €{l1,2} and

j €{1,2} in the case of a real priming progressive plane mode (monochromatic wave) of an
amplitude a and of a wave number k, that travels in the direction of the X-axis. Since then these
expressions are widely cited and used in the literature for more than 55 years. It has been shown in
subsection 6.1 that the above expressions are incorrect. Still, LH&S1 do not make explicit any details
of the calculations, in the result of which they arrive at their final expressions for the radiation
stresses. One cannot therefore put his finger on a specific error, or errors, which the authors have

committed.
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No essentially new results relevant to radiation stresses are reported in LH&S2. In this paper,
the expressions for the radiation stress components as computed for a real progressive plane mode in
LH&S1 are just cited in connection with some applications. Also, in this paper, the radiation stress
tensor of a real progressive plane mode has, for the first and for the last time, been mentioned as a

3x3 tensor, whose all (i,x) and (x,i)components with i € e, ; equal null (ibid., equation (6.2)). Since

then the radiation stress tensor has never been mentioned in the literature as a 3x3 tensor, but rather it
has always been treated as a 2x2 tensor.
In their paper LH&S3, the authors consider some further applications of their radiation stress

S, due to a real progressive plane mode. The definition of ‘S, * as given by equation (3.31) in

LH&S3 essentially differs from the definition of the same symbol as given previously by equation
(3.14) in LH&S1. Nevertheless, in the case of a real progressive plane mode, the next formula (3.32)

in LH&S3 assigns the same denotatum to *S, * as that obtained in LH&S1. The assignment of the
denotatum to ‘S, ’ is made as a citation of the corresponding result of LH&S1 without any

calculations. Thus, the formulae (3.31) and (3.32) in LH&S3, along with the reference to LH&S1 as
the source of formula (3.32), evidence that the authors did not notice the substitution, which they had

involuntarily and erroneously made for the original definition of *S_’ occurring in LH&S1. At the

same time, it is worthy of noticing the amazing fact that, in LH&S3, equation (3.32) subject to
definition (3.31) turns out to be syntactically correct. This correctness of (3.32) is, however,
accidental because it is a result of two errors, one of which has been made in LH&S1, and the other
in LH&S3. Among some other unfortunate coincidences of circumstances, the apparent correctness
of (3.32) subject to (3.31) might, probably, have contributed to the creation of the paradox in
question.

Paper LH&S4 is the last one he series of original papers of these writers, which are concerned
with the notion of radiation stresses. In this paper, the original results of LH&St relevant to their
theory of radiation stresses and of some other nonlinear effects in water waves are formulated in the
most complete form. In particular, in this paper, the writers give the explicit definitions of all the four

components S, , S, ,and S, =S, of their time-averaged radiation stress tensor. These definitions

XX !
are in agreement with the explicit definition of S, =S, in LH&S1. Also, in LH&S4, the authors
make explicit some details of their calculations, so that their most essential errors can be revealed. In

the sequel, the original results of LH&S will therefore be cited mainly from LH&S4.
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Incidentally, Mei’s definition (M2.25) of “S,, * coincides with the definition of S, ’ as given
by equation (3.31) in LH&S3. Still, Mei has likely not noticed that the definition of S, ” in LH&S3
essentially differs from the definition of “S,” in LH&S1 or from the definition of *S_ ’ in LH&SA4.
He has not, also, noticed that no calculations of any radiation stresses are reported in LH&S3. The
value of the only radiation stress component S, , which is mentioned in that paper, is just cited from
LH&S1 in no connection with the modified definition of the quantity. Also, Mei has not noticed that

his own definition of ‘S, ’ disagrees with the definition of the same symbol in LH&S4 and that,
hence, it disagrees with the definition of *S, * in LH&S1. This is why Mei accompanies his equation

(m3.10) with a reference to two mutually contradictory papers LH&S3 and LH&S4 as a single
whole, while LH&S are mentioned as discoverers of the formula. in any way, the fact that Mei's final

expression for *S;” coincided with the expression that was derived in LH&S1 and re-derived in

LH&S4 can be regarded as accidental.

No velocity potentials are written down in LH&S4. Still, equations (3) and (4) on p. 531 of
LH&S4 indicate that the PPPMGWW, dealt with in that paper, are presumabbly described by the
velocity potential defined as

ao .
D, (t,X) = ————cosh k(z + h)sin(kx — ot). 6.21
w(tX) == =2 cosh k(z + h)sin(ke— ot) (6.21)

This definition can be regarded as a particular case of equation (4.3), subject to (4.1) and (4.2), which
corresponds to

u=1,h=d, oc=02(kd), k,=(k,0). (6.22)
Indeed, by (4.1) and (6.22), it follows that

o Q(k,d) gktanhkd  ,/gktanhkd g 1 (6.21,)
B B ~\ktanhkd coshkd ' o

ksinhkd ksinhkd ~ ksinhkd  k tanh kd cosh kd

which is in agreement with the pertinent factor occurring in (4.3)
According to equations (21) and (36) on pp. 535 and 536 of LH&S4, the radiation stress

tensor components S; as computed supposedly with the help of (6.21) and of some other

assumptions (see below) in the second-order asymptotic approximation with respect to ‘ka’ are

given by
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2kh N 1 0
1 sinh 2kh 2
S = Epgaz sinh 2kh 2 Kh 3 (623)
sinh 2kh
According to the last equation (6.21,), equation (6.23) is written in a coordinate system whose axis X

is collinear with the vector k,. In a coordinate system, whose axis X is arbitrarily oriented in the
equilibrious plane relative to the vector k,, equation (6.24) turns into equation (M3.10).

In deducing (6.23), LH&S employed the equation

‘pHpw’ =-pgz=np,’, (6.24)
which occurs as equation (12) on page 533 of LH&S4 and which the writers deduced from some
unspecified intuitive considerations in the second-order cumulative asymptotic approximation with
respect to ‘ ka . This equation is wrong because it contradicts the time-averaged unsteady Bernoulli
equation in the same approximation. Indeed, in accordance with (1.5.51) subject to Convention 2.1,
the time-averaged of the unsteady Bernoulli equation in the second-order asymptotic approximation

with respect to “ ka ’ can straightforwardly be written as.

a | G (6X)
¢(1£ ) (ka) {po ?, )éit X)

P(tX) =P(Gxka) ~ P, - 0,02 - kap, + gy (t,x)i

e 1 3 t
=R —p9z— (ka)2 e (LX) =R — p0z __Poa2k22|v(1)i (t,ﬁ)| (6.25)
=R -p9z-— POZ|;(1)| (t, X)| =R -p9z- k(2)(t X)

because

Iy (tvl)t _ 2P (tvl)t
a a

— in accordance with section 1.10. In a coordinate system, satisfying the last equation (6.22), equation

-0, (6.26)

(6.25) can be written as:

P(t,X) ~ P, - p,02 —%{Mma,z)]zt + Mﬁ(t,x)]”}. (6.27)

or, in notation of LH&S4, as:

p+%p(u2+w2): P, — pgz, (6.28)
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instead of (6.24). It is clear that equations (6.24) and (6.28) are mutually inconsistent. Formally,

assuming that equations (6.24) and (6.28) are both true and also assuming that P, =0, one finds that

u®(t,x) = w’(t,x) for each x € E, which is an absurd. Hence, (6.24) is false (antitrue).

Incidentally, equations (6.25)—(6.27) and hence equation (6.28) apply both in the case of a
PPPMGWW and in the case of a PSPMGWW. However, in the former case,

— ————t  p,ga’kcosh2k(z+d)
E, .. (t, =(k t, = 8 , 6.29
k(2)( X) ( a) ek(z)( X) 2sinh 2kd ( )
by (6.23), and hence

0 2 0

e ps9a°k 1

E, . (t,x) dz=—"22"—_|cosh2k(z+d)dz==pga“. 6.30
J; k(2)( X) 25inh2kdj; (z+d) 4pg ( )

If equation (6.28) were used instead of equation (6.24) in equations (14) and (30) on pp. 534 and 535
of LH&S4 then the authors would likely had arrived at the same RST components as those suggested
by my recursive asymptotic theory.

4. In LH&S4, besides the TADIRST of a PPPMGWW, an attempt was made to calculate the
HATADIRST of a PSPMGWW, but again from intuitive consideration. Just as in the former case,
the authors have failed to get reliable final results in the latter case. Unfortunately, the notation that is
used in LH&S4 is ambiguous (not self-consistent) and confusing. Therefore, | feel that an attempt to
explicate all inconsistencies of LH&S4 in terms of the completely different and partly homographic
notation of my recursive asymptotic theory would have been bothering and counterproductive. In
order to justify the above-said, here follows just one example.

By its definition, the variable ‘¢ of LH&S4 is sense-concurrent to, i.e. it has the same range
as, the variable “Z ’ of my recursive asymptotic theory. In the most general case of a PSPMGWW,
Z, i.e. Z in the second-order asymptotic approximation with respect to ka, has rigorously been
proved to be determined by equation (4.47), so that its time-averaged and its horizontal and time
averaged are given by equations (4.50) and (4.53) respectively. In contrast to (4.50), the time-
averaged variable ‘£ * of LH&S4, being sense-concurrent to * Z * of this exposition, is asserted (from

unknown intuitive considerations) to be given in the same approximation by equation (10), occurring
on p. 538 of LH&S4 and having the form

¢ =a’k coth 2kh cos2kx (6.31)
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subject to the very last definition (6.22). This equation is not a misprint, because the absence of any
constant on its right-hand side is predetermined by the statement

“...the horizontal average of Z is identically zero...”, (6.31y)
which occurs ibidem (on the same p. 538 of LH&S4). The origin of both (6.31) and (6.31;) remains
unknown, and their appearance in LH&S4 is surprising, especially taking into account that in the
case of a PPPMGWW, the parallel equation for (4.12) of LH&S3:

ka?
2sinh2kh’

which is sense-concurrent to equation (4.10) of this exposition, is correct.

c—— (6.32)

5. Previously, an attempt to compute “ Z(t, x,) * in the second and third-order approximations

with respect to ka for a PSPMGWW on a water layer of a finite depth was made by Tadjbakhsh and
Keller [1960]. The method used by the writers reminds the method of Bogolubov and Mitropolsky
[1961] in the sense that it is a fitting procedure rather than a genuine asymptotic method. All
calculations are made by the former writers in terms of some non-conventional dimensionless
independent and functional variables. In this case, the time variable has a peculiar property that it is
scale depending on an unknown frequency and hence it actually depends on the specific
approximation with respect to “ka’, in which the frequency is calculated . Everybody is of course
free to use his own notation as he pleases. However, interpretation of the final results of Tadjbakhsh
and Keller [1960] in terms of the ordinary dimensional variables of hydrodynamics is not
straightforward. Since no results of that paper have been canonized, therefore their review is beyond

the scope of this exposition. For the reader, who will wish to learn the above paper, it is noteworthy

that the term (a)o2 — a)o’z) > in equation (30) of Tadjbakhsh and Keller [1960] is misprinted. That term

must have the form (a)o2 +a)(;2) ’, which immediately follows from comparison of equations (30)

and (28) of that paper.
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