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Abstract

In the twentieth century, mathematical models of the cosmos proliferated unconstrained by sufficient 
evidence to choose among them. But a number of recent large observational collaborations have 
redefined the parameters of cosmology: In the twenty-first century, spatial curvature is out, and the 
cosmological constant is in.  A straightforward model incorporating these essential points has been 
available for decades and is updated here.  An explicit, closed-form, solution is presented, together with
useful formulas and graphs.  The presentation is accessible with first-year physics and calculus. 
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If the large-scale motion in the universe is isotropic and homogeneous, then there also is a universal 
time t, which is the same for all observers who see the universe as isotropic and homogeneous (our co-
moving partners.)  Moreover, the only pattern of motion that will perpetuate an isotropic homogeneous 
universe is simply a magnification factor S synchronized to that universal time.  

We begin with a God's-eye view (or 3-D map) of the universe at one instant of t.  The position of a co-
moving object within that map at that time is x .  Thereafter, its position r is1

r=S (t ) x .
It is moving with velocity

v= ṙ= Ṡ x=(
Ṡ
S

)r .

It is experiencing acceleration

a=v̇=r̈=(
S̈
S
)r .

In other words, its motion is determined entirely by the scale factor S.  Velocity v is strictly proportional
to distance r, and the factor ( Ṡ / S ) is known as Hubble's constant H.  Its present-day empirical value

H 0 is around 21 km/s/Mly.  Its inverse 1/ H 0  has the dimensions of time and is often cited as “the
age of the universe,” about 14 billion years.  (But we'll see that we can do better.)

If H truly were constant, we would have
S (t)=S 0 eHt

and
S̈=H 2 S .

Defining λ≡H 2 , we would expect an acceleration

a=(
S̈
S

)r=λ r

proportional to distance.  Using today's value H 0
2
≈4.8×10−36 s−2 , a co-moving object one million 

light-years away would experience an acceleration of 4.6×10−15 g ' s , away from us.  On the scale of 
the cosmos, one encounters unimaginably vast distances and imperceptibly small accelerations.2

The effect of gravity also is proportional to distance, but in the opposite direction.  A co-moving mass 

m at distance r sits on the surface of an imaginary sphere of volume V=
4
3
π r3 , r = |r|.  The mass 

contained in the sphere is M =ρV , where ρ is the average density of the universe (today a few 
hydrogen atoms per cubic meter.)  The gravitational force felt by m is

m a=−mGM r /r 3
=−m

4
3

πρG r .

Dividing through by m, we find an acceleration proportional to r and to density.

Density ρ(t) varies as ρ0/S
3
(t) , since if matter is conserved, ρ∣r∣3=ρ0∣x∣

3
=ρ0∣r∣

3
/S 3 .  If S 
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increases without limit, eventually gravity loses out to the expansive force λ.  Until then, we must 
write3

S̈
S
=λ−

4
3

πG ρ0/ S3 .

For a co-moving object of mass m, we calculate its kinetic energy

E K=
1
2

m∣v∣
2
=

1
2

m(
Ṡ
S

)
2

r 2 ,

its gravitational potential 

EG=−
4
3

πρG mr 2 ,

and its λ potential

Eλ=−
1
2

mλ r2 .

We sum E K+EG+Eλ=0 , remove the common factors m and r 2 , and multiply by 2 to obtain4

(
Ṡ
S

)
2

=
8π

3
G ρ0/S

3
+λ ,

or

Ṡ 2
=

8π

3
Gρ0/S+λ S 2.

There is a force in the universe that opposes gravity and which drives the galaxies to fly apart from one 
another.  Its presence is represented by λ , which is a constant, like G.  The conflict between λ and 
G is described by the above equations for S̈ and Ṡ .  The forces would be in balance if density took 

the value5 ρSS=λ /(
4
3

πG) . Acceleration S̈ would vanish, and velocity Ṡ would be constant, with

( Ṡ / S )
2
=3λ≡H SS

2 .  But to maintain a constant density would require the ongoing creation of new 
matter (albeit at a rate that would prove undetectable.)

Even if G and λ are not in balance, this is one of the few cosmological models that has an explicit 
solution.  It is6

S 3
(t)=

4
3
πG

ρ0

λ
[cosh (3 t √λ)−1].

Recalling that ρ(t) = ρ0/S
3
(t) , we divide ρ0 by this expression for S 3 to find

ρ(t)=ρSS /[cosh (3 t √λ)−1].

The model also provides an explicit expression for H as a function of t.  By differentiating

3S2 Ṡ=
4
3

πG
ρ0

λ
(3√λ)sinh(3 t √λ) ,

and then dividing by 3S 3 , we discover that
Ṡ
S
=√λ sinh(3 t √λ )/[cosh (3 t √λ)−1] ,

and, then from the trigonometric half-angle identities,7

H (t)=√λ coth(
3
2

t √λ).
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In these two equations for H (t) and ρ(t ) , we find the gross dynamics of the universe determined  
by the ratio of two constants, λ and G.  The formula for ρ(t) depends explicitly on λ , which 
enters first in the definition of ρSS , then again in the argument of the cosh function.  The most 
interesting value of ρ(t) is, of course, ρ(t now) , and λ enters again in the determination of

t now≡t0 , the age of the universe.  The trick is to find the value of t for which H (t)=H 0. It is

t 0=
2
3

tanh−1
(√Ω)/( H0 √Ω).

In this result we have defined Ω≡λ / H 0
2 .

 In Fig. 1, the horizontal axis encompasses all values of Ω for λ between 0 and H 0
2.  The left 

vertical axis indicates density, in units of 10−29 g /cm3. The right vertical axis indicates the age of the 
universe, relative to 1/ H 0 , and goes with the red upward-swooping t 0(λ) curve.  The green 
diagonal line is the graph of ρSS as a function of λ : simple proportionality.  The downward-sloping
blue line is ρ(t 0) calculated from the formulas for ρ(t) and t 0 . The fact that this is identically a 
straight line is accounted for in the Appendix.

Most authors in recent years accept the estimate that Ω lies in the vicinity of 0.7, which goes back to 
the magnificent work of Perlmutter8 et al.  Fig. 1 then shows that the age of the universe t 0 is around 

13.8 Gyr and ρ(t 0) today is near 0.26×10−29 g /cm3.  This concomitant density is much greater 
than can be accounted for by a careful inventory of the known universe.  There is a fading hope that 
this problem will be resolved in due course by exotic new discoveries.  But Fig.1 suggests that it is also
feasible to consider lower densities and a larger cosmological constant.   

The scale factor S (t) that encapsulates the history and future of the universe is plotted in Fig. 2 for 
three choices of the Ω parameter: 0.9 (blue), 0.7 (red), and 0.5 (green).  (Recall that λ=Ω H0

2 . )
S (t) is normalized so that S (t 0)=1 (left-hand scale.)  All three curves have Ṡ / S=H0 at t 0 .  

The leftmost points shown for each curve represent a time 28 Myr after the “big bang,” and well after 
the time when the cosmic background radiation originated.  The age of the universe corresponding to 
the three curves is 18.4 Gyr, 13.8 Gyr, and 12 Gyr, respectively.  The effect of an Ω as high as 0.9 is 
to add 5 Gyr to the age of the cosmos and to enhance future acceleration.
  
The right-hand scale of Fig. 2 is calibrated for redshift z=S (t0)/ S (t )−1. (E.G., when the light was 
emitted that now arrives with redshift 1, the scale factor was half what it is now.)  The supernova data 
upon which modern cosmology is based all have redshifts less than 1; most are clustered around 0.5.  In
Fig. 2, there is comparatively little difference between the S curves for  0.7 and 0.9, when z < 1.  When 
the supernova data points are plotted on a chart like this, they scatter all over the area between these 
curves.  It suggests that a larger λ is not ruled out by the data. 

The limitation on observing high-redshift objects is that the enormous distances reduce their brightness 
by factors of thousands and more.  A recent paper9 says that improved telescopes in the future should 
expect to see ten times as many galaxies as we observe today.
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Fig. 1: Age of the universe t 0 and the corresponding density ρ(t0)  
versus the value of the cosmological constant λ . 
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Fig. 2: Cosmic scale factor S versus universal time t  for three values of Ω ,
and thus age t 0. Negative numbers are times before the 

present.  The z values are the corresponding redshifts. 
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Appendix

In Fig.1, the downward-sloping line results from the formula

ρ(t 0)=ρSS /[cosh (3 t 0√λ)−1]

evaluated with

t 0=
2
3

tanh−1
(√Ω)/( H0 √Ω).

To see that this makes a straight line, first we apply a trigonometric identity,

[cosh (3 t0 √λ)−1]=2sinh2
(
3
2

t 0 √λ) ,

from Abramowitz and Stegun7, (4.5.28).  Since λ=Ω H 0
2 , when we plug in t 0 we obtain

2sinh2
(

3
2
[
2
3

tanh−1
(√Ω)/(H 0 √Ω)] H 0 √Ω)

= 2sinh 2
(tanh−1

(√Ω)).

For clarity, define z≡tanh−1
(√Ω) .  Then tanh z=√Ω . Now

tanh z=sinh z /cosh z (4.5.3) and
cosh2 z−sinh2 z=1 (4.5.16).

  
So sinh2 z=Ω cosh2 z and (1−Ω)cosh2 z=1 . Therefore,

  2sinh2
(tanh−1

(√Ω))=2Ω/(1−Ω) ,

and, since ρSS=ΩH 0
2
/(

4
3
πG) , we have

ρ(t 0)=(1−Ω) H 0
2
/(

8
3

πG) .

This describes a straight line that descends from ρss /2 to 0 as Ω increases from 0 to 1.  QED
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Notes

 1 Insiders call x a “co-moving coordinate.”  Nevertheless, it is a fixed  parameter for each co-
moving object.

2 S̈ can be determined independently of Ṡ . Its value is traditionally reported in terms of a 
“deceleration” parameter q defined by S̈ / S=−q H 2. The recently reported value is q = -.58, i.e., the 
increase of  S is accelerating. 

3 Insiders traditionally apply a gratuitous factor 1/3 to λ here, for some purported convenience.  
Convenience is one thing, clarity is another.  I prefer to recognize the actual value of λ , which is a 
significant universal constant.

4 If empty space had curvature, one would add or subtract something else here, depending.  But we 
now accept that space is flat.

5 My ρSS is twice the traditionally reported ρC , which is a legacy from models now ruled out by 
observations.  I prefer a notation that is self-explanatory in the present context.

6 My source for this is Sir Hermann Bondi, in Cosmology, second edition, reprinted 1961.  See 
particularly p. 80-82.

7 Abramowitz and Stegun, Handbook of Mathematical Functions, Dover edition, 1965, §4.5 
Hyperbolic Functions.

8 Saul Perlmutter in Physics Today, April 2003, 53-60.

9 Conselice et al, arXiv:1607.03909v2 [astroph.GA].
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