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ABSTRACT 

Distributions play a very important role in many applications. Inspired by the newly developed 

warping transformation of distributions, an indirect nonparametric distribution to distribution 

regression method is proposed in this article for distribution prediction. Additionally, a hybrid 

approach by fusing the predictions respectively obtained by the proposed method and the 

conventional method is further developed for reducing risk when the predictor is contaminated. 
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1. Introduction 

In this article, the correlation between two distribution classes means shapes of their density 

functions will change simultaneously to some extent (see Fig. 1). The correlation between two 

distribution classes is distinct from the correlation between two random variables. Two correlated 

distribution classes do not guarantee random variables respectively follow these two distribution 

classes are also correlated. For instance, suppose probability density functions tg  and tf  are 

correlated, consider two time-varying random variables ~t tX g  and ~t tY f , if the joint 

distribution of  ,t tX Y  can be factorized as      ,
t tX Y t t t t t tp x y g x f y , then tX  and tY  

are independent with each other. Similarly, two correlated random variables also do not guarantee 

the distributions they follow are also correlated.  

 

 
 

Fig.1  Graphical representation of two correlated distribution classes 

 

Inspired by the seminal work of Dasgupta et al. [1], an indirect nonparametric distribution to 

distribution regression method is proposed in this article for two correlated one-dimensional 

continuous distribution classes. Other related work includes the conventional distribution to 

distribution regression (DDR) [2] and distribution to real-value or vector-value regression [3-7], 

etc. 

2. Introduction to the warping transformation of distributions 

The warping transformation of a distribution is a map that used to transform a distribution to 

another by deforming the original probability density function with a warping function [1, 8]. The 

newly reported article by Dasgupta et al. [1] has given a very detailed discussion of this 

transformation.  

All distributions in this study are assumed to be continuous with strictly positive support on 

 0,1 , distributions with general finite supports can be easily tackled by the scale transformation 

introduced in [1]. Given a probability density function  g x  with strictly positive support on 

 0,1 , the warping transformation of  g x  by a warping function  x  defined on 0,1 is  
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        , 0,1warpg x g x x x    (1) 

where    
d

x x
dx

  .  

Given observed samples from the distribution    , 0, 1f x x , the optimal warping function 

used to transform  g x  to get close to  f x ,  i.e.    warpf x g x , can be estimated by the 

maximum likelihood method proposed in [1]. 

 

3. The warping transformation-based distribution regression method 

For convenience, let gπ and fπ  respectively be two correlated one-dimensional continuous 

distribution classes with strictly positive support on  0,1 . Suppose we have obtained n  pairs 

of probability density functions respectively from gπ
 
and fπ , i.e.  

1
,

n

k k k
g f


, given a new 

density function 0g  from gπ , the task in this section is to develop a nonparametric regression 

model to predict the corresponding density function 0f  from fπ , i.e. use   01
,

n

k k k
g f g


  to 

predict 0f . For this purpose, a nonparametric distribution to warping function regression (DWR) 

is first used to predict the warping function 
0 , i.e. the mapping relationship from 

0g  to 
0f , 

then use the predicted warping function to transform 
0g  to obtain a prediction for 

0f , i.e. 
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(5a) 

      0 0 0 0
ˆ ˆ ˆf x g x x    (5b) 

where, ˆ
k  is the estimated warping function from kg  to kf , i.e.       ˆ ˆ

k k k kf x g x x   . 

 K   is the kernel function, h  is the bandwidth for the kernel regression，  0 , kg g  is a 

metric (such as the 1L  distance:      0 0, =k kg g g g d    ) used to measure the 

similarity between 0g  and kg ,  0f̂ x  is the prediction of  0f x . Note, a convex 

combination of warping functions is also a warping function [8], thus the regression result in Eq. 

(5a) being a warping function is guaranteed.  

This distribution prediction approach can be regarded as an indirect nonparametric distribution to 

distribution regression. Unlike the conventional distribution to distribution regression proposed by 

Oliva et al. [2], the proposed regression model in Eq. (5) can reflect the information of shape 

mapping between input and output distributions, thus it has more potential in extrapolating 

prediction and reducing shape errors.  

It is worth noted that the proposed distribution regression method in Eq. (5) is different from the 

warping transformation-based approach in [1] for estimating the conditional density function of a 

random variable Y given the observation of another correlated random variable X . The process 

of conditional distribution estimation in [1] can be regarded as real-value to distribution regression 

(if X  is an univariate random variable) or vector-value to distribution regression (if X  is a 

multivariate random variable). The real-value (or vector-value) to distribution regression and the 

distribution to distribution regression have different application scopes, the former is suited to 

correlated random variables, while the latter is suited to correlated distributions. 

4. Limitations of the proposed method and a hybrid approach for reducing risk 

The proposed method has more potential in extrapolating prediction as well as reducing shape 



errors by borrowing the shape information of 0g  with the predicted warping function. However, 

such approach also has risk when the predictor 0g
 

has been contaminated, which is the main 

drawback of the proposed method. To reduce the risk, a hybrid approach by fusing predictions 

obtained by the proposed method and the conventional distribution to distribution regression 

method [2] should be more preferable. One fusion approach is using the weighted combination, 

i.e. 

 fusion DWR DDR

0 0 0
ˆ ˆ ˆ= + 1 0 1f f f    ，

 
(6) 

where, 
DWR

0f̂  and 
DDR

0f̂ are predictions of the target density function 0f  respectively 

obtained by the proposed method (distribution to warping function regression, DWR) and the 

conventional method (distribution to distribution regression, DDR [2]),   is the combination 

coefficient.  

If a certain amount of test distributions are available, the value of   can be estimated from test 

distributions. Let  
1

,
V

v v v
g f

  
be V  different pairs of test distributions with  

1

V

v v
g


 served as 

predictors, then the value of   can be estimated by maximizing the combined log likelihood of 

samples from all test distributions, i.e. 

 
  fusion

,
0,1 1 1

1 ˆˆ argmax log
vmV

v v r

v rv

f X
m

 
  

   
   

   
 

 

(7) 

where,  , 1,2, ,v r vX r m   are observed samples from distribution vf , vm  is the sample 

size, The factor 
1

vm
 is used to balance the effect caused by the sample size because the number 

of observed samples from different distributions may be different. 

5. Conclusions 

An indirect nonparametric distribution to distribution regression method is proposed in this article, 

which can reflect the information of shape mapping between input and output distributions, thus it 

has more potential in extrapolation and reducing shape errors. However, the proposed method may 

result in a poor prediction when the density function served as the predictor has been 

contaminated. To compensate this shortcoming, a hybrid approach by fusing predictions obtained 

by the proposed method and the conventional distribution to distribution regression method is also 

proposed. 
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