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ABSTRACT 

Distributions play a very important role in many applications. Inspired by the newly developed 

warping transformation of distributions, an indirect nonparametric distribution to distribution 

regression method is proposed in this article for predicting correlated one-dimensional continuous 

probability density functions.  
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1. Introduction 

In this article, the correlation of two distribution classes means their density functions will vary 

simultaneously to some extent (see Fig. 1). Note the correlation of two distribution classes is 

indifferent with the correlation of two random variables. Two correlated distribution classes do not 

guarantee random variables respectively follow these two distribution classes are also correlated. 

For instance, suppose probability density functions tg  and tf  are correlated, consider two 

time-varying random variables ~t tX g  and ~t tY f , if the joint distribution of  ,t tX Y  can be 

factorized as      ,
t tX Y t t t t t tp x y g x f y , then tX  and tY  are independent with each other. 

Similarly, two correlated random variables also do not guarantee the distributions they follow are 

also correlated.  

 

 
 

Fig.1  Graphical representation of two correlated distribution families 

 

Inspired by the seminal work done by Dasgupta et al. [1], an indirect nonparametric distribution to 

distribution regression method is proposed in this article for two correlated one-dimensional 

continuous distribution families. Other related work includes traditional distribution to distribution 

regression [2] and distribution to real-value or vector-value regression [3-7], etc. 

2. Introduction to the warping transformation of distributions 

The warping transformation of a distribution is a map that used to transform a distribution to 

another by deforming the original probability density function with a warping function [1, 8]. The 

newly reported article by Dasgupta et al. [1] has given a very detailed discussion of this 

transformation, where the warping transformation of distributions is used in their proposed 

two-step distribution estimation framework. Given observed samples of an unknown distribution 

and an initial estimate of the objective density function, they have developed a 

maximum-likelihood-based approach to find an optimal warping function to transform the initial 

estimate to reach the final estimate of the objective density function. Here, we just give a very 

brief introduction of the warping transformation of distributions, for detailed discussion we refer 

the reader to the original paper [1].  
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Here, we restrict the studied distributions have finite support on  0,1 . Given a probability 

density function  g x  with support on  0,1 , the warping transformation of  g x  by a 

warping function  x  defined on  0,1 is  

        , 0,1warpg x g x x x    (1) 

where    
d

x x
dx

  .  

3. The related work: conditional density estimation using warping functions 

The related work is the estimation of the conditional density function given the observation of a 

correlated random variable. Here, following the description in the original paper [1]. Let X  be a 

d-dimensional random variable, such as  ~ U 0,1
d

X , and Y be another random variable that 

correlated with X .  

 

 
Fig. 2  Observed samples of two correlated random variables X  and Y with estimated mean 

function  m̂ x E Y X x     

 

Suppose we have observed n  pairs realizations of X  and Y , i.e.   
1

,
n

i i i
X Y


. Let 

0y X x
f



be the conditional density function of Y  given  0X x , the task in the original paper is to 

obtain a warped estimate for 
0y X x

f


, i.e. 
00

,
ˆ

w xy X x
f f


 , from the initial density function 

  2

0
ˆ ˆ,pf y m x  , where  m̂ x  is the estimated mean function of Y  obtained by local 

linear regression (see Fig. 2), 
2̂ is the estimated variance of the residuals   

1
ˆ

n

i i i
Y m X


 . The 

initial density function pf  can be any parametric family with simple estimation procedure. 

Suppose  0 x  is the warping function from   2

0
ˆ ˆ,pf y m x   to 

0,w xf , i.e. 

        
0

2

, 0 0 0 0
ˆ,w x pf y X x f y m x y    

 
(2) 

The optimal estimate for 0  in the original paper is obtained by the following weighted 

likelihood method 

       
0

2

0 ,

1

ˆ ˆ ˆ=arg max log ,
n

p i i i x i
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f y m x y W

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 

 
 
 
 

 
(3) 

where   2ˆ ˆ,p if m x   is the initial density function for iY X x , 
0 ,x iW  is the local 

weight at iX , calculated by  
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where  0,1N   is the standard normal probability density function, h  is the bandwidth 

parameter, 
2
 is the 2-norm. 

This warping transformation-based approach for conditional distribution estimation in the original 

paper can be regarded as real value to distribution regression (if X  is an univariate random 

variable) or vector to distribution regression (if X  is a multivariate random variable). It can 

predict the dynamic change of the density function of Y  only when X  and Y  are correlated 

with each other. 

4. Extend to distribution to distribution regression 

In this section, the warping-transformation-based method is extended to distribution to distribution 

regression. Here, we also restrict the studied distributions have finite support on  0,1 , 

distributions with general finite supports can be easily tackled by the scale transformation 

introduced in [1].  

For convenience, let gπ and fπ  respectively be two correlated one-dimensional continuous 

distribution families with finite support on  0,1 . Suppose, we have obtained n  pairs of 

probability density functions respectively from gπ and fπ , i.e.  
1

,
n

i i i
g f


, given a new density 

function 0g  from gπ , the task in this section is to develop a regression model to predict the 

corresponding density function 0f  from fπ , i.e. use   01
,

n

i i i
g f g


  to predict 0f . For this 

purpose, a nonparametric distribution to warping function regression method is first used to 

predict the warping function 
0 , i.e. the map relationship from 

0g  to 
0f , then use the predicted 

warping function to transform 
0g  to obtain a prediction for 

0f , i.e. 
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(5a) 

      0 0 0 0
ˆ ˆ ˆf x g x x    (5b) 

where, ˆ
k  is the estimated warping function from kg  to kf , i.e.       k k k kf x g x x    ,

 K   is the kernel function, h  is the bandwidth for the kernel regression，  0 , kg g  is a 

metric (such as the 1L  distance:      0 0, =k kg g g g d    ) used to measure the 

similarity between 0g  and kg . Note, a convex combination of warping functions is also a 

warping function [8], thus the regression result being a warping function is guaranteed. 

This distribution prediction approach can be regarded as indirect nonparametric distribution to 

distribution regression. In different with the kernel distribution to distribution regression method 

in [2], the proposed regression model in Eq. (5) can reflect the true map relationship between two 

distribution families, thus has more potential for extrapolation forecasting.  

5. Conclusions 

An indirect nonparametric distribution to distribution regression method is proposed in this article, 

which can reflect the true map relationship between two distribution families. The correlation of 

two distribution classes is indifferent with the correlation of two random variables. The real value 

(or vector) to distribution regression and the distribution to distribution regression have different 

application scopes, the former is for correlated random variables, while the latter is for correlated 

distributions. 
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