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RESUME 

UNE SIMETRIE SUR LA TRANSFORMATION DE LORENTZ  EST PROPOSE POUR LA VISUALISATION DU PAYSAGE 

PHYSIQUE DERIVE DE LA RELATIVITE RESTREINTE. BIEN QUE LES ARGUMENTS BASIQUES, LA SIMETRIE MONTRE 

D'ETROITES RELATIONS AVEC LA DUALITE ONDE-PARTICULE ET L'EXISTENCE DE DEUX ETATS POSSIBLES POUR CE 

RELATION PHYSIQUE. ON ANALYSE AUSSI LE SPIN ET LA CONTROVERSE D’ABRAHAM-MINKOWSKI SELON CES 

IDEES ET ENFIN UNE NOUVELLE HYPOTHESE EST PRESENTEE SUR LA DUALITE ONDE-PARTICULE.  

 

ABSTRACT 

A SYMMETRY OF LORENTZ TRANSFORMATION IS PROPOSED FOR THE VISUALIZATION OF THE MOST BASIC 

PHYSICAL LANDSCAPE DERIVED FROM SPECIAL RELATIVITY. ALTHOUGH BASIC ARGUMENTS ,THE SYMMETRY 

SHOWS A CLOSE RELATIONSHIP WITH WAVE-PARTICLE DUALITY AND THE EXISTENCE OF TWO POSSIBLE STATES 

FOR THIS PHYSICAL RELATION. THE SPIN AND THE ABRAHAM-MINKOWSKI CONTROVERSY ARE ANALYZED 

REGARDING THIS IDEAS AND A NEW HYPOTHESIS ON WAVE-PARTICLE DUALITY IS PRESENTED.  
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1. INTRODUCTION 

Imagine a lost explorer in a deserted area. From his position, he may see some mountains; he 

goes to the nearest, trying to get a broader perspective to see a road, village, river or some other 

helpful reference. From the top, the winding path he has followed can be seen, as well as other 

simplest possible paths from the top to the plain, passing close to other roads made by man. 

Though he carries to the top both good intentions and prejudices, the observer has a chance to 

get an idea of where he is, where he has to go and what way he has to take. In the case of special 

relativity, the mountain corresponds to the principle of relativity, while the "eagle’s crag" 

corresponds to the light constant speed principle. We can describe such a high place by means 

of relativistic transformations between two inertial observers using Cartesian coordinate 

systems with parallel axes that move relatively along the common axis direction X. 

The Lorentz transformation relates the measures of space and time for the same physical event 

of two observers 
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Measures of frequency (ω) and wave vector (k) of the same wave differ between observers 

according to the relationship 
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From eq 1.2 one can deduce the Doppler Effect, so eq 1.2 are valid for a wave in a material 

media. 

Measures of mechanical impulse (P) and energy (E) for the same particle differ between 

observers according to 
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Measures of densities of charge (ρ) and current (j) are related between inertial observers as 
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The electric (Φ) and magnetic (A) potentials, under Lorenz gauge, are too components of a 

vector in Minkowski space 
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The usual interpretation of these relationships can be expressed by saying that from the eagle’s 

crag, we see Minkowski Space. This is seemingly a paradox, but if he wants to see something 

concrete from this level of abstraction, our explorer must also imagine abstract questions. 

 

2. DUALITY OF MOTION. 

All motion is a relationship between space intervals (∆x, ∆y, ∆z) and time intervals (∆t). The 

simplest relationships are associated with classic vector algebra 
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If we apply  eq. 1.1 to these definitions so that the other observers can get the same 

mathematical form for motion, we have 
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Obviously, the first relationship (2.2) corresponds to the transformation of the velocity of a 

particle between inertial systems of special relativity.  However, the second relationship (2.3) 

describes the motion of a wave, namely, the movement of a constant phase state 

                           
)4.2(;0




k
Wtr

k
trk 

 

The reader can check that using eq. 1.2, the k/ω vector transforms between inertial observers as 

it does the vector W.   
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We can propose a relation similar to eq. 2.1 for the case of the current density, eqs. 1.4 
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Again the values of V,W transforms like expected : eqs 2.2 and 2.3. The first of eqs. 2.5 

corresponds to the motion of a particle stream ; and following the symetry the second of eqs.2.5 

corresponds to the motion of a wave stream. Note the reader that wave stream allow a electric 

current (j) with null density of charge (ρ) if W is ortogonal to j. Evidently it is possible only if j 

is a component of a total density current jtotal. The idea that a wave can transport electric charge 

fits with the solid state physics phenomena know as Charge Density Wave (CDW). In CDW the 

electron waves in a crystal can combine to produce standing waves creating a spatial modulation 

in density charge of electrons. 

3. DUALITY OF INTERACTION. 

We assume a variation of mechanical impulse and / or related energy for any interaction. 

Similar to the case of movement, we can take 
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and after applying eq. 1.3, we find that W and V have the same transformation rule as in the case 

of motion. The second formula depends on the velocity of a particle and can easily be 

recognized as the variation of kinetic energy of a constant mass particle. Following the 

symmetry, we can understand the first expression as energy-impulse exchanged by a wave; 

therefore   
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Obviously, the equality of quotients is also valid for the other observer, but there is something 

more. The reader can see that for eq. 1.2: kz = k'z, and for eq. 1.3: ΔPz = ΔP'z; therefore, the 

value of the above quotients is the same for the two observers and then invariant between 

inertial coordinates, which is necessary in the context of relativity to justify the existence of 

Planck's constant and the energy quanta 
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where n is the number of basic packages of energy that a wave exchanges. In the black-body 

problem, Einstein introduced two concepts that fit with this view: the induced emission and 

induced absorption of radiation. In induced emission, an electromagnetic wave causes the 

transition of electrons from one energy level to another, while lower energy levels are available; 

however, this only happens if emitted photons correspond to the frequency of the inductor 

wave. Furthermore, the emitted photons are perfectly integrated into the inductive wave. There 

are not several waves of the same frequency that can interfere with each other; rather, the 

emitted photons are in phase with the inductor wave and it can be said that the wave has 

absorbed the corresponding amount of energy. This phenomenon is the basis of LASER. In 

induced absorption, a wave loses photons, which are absorbed by electrons, causing the 

corresponding change in the energy level, while the final level is available. Similarly, the 

inducing wave maintains the same polarization, phase, frequency and wavelength. 
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3. DUALITY OF WAVE PACKAGES. 

A wave package is a linear combination of several plane waves characterized by a wavelength 

and frequency dispersion. Writing the dispersions as (∆k, ∆ω) we can suspect there are two 

possible relations between them 
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From eq. 1.2 it is inmediate that V and W transforms as expected. The first formula of (4.1) 

corresponds to the wave package group velocity V associated to the dispersion. The second 

formula  is for a wave package too, but now the dispersion holds a constant value for W ; and 

we can see in this case that group velocity equals to phase velocity (i.e the inverse of W) 
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so the wave package holds its shape while moving. If two events separated (∆r,∆t)  have the 

same phase state: ∆φ=0, this dispersion law holds the phase difference  
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5. WAVE-PARTICLE INTERACTION. 

From the above, we can theorize regarding the existence of a system in which a particle 

(subscript p) exchanges its energy and momentum with a wave (subscript w) so that the energy 

and mechanical impulse of the system are preserved:                                
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We can apply the above transformations 2.2 and 2.3 to this result and see that the expression 

WxVx+WyVy+WzVz =1 is invariant between inertial observers. Thus, our system is in a physical 

state independent of the observer. We will call it S1. Suppose the energy interchanged 

corresponds to a quantum of energy; then, we have 
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where ∆r is the displacement of the particle for the period T of the wave. This result is 

compatible with Heisenberg´s uncertainty principle and therefore any particle can be in this 

state. In the case of a charge radiating by acceleration, a relationship between energy and the 

mechanical impulse of radiation is found 
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The reader can also verify that with the latter definition for W, the relationship 

WxVx+WyVy+WzVz< 1 is also invariant according to 2.2 and 2.3, indicating a physical state 

other than the S1 wave-particle balance. We will call it S2. However, we should also find a 
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wave that matches the found value W; according to quantum mechanics, a free particle can be 

represented by a wave function ψ with the expected value W 
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where P and E are the corresponding relativistic values. If we reproduce the above calculation 

for the interaction wave-particle in this case, we arrive at  

                                                   )5.5(hrP   

Therefore, in this state, i.e., S2, there is no exchange of energy between the particle and its 

associated wave. If a wave-particle is in state S2 and suffers an interaction, the tuning of the 

couple requires an intermediate state S1. A change in the wave-particle from one to another of 

the aforementioned states implies the emission or absorption of a photon; therefore, this change 

of state is a non-linear process. This may be the case of wave function collapse. The usual de 

Broglie’s formulas[3] in basic texts about quantum physics are compatible with the S2 state for 

any inertial observers 
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Regarding wave packages, the first of eqs. 4.1 is compatible with the De Broglie’s formulas as it 

is well know; so  the first of eqs. 4.1 corresponds to a S2 state where there is a dispersion due to 

different group and phase velocity. In the wave-particle duality context we can think that eqs. 

4.1 tell us that any interaction produces a dispersion into the wave package; and therefore, 

regarding the De Broglie formulas, the values of energy and mechanical impulse have an 

additional  margin or amplitude in energy and mechanical impulse.  In quantum mechanics 

these amplitudes are related with the mean lifetime of  a quantum state and the Heisenberg’s 

principle of indeterminacy. 

Imagine the reader a photon incident into a crystal. The photon may be reflected or refracted, 

but not both. So there is an empty wave which is not interacted by the photon (S2 state) and the 

other wave which is interacted (S1 state). The Born’s rule in quantum mechanics requires to 

maintain the empty wave inside the wave function, because wave function is related with the 

probability of detection of the photon. 

6. DUALITY OF ELECTROMAGNETIC FIELD. 

The corresponding relations for eq 1.5 for potential are   
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the first relation corresponds to Lorenz  gauge potentials for a point charge moving at retarded 

velocity V,taking W=V/c
2
 (Lienárd-Wiechert potentials) [5]. The second relatión corresponds to  

Lorenz gauge potentials for a plain electromagnetic wave, taking V=c
2
W 
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We can see that booth cases correponds to a S2 state for the electromagnetic field ; and this 

implies no interaction between wave and particle. May be this is the basic problem about the 

radiation reaction of an accelerated charge ; so the electromagnetic field needs a S1 state with 

interaction between wave and particle. It is evident that eqs. 6.2 are valid for increments, and for 

S1 state we can take 
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so in S1 state it is possible that the potentials of particle and wave are balanced and changes are 

compensated between themselves. So a charged particle in S1 state may be do not emit radiation 

while it is accelerated. 

7. WAVE-PARTICLE DUALITY AND SPIN. 

We can manage te equation of S1 state splitting V in two components : parallel and 

perpendicular to W. 
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It is evident that the product with V┴ equals to 0 and do not contributes to the equation (7.1). 

From eqs 2.5 we can relate eq. (7.1) with two components of the density current tetravector. A 

component from V|| relating to a particle stream and a component from V┴ relating to a wave 

stream. The electric current asociated with V|| can be seen as an orbital magnetic momentum 

related with the charge’s motion and the V┴ component can be seen as a Spin magnetic 

momentum.  

8. THE IMPULSE OF LIGHT IN MATERIAL MEDIA: ABRAHAM-MINKOWSKI 

CONTROVERSY. 

A ray of light falling onto a crystal of a transparent prism is divided into a reflected ray and a 

refracted one through the prism. There are three significant facts associated with this 

phenomenon:  

1-The frequency of the reflected and refracted waves is the same as the frequency of the 

incident wave. 

2-The speed of propagation of the refracted wave decreases.  

3-The process does not cause heating or other energy dissipation in the prism. 

The light in the vacuum only can be in S1 state because the product between W and V must 

equal to 1; and if there is no energy interchanged with the prism, then light holds its S1 state in 

the process. If we see the problem in terms of photons, the energy conservation indicates that 

the incident photons are redistributed between the reflected and refracted wave and, because 

photons holds its S1 state, we have 
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where V is the velocity of the photon and λ,T are the length and wave period, respectively. We 

consider that the velocity of the photon equals the wave velocity, and because the period T is 

not changed, we have a decrease in length of the refracted wave from the incident. This situation 
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seems contradictory in our view because we have two different quanta pA, pM for the mechanical 

impulse of the wave and photon 
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where we have used the previous eq. 8.1 related to state S1 and the relativistic equivalent mass 

m of the photon. The subscripts refer to Minkowski (EM,pM) and Abraham (EA,pA), as they 

correspond to energy-impulse that these authors assigned to the electromagnetic field inside the 

prism and the controversy that bears their names; it seems clear that the mechanical impulse 

must have a certain value. According to eq. 1.3, an inertial observer exists for which EM  and pA 

are cancelled, while there is no inertial observer for which EA and pM are null. Thus, equation 

EA=EM is only valid for the observer at rest with respect to the prism. 

Multiplying eq. 5.1 (S1 state) by the relativistic mass m, Planck's constant and the square of 

light’s velocity c
2
, we have for the observer at rest with respect to the prism 
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Thus, the discrepancy regarding mechanical impulses in state S1 justifies the assignment of a 

relativistic mass and a rest mass mo to the photon inside the prism 
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where V is the speed of light in the prism for any observer. This way, we can speak of the 

energy-momentum tetra-vector of Abraham. If we repeat the same calculation for the case of the 

Minkowski impulse, we should assign an imaginary mass to the photon. It seems that this 

invalidates the Minkowski momentum, but experimental results [1] report situations in which 

one or more impulses physically act. A rest mass (or energy) means that matter, the prism in this 

case, is able of energy accumulation. Minkowski momentum, would be related to an internal 

stress [2] induced in the prism by electromagnetic wave. Even in situations where this internal 

stress not appears, reference [1] indicates that the Minkowski impulse is the only observed and 

then, according to our arguments, correspond to photons in the S2 state within the crystal. 

9. WAVE-PARTICLE-FIELD INTERACTION. 

From eq. 5.1(S1 state), we can make 
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where m is the relativistic mass of the particle. Conversely, if m0 is the rest mass of the particle, 

for small changes in energy-impulse, we have 
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and adding the two expressions, we have 
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If the wave-particle interaction is balanced, then the two sides of the equation are null. 

However, this equation can be maintained with non-null values on both sides; this fact gives us 

a chance to include field interaction (subscript f) as follows 
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Thus, we suppose that the field-particle interaction is similar to the wave-particle interaction. 

We can see easily that this is true in our theory from eqs. 3.1 that we can write separating 

wave(w) and particle(p) components this way 
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We can take the second eq. of 9.5 as the definition of kinetic energy ∆Ep ; and in our mechanical 

context the first eq. of 9.5 should correspond to the definition of potential energy ∆Ew . It is easy 

to see that a classic mechanical wave is only possible in a material context with a defined 

potential energy. A mechanical wave is a bearer of potential energy and we can think that ∆Ew 

and ∆Ef  are of the same nature.  

A particle can have the same interaction with different values for its mechanical impulse; if the 

above equation is valid for all possible values of a particle´s mechanical impulse, it is evident 

that 
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Thus, state S1, extended with an external field, can conserve the energy-impulse. Evidently, if 

the state is S2 (extended), energy-impulse conservation is not possible, and we must expect an 

absorption/emission of additional energy. 

10. DUALITY OF MATHEMATICAL OPERATORS. 

We can calculate the transformation rule of the partial derivatives corresponding with the 

coordinate transformation (eqs 1.1) using the chain rule on an arbitrary function 

f’(x’(x,t),y’,z’,t’(x,t)) 

                               
)1.10(

'

'

'

''

'

''

'

''

'

'

'

''

'

''

'

''

''''

'
2

'''





























































































xtxxxtx

xttxttt

t

f

x

f
v

t

t

t

f

t

x

x

f

t

f

t

f

c

v

x

f

x

t

t

f

x

x

x

f

x

f





 

To get the Lorentz transformation corresponding to the partial derivatives we should note that v 

is the relative velocity measured in the system (x, y, z, t), and therefore it must be on the side 

corresponding to the partial derivatives calculated in the system coordinate (x, y, z, t); This is 

achieved easily by solving for the corresponding terms in the previous system of equations 
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the reader will note that the relative velocity does not appear preceded by a minus sign in these 

transformations , as in the rest of the transformations that have appeared. In Minkowski space, 
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this corresponds to a covariant vector transformation. If we impose these transformations 10.2 

have two dual forms, using the gradient operator 
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Taking the first of eqs 10.3 in Cartesian components it is easy to deduce the wave operator in 

this form 
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so we have the motion of a wave in this case. The second equation of 10.3 corresponds to the 

cancellation of the total time derivative d/dt , so it holds for any function f(x,y,z,t) = constant.  

For a position (x,y,z) the value of t is determined and therefore there is a relation (x(t),y(t),z(t)) 

corresponding to the motion of a particle.  

If we introduce quantum operators for energy and impulse linking it to wave values in eq. 5.1 ( 

S1 state) , we have    

          
)5.10(0),,,(),,,(;

0;2























tzyx
dt

d
tzyxv

tt
iEiP

EPv
E

P
vEEPPc

ww

ww

p

p

wpwp

 
 

where we have introduced the total temporal derivative of the quantum state. This result is a 

necessary condition to the particle moves in phase with ψ(x,y,z,t), the quantum state. 

11. ENERGY-IMPULSE OF THE WAVE IN THE S1 STATE. 

The S1 state verifies ω = k*v, and for the inertial rest coordinate system of the particle eqs. 1.2 

are solved as                           

                                  
)1.11(1;0

2

2

00  
c

v
vk

 

where the zero subscript refers to the coordinate system when the particle is at rest 

instantaneously. It seems proper to take λ0 as the Compton wavelength of the particle; so we can 

use eq. 1.3 to calculate the value of momentum and energy of the wave (w) in the S1 state and 

to compare it with particle(p) 
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where we see that the wave energy-momentum are associated with an imaginary mass. We see 

that energy-impulse components in wave and particle are interchanged. Into the wave-particle 

interaction, the momentum of the particle becomes energy of the wave and energy of the 

particle becomes impulse of the wave. Something similar happens when passing the event 

horizon of a black hole in the Schwartschild metric: space takes time characteristics and vice-

versa. Equations 11.1-11.2 , with a different definition of λ0, are also compatible with the 

existence of an observer at rest with respect to a photon moving inside a dielectric crystal 

discussed in Section 8 about the Abraham-Minkowski controversy. 
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12. CONCLUSIONS AND HYPOTHESIS. 

The wave-particle duality implies the existence of waves and particles; the Abraham-

Minkowski paradox shows this aspect of duality. Physical states that maintain an internal stress 

between wave and particle are possible. This internal stress may explain the absence of radiation 

from the atomic electrons. Physical states with no interaction between wave and particle 

corresponds to De Broglie’s waves. 

From the concept of a interaction between wave and particle we can propose, from De 

Broglie’s[4], the hypothesis of Pilot Wave : In the wave-particle duality context, the particle can 

interact directly only with its wave. This idea implies that the wave must be physically 

influenced by external fields and other forces like obstacles (double slit) or measure apparatus. 

The Schrödinger equation expresses this influence and must include all possible classic 

interactions of the particle, so it produces the wave with the correct geometry and dynamic. 

According to this hypothesis, the associated wave is something like a quantum censorship to 

avoid a naked singularity for the particle. This quantum censorship restricts information about 

the particle as we can see in Heisenberg’s principle of indeterminacy, the Born’s rule or the 

double slit experience. Non-local and non-causal phenomena, as shown in Aharonov-Bohm or 

EPR experiences, can be also attributed to the quantum censorship. But this phenomena, due to 

non-causality, can not be used to transmit information beyond light’s velocity. In this way 

quantum censorship holds the relativistic limit of light’s velocity. A De Broglie wave, with no 

interaction with the particle, have no limits or external interaction, so it corresponds to the 

quantum version of the inertia principle for a free particle. 
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