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Abstract 

The problem of finding exact trigonometric periodic solutions to non-linear 

differential equations is still an open mathematical research field. In this paper it 

is shown that the Painlevé-Gambier XVIII equation and its inverted version may 

exhibit exact trigonometric periodic solutions as well as other quadratic Liénard 

type equations but with amplitude-dependent frequency. Other inverted 

Painlevé-Gambier equations are also shown to admit exact periodic solutions. 

Keywords:Liénard equation, Painlevé-Gambier equation, periodic solution, 

generalized Sundman transformation. 

1- Introduction 

In mathematics analytical properties of trigonometric functions are well known 

so that in practice many engineering applications are performed on the basis of 

the linear harmonic oscillator equation. However in mathematical modeling 

Liénard equations are widely used for the description of mechanical and 

electrical systems, for example. In particular the quadratic Liénard type 

differential equation has become an attractive research subject in mathematical 

physics since it exhibits position-dependent mass oscillator features having 

permitted the development of many engineering applications not only from the 

classical mechanics viewpoint but also from the quantum mechanics standpoint 

[1]. It appears then reasonable to be interested to the theory of exact harmonic 

periodic behavior to quadratic Liénard type nonlinear differential equations. As 

a nonlinear differential equation, the quadratic Liénardtype differential equation 

could not be in general solved in terms of exact solution. If the problem of 

determining approximate harmonic periodic behavior has been more or less 

solved in the theory of dissipative nonlinear differential equations, the problem 
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of exact periodic solutions is less so. A fortiori, the identification of 

trigonometric functions as a class of exact periodic solutions to Liénard type 

dissipative non-linear differential equations remains a problem not yet fully or 

even partially solved. However, finding exact solutions to non-linear differential 

equations is a vital question for modern engineering applications which require a 

high reliability in the mathematical representation of physical systems [2]. 

Consequently, to highlight such a class of dissipative nonlinear differential 

equations of the Liénard type whose exact solutions are trigonometric functions 

is undoubtedly a fact of high scientific significance. In this way, Mustafa [3] 

used a generalized Sundman transformation for detecting a class of quadratic 

Liénard type differential equations which incorporates as special cases some 

physically important nonlinear oscillator equations like the Mathews-

Lakshmanan oscillator equation and the position-dependent mass Morse type 

oscillator equation. The Mathews-Lakshmanan equation was for over four 

decades considered as the unique non-linear oscillator equation having an exact 

trigonometric solution but with amplitude-dependent frequency. The problem in 

this paper is to show that other quadratic Liénard type dissipative non-linear 

differential equations may exhibit exact harmonic periodic solutions with 

amplitude-dependent frequency. The question is then more precisely: Do the 

inverted Painlevé-Gambier XVIII equation and other quadratic Liénard type 

equations exhibit exact harmonic periodic behavior but with amplitude-

dependent frequency? This work predicts such quadratic Liénard type equations 

which exhibit trigonometric functions as exact periodic solutions. This 

prediction may allow a best understanding of oscillators and dynamical systems 

which may be represented by these equations but also a creation of new physical 

systems. To demonstrate the prediction, the required generalized Sundman 

transformation is first recalled (section 2) and applied to the general second 

order linear equation for establishing [4] the general class of mixed Liénard type 

differential equations (section 3) from which, secondly, the general class of 

quadratic Liénard type equations [4] is deduced with illustrative examples 

(section 4) and finally the trigonometric functions are highlighted as exact 

periodic solutions to the Painlevé-Gambier XVIII equation and other quadratic 

Liénard type equations (section 5) and a conclusion for the work is addressed. 

2- Generalized Sundman transformation 

In this section the generalized Sundman transformation required to demonstrate 

the preceding prediction is recalled. Such a transformation is a non-local 
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transformation which applies to map in general any second order non-linear 

ordinary differential equation into a second order linear ordinary differential 

equation [4] to find closed-form solutions. However, given a general second 

order linear ordinary differential equation, the generalized Sundman 

transformation, conversely, may be applied for the investigation of problem of 

detecting general classes of second order non-linear ordinary differential 

equation exactly integrable [4]. This formalism has been applied in [4-5] to 

deduce mainly a class of quadratic Liénard type dissipative differentialequations 

having trigonometric functions as exact periodic solutions. Consider now the 

general second order linear differential equation is of the form 

0''' 2  yayby                                                                                              (1) 

where prime means differentiation with respect to  , a and b are arbitrary 

parameters and the more generalized Sundman transformation [4] 

0
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  ))(exp(),(,)(),( xxtGdxxgxtF l                                                             (2) 

where the exponents l and   are arbitrary parameters, 0)( xg , and )(x are 

arbitrary functions of x . So, the application of (2) to (1) may give the desired 

general class of mixed Liénard type differential equations [4] 

3- General class of mixed Liénard type equations 

By application of the generalized Sundman transformation (2), the general 

second order linear ordinary differential equation (1) may be mapped onto the 

general class of mixed Liénard type equations [4] 
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By application of l ,  )(ln)( xgx  , the equation (3) reduces to 
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where ln designates the natural logarithm. 
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For 1l , 1b , and 
9

22 a , Eq. (4) reduces to the Musielak equation [6]  

0)()(
9

2
)(   dxxgxgxxgx                                                                               (5) 

The choice  )(ln)( xfx  gives as equation 
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For 1 l , )(')()( xuxfxg   ,
2

3
b  , and 

2

12 a , (6) becomes the physically 

interesting equation studied in [5] 

0)()('
2

1
)('

2

3
 xuxuxuxx                                                                              (7) 

where )(xu is an arbitrary function such that by making 2)( xkxu  , (7) reduces to 

the well known modified Emden equation 

03 32  xkxxkx                                                                                          (8) 

which is widely studied in the literature. However this equation may directly be 

obtained from (6) by putting 1 l , xxfxg  )()( , kb 3 and ka  . 

Now, from (3), one may deduce the general class of quadratic Liénard type 

differential equations from which the class of quadratic Liénard type equations 

having trigonometric functions as exact periodic solutions is highlighted[4-5]. 

4- General class of quadratic Liénard type equations 

4-1 Derivation of the equation 

The parametric choice  0b in (3) yields 

0
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The equation (9) represents the required general class quadratic Liénard type 

dissipative differential equations. One may notice that a judicious parametric 

choice as well as a judicious selection of function )(xg and )(x may lead to 

physically interesting non-linear oscillator equations. An interesting case of (9) 

may be, for  )(ln)( xfx  , obtained as 
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So with that some examples may be given to illustrate moreover the high 

mathematical significance of the work developed in this paper. 

4-2Examples 

Illustrative examples related to (10) are given in this section. 

4-2-1               
2

1
l ,   1  

The parametric choice 
2

1
l and 1 in (10) yields  
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This case corresponds to the class of quadratic Liénard type differential 

equations constructed in [3]. Indeed, the substitution of 
2

1
l  , 1 , and 

 )(ln)( xfx  , into the non-local transformation (2), yields the generalized 

Sundman transformation introduced in [3] to build the generalized position-

dependent mass Euler-Lagrange equation ( Eq.(12) of [3]) identical to (11). The 

equation (11) is shown in [3] to include as special cases several interesting 

position-dependent mass non-linear oscillator equations like the celebrated 

Mathews-Lakshmanan equations, the quadratic Morse type equation, etc. It is 

therefore no longer necessary to again carry out these calculations to prove the 

usefulness of the generalized Sundman transformation (2)  used in this paper. 

Let us consider, nevertheless, other interesting illustrative examples in addition 

to those mentioned in [3]. 

4-2-2 Other cases 0 , and 0l  

Making now 2)( xxf  , and xxg )( , (10) becomes 
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The use of non-local transformation (2) leads to 
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(13) 

that is 
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where the function )(t   satisfies 
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with K an integration constant and  

   aAy sin)( 0                                                                                 (16) 

is the solution to (1)where 0b . 

4-2-2-1   0 ,  
3

2
l  

The equation (12) reduces to 

032
3

2 142
2









  xa

x

x
x


  (17) 

such that (15) becomes 
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In this perspective the solution )(tx reads 

   )(sin
9

)( 3
3

0 ta
A

tx                                                                              (19) 

where )(t  verifies (18). For an integer   or 
6

1
 , (18) may be easily computed 

and the solution )(tx may be expressed in terms of elementary functions. 

Conversely, for a non-integer  , (18) will be evaluated in terms of special 

functions, and the argument  )(ta , becomes a complicated function of t . So, 

for example, 
6

1
 , (18) gives 
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that is [8] 
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and the solution )(tx may be written as 
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4-2-2-2 
2

3
 ,  2l  

The parametric choice 
2

3
 , and 2l , according to (12), leads to the 

equation 
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After (13) the solution )(tx takes the form 
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0 taA
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where )(t satisfies 
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that is [8] 
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The equation (23) admits a position-dependent mass dynamics so that the mass 

2

0)( xmxm   and the potential energy
2

2

0 1

2
)(

x

am
xV  , where 0m is an arbitrary 

constant. Such a potential is the so-called singular inverse square potential and 

has been widely studied in the quantum mechanics. However it is for the first 

time the existence of such a potential has been mathematically established. This 
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highlights the physical importance of (23). Let us consider now other interesting 

classes of quadratic Liénard type differential equations obtained for 0l ,or 

0 . 

5- 0 , and  1l  

In this situation (9) reduces to, for 0  

 

 
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By application of )(')( xhxg  , (27) becomes 
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So, for 1l , (28) gives 
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x
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where 2

0

2 a . In [9] it has been analyzed that (29) admits the eight parameter 

Lie point symmetry )3( Rsl  algebra and exhibits isochronous property whereas in 

[10], (29) was studied from quantum viewpoint. Let us take now into account 

the case 0l , which appears to be of high interest since it highlights the 

trigonometric functions as a class of exact periodic solutions to quadratic 

Liénard type equations. 

6- Class of quadratic Liénard type equations having trigonometric  

functions as exact periodic solutions 

For 0l , or 1)( xg , (9) reduces to [5] 

0)(' )(222  xexaxxx                                                                        (30) 

According to the generalized Sundman transformation (2), and (16) the solution 

to (30) may read 

   )(sin)( 0 taAtx (31) 

where )(t  obeys 
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 dtxtd )(exp)(                                                                                   (32) 

that is  

  dttdx  )()(exp                                                                                 (33) 

The above shows clearly that the class of equations (30) is of high interest since 

it exhibits trigonometric functions with well known analytical properties and 

engineering applications as exact periodic solutions but with amplitude-

dependent frequency characterizing nonlinear oscillator equations. So the 

problem of finding )(tx reduces to solve equation (33) once the function )(x and 

the parameter  are defined. That being so, some illustrative examples are 

studied in this paragraph and in the section devoted to Painlevé-Gambier 

equations [11]. An interesting case is to consider  )(ln)( xfx   such that 

equation (30) becomes 

  0)(
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)(' 222 


 xfxax
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x                                                                   (34) 

and (33) yields 

 


)(

)(

xf

td
dt                                                                                             (35) 

   6-1 2 , and  xx   1ln
2

1
)(  

For 2 , and  xx   1ln
2

1
)( , the equation (34) takes the form 
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 xxax
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x 
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
                                                                  (36) 

The equation (35) gives in this perspective 
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that is [8] 
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so that the solution 

 

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6-2   1 , and 
21

1
)(

x
xf


  

By applying 1 ,and
21

1
)(

x
xf


 , (34) gives as equation 

  01
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x
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The equation (40) admits then as solution 

   )(cos)( 0 taBtx                                                                              (41) 

where 0B and  are arbitrary parameters 

such that 

 
 


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



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2

0 taB
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Kt                                                               (42) 

The evaluation of the integral of the right hand side 



))((cos1

)(

2

0 



taB

td
J

depends on the value of 2

0B . J may be computed as 

       
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

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22 taftataetad
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J
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                             (43) 

where  sincos,2,, 2

0

22

0
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0  candbBcbecBfbBd . 

By setting 






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


2
,1,2,422,2,1

a
tguanddEeDfdCeBdA , the above 

integral becomes [8] 





432

2

EuDuCuBuA

du

a
J  (44) 
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which may be reduced to the elliptic integral of the first kind for some values of 

parameters A , B ,C , D   and E . On the other hand, it is worth to note that for 

1 , and the same function )(xf , (34) reduces to the equation of motion of a 

particle moving on a rotating parabola 

0
11 2

2
2

2








x

xa
x

x

x
x




                                                                        (45) 

which admits according to the present theory an exact trigonometric periodic 

solution but with amplitude-dependent frequency. However the study of this 

equation will be performed in a subsequent work. It is now interesting to show 

that the proposed theory of nonlinear differential equations may be also used to 

solve exactly some well knownPainlevé-Gambier equations [11] 

7- Inverted Painlevé-Gambier equations 

In this paragraph, solutions to some inverted Painlevé-Gambier equations are 

expressed as mentioned in the above. 

7-1 Inverted Painlevé-Gambier XVIII equation 

The Painlevé-Gambier XVIII equation may read [11] 

04
2

1 2
2

 x
x

x
x




         
(46) 

so its inverted version becomes 

04
2

1 2
2

 x
x

x
x


                                                                                    (47) 

which only differs from equation  (46)  by a sign. The equation (47) belongs to 

the class of quadratic Liénard type nonlinear differential equation represented by 

(30) under the considerations that 
4

1
 , )ln()( 2xx  and  42 a . As a result the 

solution to (47) may be expressed following equation (31) as 

   )(cos)( 0 taBtx                                                                              (48) 

such that )(t verifies 

  )()(cos 2

1

2

1

0 tdtaBdt  


                                                                    (49) 
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The integration of the right hand side of equation (49) may be evaluated as 

 









)(cos

)(
2

1

0
ta

td
BJ                                                                           (50) 

that is [8] 








2

0 cos21

2 d

Ba
J                                                                        (51) 

where   2a . Using the identity  22 sin1cos  , the integral J  becomes 








2

0 sin21

2 d

Ba
J                                                                           (52) 

that is  
















2

2
,

21

0

F
Ba

J                                                                                  (53) 

where   sin2arcsin , and  kF ,  is the elliptic integral of the first kind. So, 

one may find )(ta  such that   is given by 

  )
2

2
),(

2

2
()sin2(sincos

01 Kt
Ba

cn                                                                   (54) 

that is, making 2a , in (54), one may recover the explicit solution (48), where

 kzcn , is the Jacobian elliptic function, and K an arbitrary parameter. The solution 

(48) would allow in principle, to compute the exact solution of the initial 

Painlevé-Gambier XVIII equation as a trigonometric function by replacing the 

parameter a  by ai , where i  is the purely imaginary number. In other words, the 

solution (48) gives the exact solution to the Painlevé-Gambier XVIII equation 

(46) replacing (54) by 

  )
2

2
),(

2

2
()sin2(sincos

01 Kt
Bia

cn                     (55)  

where 2a , knowing the identity [8]   

)
2

2
),(

2

2
(

1
)

2

2
),(

2

2
(

0

0

Kt
Ba

cn

Kt
Bia

cn



         (56) 
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7-2 Inverted Painlevé- Gambier XXXII equation 

The Painlevé-Gambier XXXII equation, after [11] is written as 

0
2

1

2

1 2


xx

x
x


                                                                                     (57) 

The inverted version may then be written in the form 

0
2

2

1
22


x

a

x

x
x


                                                                                  (58) 

where 
4

12 a . The equation (58) may be obtained by substituting 
2

1
  

and
2

3
l in (12). In this perspective the solution takes the form following (14) 

  


)(sin

4
)(

22

0 taA
tx                                                                          (59) 

where )(t  obeys  

 
  






)(sin

)(

4 2

2

0

ta

td
Kt

A
                                                                   (60) 

or 

     )(cot
1

4

2

0 ta
a

Kt
A

                                                                   (61) 

Therefore the preceding solution )(tx becomes 






























 K
Aa

t
Aa

A

tx

44
cotsin

4
)(

2

0

2

0122

0

                                                      (62) 

Here also, the preceding remark on the solution to the Painlevé-Gambier XVIII 

equation is valuable for the equation (57) to find its exact periodic solution. 

7-3 Inverted Painlevé-Gambier XXI equation 

After [11] the Painlevé-Gambier XXI equation reads 
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01
4

3 2


x

x
x


                                                                                        (63) 

In this regard, the inverted equation may be written as 

01
4

3 2


x

x
x


                                                                                       (64) 

which may be obtained from equation (12) by setting 
4

1
 ,  

4

5
l , and 

4

12 a .Thus the solution )(tx becomes 

  


)(sin

256
)(

44

0 taA
tx                                                                           (65) 

where )(t  satisfies 

 
  






)(sin

)(

16 2

2

0

ta

td
Kt

A
                                                                    (66) 

So, equation (65) may be written in the form 

 





























 Kt
Aa

A

tx

16
cotsin

256
)(

2

0144

0

                                                           (67) 

The preceding remark is also valuable for the Painlevé-Gambier XXI equation 

to compute its exact periodic solution. Now, taking into account these 

illustrative examples a conclusion may be addressed for the work. 

Concluding remarks 

If the problem of determining approximate trigonometric periodic solutions to 

non-linear differential equations has been more or less solved, the problem of 

expressing exact periodic solutions as a trigonometric function to non-linear 

dissipative differential equations is yet an active mathematical research field. In 

such a situation the Liénard type non-linear dissipative equations are subject of 

an intensive study from mathematical viewpoint as well as physical standpoint. 

Different linearizing transformations with different complexities have been used 

to construct exact periodic solutions to Liénard nonlinear differential equations. 

In particular the generalized Sundman transformation has been widely used to 
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establish exact solutions to diverse types of Liénard differential equations. 

Conversely such a transformation may also be used to detect diverse types of 

classes ofLiénard differential equations having exact analytical solutions. In this 

perspective, a generalized Sundman transformation is used in this work to 

highlight a general class of quadratic Liénard type non-linear differential 

equations whose exact periodic solutions are trigonometric functions. By doing 

so, it appears that the non-linear differential equation theory proposed may be 

used to exactly solve a number of physically important mixed and quadratic 

Liénard type equations as well as to generate new generalized non-linear 

differential equations of Liénard type for the mathematical modeling and 

creation of new physical systems characterized in particular by a harmonic 

potential and position-dependent mass. 
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