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ABSTRACT: In this paper we define a new Mellin discrete convolution, which is related to
Perron's formula. Also we introduce new explicit formulae for arithmetic function which
generalize the explicit formulae of Weil.

MELLIN DISCRETE CONVOLUTION:

We define the Mellin discrete convolution in the form
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Where ZM =G (s) is the Dirichlet generating functio of the coefficients a(n)
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and F(s)= J-Ow dxf (x)x*™

The proof is quite easy, fi

left of (1) so if the series involving a(n) is completely convergent , SO we can
switch between the series and the integral then , we have
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% U — f(x)jx = f(x) then we have proved (1) .
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this kind of discrete transform is a discrete analogue to the Mellin Convolution
theorem defined for Mellin transforms
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Now, if we set f@j:H(Z_D:{O <1 we recover Perron's formula [5] for
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the Coefficients of the Dirichlet series
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But one of the best applications of our Mellin convolution is related to several

n
q) =G(s) , Where G(s) includes

powers or quotients of the Riemann zeta function for example
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The definition of the functions inside () and () is as follows
e The Mébius function, #(n) =1 if the number ‘n’ is square-free (not
divisible by an square) with an even number of prime factors , #(n) =0 f

n is not squarefree and  if the number ‘n’ is square-free with an odd
number of prime factors.

e The Von Mangoldt function A(n)=10gp | in case ‘n’ is a prime or a prime
power and takes the value 0 otherwise

e The Liouville function A(n)=(=1)*"" Q(n) is the number of prime factors
of the number ‘n’

e [#(M]is 1 if the number is square-free and 0 otherwise

o ¢(n)= ”H(l——j , the meaning of 217 is that the product is taken only

pln
over the primes p that divide ‘n’.

To obtain the coefficients of the Dirichlet series we can use the Perron formula
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If the function G(s) includes powers and quotients of the Riemann zeta function
we can use Cauchy’s theorem to obtain the explicit formulae for example
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Under the assumption that all the Riemann Non-trivial zeros are simple.

Also we have for the Riemann zeta function and its derivatives
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The reader will remember the relation between Perron's formula and our
discrete convolution , using the work of Baillie [ ] we will give different explicit
formulae, to do so we need to use Cauchy's theorem on complex integration
and evaluate the closed mellin inverse transform by using the residue theorem

%qSF(S)G(S)xS where 'C' is a closed circuit including all the poles of the
Tl C
Dirichlet series G(s) , we can do this assuming all the Riemann zeros are simple

and that the Melliin transform F(s) has no poles inside 'C', in this case we have
the 'explicit formulae'
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If the Mellin transform has poles inside the closed circuit 'C’ SBF(s)G(s)xs , then

this poles will contribute with a remainder term due to the Residue theorem [1]
in this case we have the extra term

r(x)=Y Res{F(s)G(s)x'}  with F(k)= def(x)xkl =0 (19)
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this is what happens in Perron formula , due to the step function H(x—1) in this
case its Mellin transform has a pole at s =0 since F(s) :l this is why in
S

formulae (8-12) there is a constant term.

As a curious final example of our Mellin discrete convolution , if we use the
Dirichlet generating function G(s)=¢(s—k) and the floor function as a test

¢(s)
s

, then our Mellin discrete convolution becomes the
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We have previously investigated this kind of explicit formula [3] but instead of
the Mellin transform we used the Fourier transform and Fourier convolution
theorem for test functions g(x) and h(x) related by a dualFourier transform , so

the integral A(c) = jdxg(x)e"”‘ exists and is finite for every real number (positive

0 1 b
or negative) ‘c’, and g(a)= L J' dxh(x)e ™ or &(@)= —Idxh(x) cos(ax)
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depending on if the test function are even or not #(x) =/(=x)

For the case of the Liouville function, there is no contribution due to the
nontrivial Riemann zeroes -2,-4,-6,... since the Dirichlet generating functions for

¢(2s)

o) is Holomorphic on the region of the complex plane Re(s) <0
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this case=2——=



In our previous work [3] we have stablished similar formulae to (14-18) but in
terms only of the imaginary part of the Riemann zeros
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And finally the explcit formula for the divisor function o(n) which is the sum of
divisors of 'n' o(12)=1+2+3+4+6+12 =28, given by
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Where the sum inside (21-25) are over the imaginary part of the zeros of the

Riemann zeta function on the critical line, and p:%+i)/.

Equations (14-18) are equivalent to the equations (21-25) but in one hand we
use the Mellin transform and in the other hand we use the Fourier transform

g(a)= 2L j dxh(x)e ", the use of the Fourier transform is in analogy to the
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Riemann-Weil explicit formula for the Von Mangoldt function
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In the formula (26) the sum is over the positive imaginary parts of the Riemann
zeros . For the case of the explicit formulae which involve the test function g(x)
the Laplace Bilateral transform of this function defined by
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must be finite , or at least regularizable
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