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Abstract

It is shown with complete logical and mathematical rigor that under the appropriate
hypotheses of analytical extension and of asymptotic matching, which are stated in the article, the
nonlinear problem of irrotational and incompressible gravity waves on an infinite water layer of a
constant depth d reduces to an infinite recursive sequence of linear two-plane boundary value
problems for a harmonic velocity potential with respect to powers of a dimensionless real-valued
scaling parameter ‘ka’, where k>0 is the wave number and a>0 the amplitude of a priming (seeding)
progressive, or standing, plane monochromatic gravity water wave (briefly PPPMGWW or
PSPMGWW respectively). The method, by which the given nonlinear water wave problem is treated
in the exposition from scratch, can be regarded as a peculiar instance of the general perturbation
method, which is known as the Liouville-Green (LG) method in mathematics and as the Wentzel-
Kramers-Brillouin (WKB) method in physics. In the framework of the recursive theory developed,
the velocity potential and any bulk or surface measurable characteristic of the wave motion is
represented by an infinite asymptotic power series with respect to ‘ka’, whose all coefficients are
expressed in quadratures in accordance with a well-established an algorithm for their successive
calculation. The theory developed applies particularly in the case where the depth d is taken to
infinity. Besides the priming velocity potential of the first, linear asymptotic approximation in ka, the
partial velocity potential and all relevant characteristics of wave motion of the second order with
respect to ka are calculated in terms of elementary functions both in the case of a PPPMGWW and in
the case of a PSPMGWW. Accordingly, the recursive theory incorporates the conventional Airy
(linear) theory of water waves linear as its first non-vanishing approximation with the following
proviso. In the Airy theory, the boundary condition at the perturbed free (upper) surface of a water

layer is paradoxically stated at the equilibrium plane z=0, in spite of the fact that at any instant of
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time some part of the plane is necessarily located in air or in vacuum, and not in water. This and also

a similar paradox arising in computing the time averages of bulk characteristics at spatial points

close to the perturbed free surface are solved in the article.
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1. Basic nomenclature

To start with, | shall specify the main general nomenclature (logographic notation and wordy
terminology) as introduced in the articles losilevskii [2015 and 2016a—2016c¢] to the cases to be dealt
with in this article.

1.1. General nomenclature

1) A set is a class, but a class is not necessarily a set. | call a class “a regular class” if it is a
set and “an irregular class” if it is not a set. In the contemporary literature on logic and mathematics,
an irregular class is called a proper class, whereas a regular class, i.e. a set, is sometimes called a
small class (see, e.g., Fraenkel et al [1973, p. 128, DEFINITION VII] for the former term or the
article class in Wikipedia for both terms). The difference between an irregular class and a set
(regular class) is discussed in detail in losilevskii [2016a, subsection 1.9.3.2]). For instance, taxons
(taxa, taxonomic classes) of any biological taxonomy of bionts (BTB) are irregular, or proper,
classes, i.e. classes that are not sets. Particularly, the species (specific class) of men, that is formally
called “Homo sapiens’ and informally “man”, exists as an irregular class but the set of all men does
not exist in the sense that the expression “the set of all men” has no denotatum. By contrasts, in
mathematics, a well-defined class of numbers as the class of natural (natural integer) numbers, the
class of rational numbers, the class of real numbers, or the class of complex numbers is a regular
class, i.e. a set. The memberless class is a set that is denoted [logographically] by ‘@’ and is called
[phonographically, i.e. wordily] “the empty set”; i.e. semantically & is the empty set. The class of a
single object x is a set that is denoted by ‘{x}’ and is called “the singleton of x; i.e. semantically {x}
is the singleton of x.

2) =, =, and = are equality signs by definition, a rightward one, a leftward one, and a two-
sided one respectively, which are rigorously defined in losilevskii [2015, 2016a, and 2016b].

3) A symbol of the form “{x|P(x)}’, called a class-builder (or particularly set-builder), which

is designed to convert a given relation (condition) P(x) into a certain constant or variable class-



valued (or correspondingly) term (‘P’ and ‘x’ are atomic placeholders having the appropriate
ranges).

4) ‘ w,” denotes, i.e. o, is, the set of all natural numbers from 0 to infinity. Given ne @, @

n

is the set of natural numbers from n to infinity; i.e.
o, =il € @, andi>n}.

Given me a,, given ne o,

n @, 1S the set of natural numbers from the given number m to another

n

given number n subject to n>m, i.e.
Oy = {i|i ew,andn>i>m}.

It is understood that o, , =< if m>nand also thatw,, , ={m} and @, = ®,.

5) “I_,,  denotes, i.e. | is, the set of all natural integers (natural integral numbers) —

—00,00

strictly positive, strictly negative, and null. Given nel __ _,

n,oo

Lo =10 = {i‘i el andi> n},
|, =12 {i‘i el andi< n},

is the set

n,—oo

ie. 1, or

n,

is the set of all natural integers greater than or equal ton,and I_,  or |

Ioo,n

of all natural integers less than or equal ton. Given mel__ ,givennel _,
I {i‘i el andnzi>mf,
i.e. 1, is the set of all natural integers that are greater than or equal to m and are less than or equal

to n.

6) The previous two items are explicative definitions. A theory of natural integers in particular,
and a theory of any numbers (as rational, real, or complex ones) in general can consistently be
deduced from the five Peano axioms, which are, in turn, theorems of an axiomatic set theory (see,
e.g., Halmos [1960, pp. 46-53], Burrill [1967], Feferman [1964]).

7) The unordered pair of two different (distinct) objects x and y is the set {x,y} of those
objects, such that
v}z {gz=xorz=y}.
subject to x # y (cf. Halmos [1960, p. 10]). If x =y then the set {x} such that {x}={x,x}, having x

as its only member, is called the singleton of x or less explicitly (more generally) a singleton.
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6) The ordered pair (x,y) of two objects x and y, different or not, — particularly that of two

different or same elements x and y of two different or same sets (or in general classes) X and Y
respectively. — is conventionally defined as:

(x,y)= {x {x v i}
(see, e.g., Halmos [1960, pp. 22-25]). Therefore, by Axiom of extension (ibid. p. 2), for any four

objects x, y, X', and Y,

(x,y)

(x',y') if and only if x=x' and y=y'.
The set XxY, defined as:
XxY = {z|z = (x, y)forsome x € X and for some y eY},

is called the Cartesian, or direct, product of X and Y (ibid. p. 24). Here and throughout this
exposition, = is the rightward sign of equality by definition, which, along with = and =, is
rigorously defined, e.g., in losilevskii [2015, 2016a, and 2016b].

7) Given n € w,, an ordered n-tuple of objects x;,X,,...,X, ;, X, is defined as a repeated, (n—

1 -1 n

1)-fold ordered pair thus:

X,n = (Xl’ X2""’ Xn—l’ Xn)E (Xn—l! Xn): (("((Xl’ XZ)’ X3)7'"7 Xn—l)’ Xn) '

More specifically, an ordered n-tuple that is defined by the above formula is called the left-

associated repeated (or reiterative) (n-1)-fold (or (n-1)-ary) ordered pair of X, X,, ..., X, in that

! ! !

order. Accordingly, for any 2n objects X;, X,,..., X,, X, X3, ..., X7,

n?

(X, Xg oo X ) = (X, X5 0.0, X! ) i and only if X, = X, X, =X}, .00y X, = XL

n
8) An ordered n-tuple with any ne @, is indiscriminately called an ordered multiple. It is
worthy of recalling that, in contrast to an ordered multiple, an ordered set is a set that serves as a
domain of definition of the liner order relation (predicate) <. An ordered irregular class does not
exist.
9) If an ordered n-tuple is an n-fold ordered pair that is not systematically associated to the
left then the association must be indicated either explicitly or by the appropriate notation. For

instance,

(K05 X0 Xgeees X1 X0 ) 2 (X g Xz X ) 2 (K (00 %), Xa)sevr X 1)1 X, ) ).



10) An one-component univalent holor is a conceptual object, which is denoted by “x,” or

“(x,)’ and which can therefore be also called an ordered one-tuple, or ordered single, the
understanding being that such an object is distinct from a scalar (nilvalent holor) and that it can have

a scalar as its only component. Therefore, without loss of generality, X, or (xl) can be identified

with the singleton {xl} — the set having x; as its only member (element), so that

X = (Xl)E {Xl}'
At the same time, a set of n elements with n e @, can alternatively be called an unordered n-tuple.
Therefore, (x,) as defined above can be regarded as an ordered one-tuple and as an unordered one-

tuple simultaneously. Thus, for any new ={12,..}, an ordered n-tuple, i.e. an n-component
univalent holor, is a nonempty set and is not a nonempty individual. A definition of the term “holor”
can be found, e.g., in Moon and Spencer [1965, pp. 1, 14]), and also losilevskii [2016b, sub-
subsection 2.3.1].

11) If X and Y are two classes (or particularly sets) then X -Y , called the difference of X and
Y, is the set of all those elements of X which are not elements of Y.

12) Whenever confusion can result, the end of an article as a comment, preliminary remark,

proof, etc will be marked by a heavy dot ‘e’, — just as in 1.

1.2. Specific interpretation of some logographic symbols by default
1) R is the set of real numbers and equivocally the field of real numbers.
2) Each of the letters ‘x’, ‘y’, and ‘z’, alone or together with some labels on it (alphanumeric
or not) is a real-valued variable, i.e. a variable whose range is a set (or field) R of real numbers. In
the statements below, each of the bold-faced letters ‘x’, ‘y’, and ‘z’ is, for the sake of brevity, a

placeholder for any one of the light-faced letters ‘x’, ‘y’, and ‘z’.

3) X, 1.8, (X, Xpreees Xy gy Xy ) OF { Xy, Xy, Xy, X, ), i an ordered n-tuple of real numbers.

"1 Mp-1r n "1 -1 n

4) X, will as a rule be abbreviated as X, i.e, 5553E<x1,x2,x3>. For instance,

X=X = <X1!X2'X3>' Y=y, = <Y1aY2vy3> ,and 2=z, = <Zl,22,23>.
5) E, is a real n-dimensional arithmetical vector space, i.e. an n-dimensional arithmetical
vector space over the field R. Equivocally, E, is the underlying set of vectors (elements) of that

space, i.e. the set of ordered n-tuples of real numbers. Hence, given ne @,
7



E,=ZR™=RxRx..xRxR

ntimes R

= R(”*l)xxRE[L.,l[RxR]x R]x..]xR]xR

= {(xi,xz,...,xn_l,xn]xl eR,X, €R,...,% , €R,X, R},

i.e. En is the left-associated repeated (or reiterative) (n—1)-fold (or (n—1)-ary) direct (or Cartesian)
product of R by itself, called the left-associated nth direct (or Cartesian) power of R, the

understanding being that
E, =R*={(x )Jx eRj={{x Jx eR}=R.
6) ‘t’ is a real-valued time variable, whose every value teR is interpreted as an instant of time

assotiated with .the reading of a certain clock. In the actual fact, an instant of time is the singleton of
t,ie t=t = {t}eI, that is regarded as an arithmetical vector of the space E,, which is in turn

interpreted as the time continuum. However, for the sake of simplicity, | shall employ ‘t’ as stated
above, and not “{t} .

7) In accordance with the item 9 of the previous sub-section,

(txy.2)=(t(xy,2)= (tx), (Gx.2)= ()=t y.2,).

1.3. Special quotations versus ordinary quotations

In this article, besides ordinary quotations that may be used but occasionally, | widely use
various so-called special, or attitudinal, quotations (SQ’s), which indicate the kind of a value, and
hence the value itself, of the interior of a quotation, which is put forward as its accidental
(circumstantial) denotatum (denotation value, pl. “denotata”). The entire system of SQ’s was
developed in losilevskii [2016a, Preface, subsection 3.4], while in this article, I employ only some
kinds of SQ’s, which are briefly described below for the reader’s convenience.

In order to state an ordinary quotation (as a repetition of the exact passage of another work or
of the title of a book), I employ French double angle quotation marks, « », instead of ordinary
English single or double quotations marks (as defined, e.g., under the vocabulary entry quotation
mark in A Merriam-Webster® [1981], whereas the latter are freed of their ordinary functions and
are used only as special quotation marks (SQ marks). In this case, the light-faced or bold-faced
single or double, straight and curly or slant, English quotation marks are used differently. The pair of

quotation marks that is used for making an ordinary or special quotation will be called the exterior of
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the quotation, whereas the graphonym (graphic expression) quoted will be called the interior of the
quotation.

I do not follow Frege [1893-1903, vol. 1, p. 4] and his followers either in admitting only a
single kind of SQ’s, each of which is the name of its interior, and which I call Fregean, or Frege’s,
quotations (FQ’s), or in obstinately attempting to indicate autonymy with the help of the appropriate
SQ marks in all cases simply because such an attempt is impracticable. For forming FQ’s, which |
also call proper, or strict, autonymous quotations or kyrioautonymous quotations (KAQ’s) and which
I shall use quite rarely if at all, I shall employ slant light-faced single quotation marks, © ~. Most
often, I shall employ, — I have already started to, — curly (decisive) or straight (indecisive) light-faced
quotation marks, single ones, * > or ' *, which I shall call homoloautographic, or photoautographic,
quotation marks (HAQ marks), and double ones, “ ” or ™ ", which | shall call iconoautographic, or
pictoautographic, quotation marks (IAQ marks). Accordingly, an SQ will be called a
homoloautographic, or photoautographic, quotation (HAQ) if it is formed by enclosing a graphonym
between HAQ marks; an iconoautographic, or pictoautographic, quotation (IAQ) if it is formed by
enclosing a graphonym between IAQ marks. HAQ’s and IAQ’s are indiscriminately called common,
or lax, autographic quotations and also cenautographic quotations (CAQ’s). KAQ’s and CAQ’s are
indiscriminately called special autographic quotations (SAQ’s), whereas all quotation marks that are
used for forming SAQ’s are called SAQ marks.

I employ the exterior of an HAQ or IAQ for indicating my ad hoc (epistemologically
relativistic) mental attitude, according to which its interior denotes the class of distinct recurrent
recognizably same graphonyms, which occur in the article and which are called isotokens of the
interior. Accordingly, the interior of an HAQ or 1AQ is alternatively called its percept-class. In this
case, an HAQ denotes the class of homolographic (photographic), i.e. proportional or particularly
congruent, isotokens of its interior, whereas an IAQ denotes the class of iconographic
(pictographic), i.e. of both homolographic and analographic (stylized), isotokens of its interior.

The interior of an IAQ may contain some constituent logographs (logographonyms) or
iconographs (iconographonyms), indiscriminateiy called pasigraphs (pasigraphonyms), which are
known from a previous definition or definitions to be homolographs, i.e. a graphonyms that have
only homolographic isotokens. In this case, the isotoken-class of the interior of the IAQ is supposed
to preserve this property. By contrast, the phonic (vocal) sounds that are produced when the interior

of an 1AQ is read orally, provided that the interior does not contain any pasigraph, is called a
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paratoken of the interior and also most generally a phononym. An isotoken or paratoken (if exists) of
the interior of an IAQ is indiscriminately called a token of the interior. Accordingly, if the interior of
an IAQ is a phonograph then the IAQ may, depending on the mental attitude of its interpreter, denote
either the isotoken-class or a paratoken-class of its interior or else the union of the two classes that is
called the token-class of the interior.

The interior of an HAQ is either a pasigraph, i.e. a graphonym that is intelligible to a sapient
subject independent of the phonemic language or languages, in which he has command, or a
phonographic (wordy) name, which is conventionally set in a certain font, — such a name, e.g., as the
Linnaean binomial (binomen) of a species in a biological taxonomy of bionts, which is
conventionally set in italic ("Homo sapiens’ for instance). The latter case is irrelevant to this
exposition, so that the interior of any HAQ occurring in the exposition is a pasigraph or, more
specifically, a logograph, i.e. a graphonym that has no phonic paratokens. Consequently, an isotoken
of the interior of such an HAQ is alternatively called a token of the interior.

Incidentally, the sense (sense value) of, or expressed by, a complex (combined) linguistic
graphonym, — provided that the latter has the sense thus defined, — is a biune mental process
(psychical entity, brain symbol) of the maker or interpreter of the graphonym (as me), which
includes (i) a sense operation of coordination of the classes that are designated by the relevant
simple constituent parts of the graphonyms and that are called the object classes of the sense, and
which also includes (ii) the class that is resulted by the sense operation and that is designated by the
graphonym. The latter class is called the designatum (pl. “designata”) of the graphonym and
alternatively the subject class of the sense of the graphonym. It is understood that if a graphonym is
regarded as a simple one or is an idiom then its sense coincides with its desigsnatum. Consequently,
one of two given senses (sense values) of a glossonym (linguistic onym, or nym) is said to be broader,
or narrower, than the other one if the subject class of the former is broader, or correspondingly
narrower, then the latter. In losilevskii [2016a], in order to refer to the sense of a graphonyn, |
enclose the latter in light-faced virgule-like quotation marks, '/, which 1 shall call enneoxenographic,
or semantic, or sense, quotation marks (EXQ marks). No enneoxenographic (semantic, sense)
quotations (EXQ’s) thus formed are used in this exposition.

The bold-faced quotation marks < ”, *”or '", and “ ” or """, ', and quotations that they
form will be qualified as quasi-kyrioautographic (QKA), quasi-homoloautographic (QHA), and

quasi-iconoautographic (QIA) quotation marks (Q marks) and quotations (Q’s), respectively. The
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interior of a QKAQ, QHAQ, QIAQ, or QPAQ is either entirely a placeholder (place-holding
variable) or it contains some placeholders, upon replacing all of which with appropriate concrete
graphonyms the bold-faced quotation marks should be replaced with the corresponding light-faced
ones. That is to say, QKAQ’s, QHAQ’s, and QIAQ’s are placeholders for KAQ’s, HAQ’s, and
IAQ’s respectively, whereas the latter are constants. QHAQ’s and QIAQ’s are indiscriminately
called common, or lax, quasi-autographic quotations and also quasi-cenautographic quotations
(QCAQ’s). QKAQ’s and QCAQ’s are indiscriminately called special, or attitudinal, quasi-
autographic quotations (SQAQ’s), whereas all quotation marks that are used for forming SQAQ’s
are called SQAQ marks.

Uses of the HAQ marks “ ” and of the QHAQ’s * ’, e.g., can be illustrated as follows. Any one

of the concrete logographs (a) “sinx’, ‘sinh x’, and ‘e*’, and also any one of these (b) ‘x+y’
“x-y’, ‘sin(x+y)’, “sinh(x-y)’, etc are by definition functional forms, whereas ‘sin’, e.g.,
is the associated function of ‘sinx” and ‘+’, e.g., is the associated function of “ x + y’. At the same

time, the abstract logographs * f,(x)’, *f,(x,y)’, etc are placeholders for functional forms
containing the respective independent variables. Any pair of SAQ marks can be replaced with the

appropriate prepositive added words. For instance, instead of * fl(x)’, I may use the phrase “the
functional form placeholder f,(x)”, but I may not use the phrase “the functional form f,(x)”,
because ‘fl(x)’ is any isotoken of the placeholder therein depicted between light-faced single

quotation marks, and not a functional form. In this case, | may say that fl(x)’ is a singulary
functional form, the understanding being that, once the interior of the above QHAQ is replaced with
a concrete singulary functional form such as ‘sinx’, ‘sinhx’, and ‘e*’, the bold-faced single
quotation marks should be replaced with light-faced one.

The procedure of using SQ’s (special quotations), which has been described above, is called
the Special Quotation Method (SQM) or Special Quotation Device (SQD).

Thus, the reader should remember that quotations marks of the different forms and shapes,
which he encounters in the treatise, are not selected spontaneously and that therefore they are not
interchangeable. At the same time, as | have already pointed out previously, no attempt will made to
indicate autonymy with the help of SAQ’s (special autographic quotations) in all cases because such
an attempt is doomed to failure. I resort to the SQD only where confusion between autonymous and
xenonymous uses of xenographs might otherwise be harmful. In some cases, such confusion is
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harmless, while in many other cases, where a graphonym is used polysemantically, it is productive
and indispensable. For instance, in stating verbal definitions, I shall often use the defining predicate
“is called”, which should in principle be followed by the IAQ of the pertinent xenographic
definiendum. In many cases, however, it is, not only harmless, but useful to employ unquoted

xenographic definienda after that predicate.

2. Mathematical physics (applied mathematics) versus pure mathematics

2.1. Molecular hypothesis versus continuum hypothesis in mathematical physics

One of the most fundamental epistemological axioms of modern natural philosophy is the
molecular hypothesis — the presently common concept, according to which every substance consists
of molecules. Therefore, merely the fact of applying the qualifier “continuum”, or “continuous”, to a
physical theory (as in the titles of books Landau et al [1991] and Truesdell [1991]) signifies that, in
constructing the theory, an implicit assumption is made that, under certain restrictions, the substance
can be treated as continuum. The words “hypothesis” and “assumption” are English synonyms.
Hence, the above mentioned implicit assumption is a hypothesis that is often called “the continuum
hypothesis”.

From the standpoint of differential and integral calculus, the treatment of the same substance
as one consisting of molecules on the one hand, and as continuous medium on the other, is a paradox
(contradiction). This paradox is solved physically and not mathematically, i.e. qualitatively and not
quantitatively, by separating the underlying continuum mathematical theory and its physical
interpretations by real-valued functions. In this case, the word “interpretation” can be understood in
the sense of the technical term as defined in a theory of logistic systems and formalized languages
(cf. Church [1956, 807 and footnote 199] or Fraenkel et al [1973, chapter V, 83ff]). For instance, the
conventional wave equation can be interpreted as describing any given kind of waves such as
electromagnetic or acoustic ones or such as water waves.

To be specific, the appropriate physical analysis based on the molecular hypothesis shows
that all macroscopic (continuum) physical characteristics of the substance (as its mass density, elastic
and viscosity coefficients, dielectric permeability, etc.) are physically meaningful only within a
domain whose minimal linear size is much larger either than the maximal intermolecular distance, if
the substance is condensed matter (liquid or solid), or is much larger than the mean-free path of the
substance molecules, if the substance is a gas. Likewise, the minimal linear size of a macroscopic
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field source (such as an electric charge, an electric current, a dislocation, a vortex, etc.), and also the
minimal thickness of a transition region in condensed matter which is treated mathematically as an
infinitesimally thin interface between two continuous media or, in particular, as the infinitesimally
thin boundary surface of a continuous condensed medium (the interface between condensed mater
and vacuum), must satisfy the above mentioned conditions. Incidentally, in condensed matter, the
mean intermolecular distance can be, and will be, treated as the mean-free path of the substance
molecules.

Particularly, according to the continuum hypothesis, a fluid (liquid or gas) is treated
mathematically as continuous medium. From the standpoint of mathematical analysis, this means
that all macroscopic physical characteristics of the fluid, as its mass density or as components of its
momentum flux density vector, are described by differentiable, and hence, continuous functions of
appropriate independent variables. The functions are treated with the help of all available tools of
mathematics including differential and integral calculus, and also including partial differential
equations. Still, from the standpoint of physical analysis, a fluid consists of individual molecules.
Therefore, a volume element dV which is mathematically regarded as infinitesimal should
physically be interpreted as being small macroscopically, but not microscopically. In other words, an

infinitesimal volume element dV of fluid mechanics is one that contains a very large number of

/ . . . ..
molecules whereas (dV)"® >0 is small as compared to some macroscopic linear characteristics of

the fluid motion (as the characteristic wavelength A if appropriate). The presently common terms of

fluid mechanics such as “a fluid particle”, “a material particle”, “a point of the fluid”, and *“a point in

the fluid” are just connotative synonyms (class-synonyms) both of the verbal term “a
macroscopically small volume element of the fluid” and of the logographic term “dV ’ (cf. Landau
and Lifshitz [1987, p. 1]). Likewise, all mathematical points, curves, and surfaces of discontinuity of
the field should be interpreted physically as three-dimensional manifolds, whose thickness (minimal
linear size) is much larger than the mean-free path of the molecules constituting the medium in
question.

In addition to the above-said, the continuum hypothesis has the following two important
implications.

First, any macroscopic (phenomenological) theory of a specified physical system should be
deducible from the relevant microscopic (molecular) theory of that same system. For instance,

classical thermodynamics follows from statistical physics, macroscopic electrodynamics follows
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from microscopic electrodynamics (classical or quantum), the theory of elasticity and plasticity
follows from the microscopic theory of crystal lattices, gas dynamics follows from the Boltzmann
kinetic equation, etc. Macroscopic theories, as fluid mechanics, are as a rule well-established ones,
whereas some of the corresponding microscopic theories, as any one of the existing microscopic
theories of classical liquids, are not. Still, this fact does not cancel the restrictions which are imposed
on any macroscopic theory by the molecular hypothesis through the continuum hypothesis. Thus, as
contrasted to mathematical foundations of continuum mechanics (as various integral principles), a
microscopic theory (either an actual one or a would-be one) can be regarded as the physical
foundation of the corresponding macroscopic (continuum) theory.

The second implication of the continuum hypothesis is that every macroscopic differential
equation of mathematical physics either is or can be regarded as a result of the appropriate averaging
of a certain microscopic equation. As a consequence, all equations of mathematical physics in
general, and those of continuum mechanics in particular, are interpreted in theoretical physics as
conventional partial differential equations, all unknowns of which are conventional (non-
generalized) functions having all necessary conventional (non-generalized) derivatives. Two other
irrefutable arguments in favor of the requirement that all fields of continuum fluid mechanics must
be differentiable real-valued functions follow from the classical measurability and determinacy
principles.

Thus, when regarded as a part of theoretical physics, and not as a part of pure mathematics,
continuum fluid mechanics is a classical phenomenological macroscopic physical theory, which is
based on the continuum hypothesis (see, e.g., Batchelor [1967, pp. 4-6], Lamb [1932, p. 1], and
Landau an Lifshitz [1987, p. 1]). In addition, being a classical theory, and not a quantum-mechanical
one, continuum fluid mechanics is also based on two other fundamental principles of classical
physics, which can be called the classical measurability principle and the classical determinacy
principle, as contrasted to the quantum-mechanical indeterminacy, or uncertainty, principle. The
principles themselves and also their implications in classical macroscopic (continuous) theories are

discussed below.

2.2. The classical measurability principle
According to the classical principle of measurability, or briefly the classical measurability

principle, any simple (one-component) classical (non-quantum) characteristic of a discrete or
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continuous physical system is physically measurable in the sense that there exists an imaginary
experiment that allows to assign a certain real number to that characteristic. This means that there
exists an imaginary physical instrument that allows performing the above measurements. Some, but
not all, imaginary experiments or imaginary instruments are abstractions of the corresponding real
ones. Any measuring instrument, imaginary or real, has the following two fundamental imaginary
(conceptual) or real properties, respectively:

(i) The instrument is a macroscopic classical physical system.

(i) The instrument is small enough in order not to disturb the measured characteristic

noticeably.

Typical examples of applications of the classical principle of measurability can be found both in the
theory of a classical electromagnetic field in vacuum (special theory of relativity) and in the theory
of a classical gravitational field (general theory of relativity). In these theories, abstract mathematical
computations and proofs are often supported by the pertinent discourses of imaginary measurements
of time and length intervals with the help of imaginary clocks and imaginary rulers (see, e.g., Landau
an Lifshitz [1989, 88 1-4, 97]). Some other imaginary measurement procedures as described in
classical electrodynamics are based on the notion of an imaginary test body, although this notion is
not, always, made explicit. Such a body either in the form of a small charged particle or in the form
of a small conducting contour is used in classical electrodynamics for defining the electric or
magnetic field intensity, respectively (cf. Landau an Lifshitz [1989, §17)]). In fluid mechanics, a test
body in the form of an imaginary neutral classical material particle or in the form of an imaginary
small manometer (cf. an imaginary ruler or an imaginary clock in either theory of relativity) can be
used in the obvious way for conceptually measuring the momentary local fluid velocity or pressure,
respectively. The classical principle of measurability is the foundation for wvarious physical
interpretations of an underlying mathematical theory by real-valued functions.

By specification, it immediately follows from the classical measurability principle that any
simple physically measurable field characteristic of fluid, as the momentary local fluid pressure or as
any given component of the momentary local fluid velocity, or acceleration, is necessarily real-
valued (not complex-valued and, in general, not abstract-valued). It also follows from that principle
that the fluid velocity (e.g.) must be a continuously differentiable real-valued function of Eulerian

variables. Otherwise, the fluid particle that has a given location at a given instant of time would have
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no physically measurable acceleration, and therefore it could not be an object of the Newtonian

(classical, non-quantum) mechanics.

2.3. The classical determinacy principle versus the quantum-mechanical

indeterminacy principle

The state of a classical mechanical system at any given instant of time can be defined as the
ordered set of the positions and momenta (or velocities). which the particles (as molecules or, in
general, as any point material bodies) constituting the system have at that instant. In this case,
according to the Newtonian equation of motion, the state of the system at any given instant of time is
uniquely determined by the state of the system at any other given instant of time. The above
statement is the classical principle of determinacy or briefly the classical determinacy principle. This
principle is also equivalent to the statement that every classical particle moves along its continuous
trajectory. As a consequence, a physical system that consists of n classical molecules (n can be as
large as one pleases) moves along its n-dimensional trajectory in the 3n-dimensional phase
(Liouville) space which is, by definition, the space of geometrical coordinates and momenta
components of all particles (see, e.g., Landau and Lifshitz [1988, pp. 146, 147]). As contrasted to the
classical (Newtonian) mechanics, as based either on the Galileo principle or on the Einstein principle
of relativity, any quantum theory leads to the indeterminacy, or uncertainty, principle. According to
this principle, a microscopic particle (as an electron or a photon) cannot, at the same time, be at a
specified point and move with a specified velocity. As a consequence, a quantum (non-classical)
particle does not move along any trajectory. Likewise, a many-body quantum system does not move
along any multi-dimensional trajectory in any phase space.

The most essential difference between a classical and a quantum theory is that a state of a
classical system is described by real-valued functions, while a state of a quantum system is described
by complex-valued functions. As a result, a classical system is deterministic, whereas a quantum
system is not. At the outlet of creation of the quantum mechanics, there were heated arguments
among the creators of the theory, until the agreement about the presently common probabilistic
interpretation of the results of measurements of the conventional classical attributes of a particle (as
its coordinates and its momentum, or velocity, components) has been reached as the best.

Incidentally, Einstein who received his Nobel Prize, not for his two theories of relativity as many
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people think, but for his quantum theory of the photo-electric effect, never accepted the probabilistic
interpretation of measurements on quantum systems.

Thus, the passage from classical states of physical systems, which are described by
differentiable real-valued functions, to quantum states, — or, in particular, to quantum-mechanical
states, — which are described by still differentiable but complex-valued functions, has resulted in the
passage from the deterministic interpretation of the results of a physical experiment to the
indeterministic (probabilistic) interpretation. This has caused the entire revolution in the
Weltenshauung of physicists. It is therefore clear that if one passes from the conventional states of
classical mechanics, which are described by differentiable real-valued functions to some abstract
states described by some non-differentiable and even non-continuous abstract-valued functions, then
merely the fact of asserting that the weak theory so obtained is a part of physics and not of pure
mathematics would have meant a radical revolution in the entire natural philosophy. Indeed, no
classical physical system that has the above abstract states can move along any continuous path
(trajectory) in any phase space. Moreover, in this case, the very notion of phase space cannot be

introduced at all.

2.4. Postscript on mathematical physics (applied mathematics) and pure

mathematics

The whole of the above discussion in this section can be summarized as follows. The term
“mathematical physics” is actually a synonym of the term *“applied mathematics”. In this case,
applied mathematics is not just non-rigorous (sloppy) mathematics, but rather it is a certain part of
pure (rigorous) mathematics, which is provided with the appropriate physical interpretation. In this
connection, the following general remarks about formal mathematical approach to physical problems
can be made.

From the standpoint of logical analysis, it is desirable that an underlying mathematical theory
should be as weak as possible, because the weaker is a theory, the less is the danger that the theory
will, after all, turn out to be contradictory (paradoxical). However, from the standpoint of a physical
analysis, any weak mathematical theory which treats the unknowns of classical physics equations as
generalized (abstract-valued) functions belongs, by definition, to pure mathematics, and not to
physics. As a consequence, such a theory does not belong to natural philosophy either. In this case, it

does not matter whether the equations in their weak form are obtained from an integral principle (as
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the principle of least action or the principle of virtual work) or whether they are obtained
straightforwardly by the corresponding generalization of some conventional differential equations of
mathematical physics. On the other hand, if all corollaries that follow from a certain integral
principle are properly interpreted on the base of the fundamental principles of classical physics then
the formal theory so obtained must either be equivalent to or must exactly coincide with the pertinent
naive theory, which is obtained from the corresponding intuitive considerations. For instance, both
the Lagrangian mechanics and the Hamilton-Jacobi mechanics are equivalent to the original naive
Newtonian mechanics (cf. Landau and Lifshitz [1988, chapters I, VI ff]).

In formulating or solving some problems of classical physics in general, and of continuum
fluid mechanics in particular, one may of course use various abstract mathematical objects as
complex numbers, matrices, generalized (abstract-valued) functions, etc. However, all simple (one-
component) physical characteristics of any physical system must, after all, be interpreted as
physically measurable. This particularly means that any simple classical field must be the field of
values of a certain real-valued function, which has all necessary real-valued partial derivatives. In
this case, all mathematical points, curves, and surfaces of discontinuity of the field should be
interpreted physically as three-dimensional manifolds, whose thickness (minimal linear size) is much
larger than the mean-free path of the molecules constituting the medium in question. Otherwise, the
field would have been inconsistent with the basic principles of classical physics, which comprises the
Newtonian mechanics and the Maxwell electrodynamics. In particular, in the absence of the above
physical interpretation, a fluid particle has neither physically measurable velocity nor physically
measurable acceleration, and it is not an object of the Newtonian mechanics. It is not, obviously, an
object of quantum mechanics either. Hence, it is not an object of physics at all.

Thus, in every discipline of natural philosophy, physical principles must dominate
mathematical ones. In particular, any weak mathematical theory, which is not provided with the
physical interpretation on the base of the continuum hypothesis and on the base of the classical
principles of measurability and determinacy, cannot be regarded as a conceptual model of any
physical system. Such a theory is a branch of pure mathematics, rather than to be a branch of natural
philosophy, until it is provided with the appropriate physical interpretation. Here follows two
examples that illustrate this point.

i) Any given quantum-mechanical state (Shroédinger’s psi-function) is an abstract

mathematical object, namely, a vector in a certain Hilbert space. This vector becomes an object of
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physics, only if it is provided with the appropriate quantum-mechanical, i.e. physical, interpretation.
Accordingly, non-relativistic quantum mechanics is a part of physics, and hence, a part of natural
philosophy, whereas a theory of Hilbert spaces is a part of pure mathematics.

i) A theory of automorphisms (as a theory of automorphisms of Euclidean or pseudo-
Euclidean vector spaces) is a branch of pure mathematics. However, a theory of automorphisms of
the Minkowski space (the four-dimensional pseudo-Euclidean space of index 1), which is provided
with the appropriate physical interpretation, is Einstein’s special theory of relativity. The later is a
part of physics.

In connection with the above, it should be recalled that besides solutions, which have all
necessary continuous partial derivatives and which are said to be strong (or strict or classical), a
partial differential equation of mathematical physics in 3x1 space-time continuum (e.g.) can have so-
called weak (or lax or generalized) solutions (see, e.g. Garabedian [1965, pp. 284, 299, 445-447,
506] or Zauderer [1983, pp. 288-294]). Every strong solution is, by definition, a weak one, but not
vice versa. In the general case, a weak solution is not required to be continuously differentiable, but
rather it should be just integrable, and therefore it can be discontinuous at some surfaces. A shock
wave with infinitesimally thin front is a solution of equations of gas dynamics of this kind (see. e.qg.,
Landau and Lifshitz [1987, pp. 146, 147]). Still, from the standpoint of a physical analysis based on
the molecular hypothesis, any singular mathematical surface (singular two-dimensional manifold) of
a macroscopic field should be interpreted as a three-dimensional region whose thickness is mach
larger than the mean-free path of the molecules constituting the medium. This is in accordance with
the relevant general remarks as made at the beginning of the Introduction. At the same time, on both
sides of the singular surface, the given macroscopic field is classical, i.e. it has all necessary

continuous partial derivatives.

3. A general mathematical model of a perturbed liquid layer

3.1. The geometrical form of the model
Given a liquid layer with non-uniform bed in a vertical uniform field of gravity, suppose that
the coordinate XY -plane (z=0) of a right-handed rectangular rectilinear laboratory coordinate system
coincides with the free (flexible, elastic, resilient) upper boundary surface of the layer, whereas the

positive Z-axis is opposite to the direction of gravity. Relative to that coordinate system, the
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acceleration due to gravity is characterized by the ordered triple g=<0,0,—g> subject to g > 0; the
equation
s,(X)=h(x,)+z=0, (3.1)
where “h(x,)’ is a known functional form, describes the rigid (firm, inflexible, solid) bottom
boundary surface S, of the layer, and the equation
s, (t,x) =Z(t,x,)-z=0, (3.2)
where “ Z(t, X,)’ is an unknown functional form, which describes its upper boundary surface S; of the
disturbed layer. It is assumed that h and Z are real-valued functions, which, along with their all
first-order partial derivatives, are defined, continuous, and bounded on E, and on RxE,,
respectively. In this case, the equation h(x,) = h(x, y): 0 implicitly defines a closed contour T’ in

the plane z=0 that serves the boundary perimeter of the unperturbed liquid layer.
Hypothesis 3.1: A hypothesis of an infinite liquid layer. 1) In the sequel, I shall assume that
the liquid layer is infinite in all longitudinal directions and that S, and S; do not intersect.

Accordingly, I shall assume that for each t € R and each x, € E,:

0<h, <h(x,) <h, <+o, (3.3)

—o<—h, <Z, <& (X,)<Z(t,x,) <& (X,)<Zy <h, <o, (3.4)
Z,<z,(t)<Z(t,x,)<z,(t)<Z,, (3.5)

G (X,) <0<y (X,), 7, (1) <0<z (1), (3.6)

where h,, and h,, are the infimum and supremum of all values of *h(x,)’, Z,, and Z,, are those of
all values of ‘Z(t,x,)’, ¢&.(x,) and ¢,(x,) are the infimum and supremum of the values of
‘Z(t,x,)’ at X, held constant, z, (t) and z,(t) are those at t held constant. The inequality

h,, <-+oo expresses the assumption that h is bounded. This inequality, along with h_ <+, which

follows from it, has been included in (3.4) for more clarity. After a given problem is solved, one

may, when desired, pass either to the limit h,, — +co or to the limit h,, — +oo (which implies that
h,, — 4o as well) in all relevant final formulae.e

Comment 3.1. In accordance with the choice of the coordinate plane z = 0, the equation
Z(tx,)=z,(t)=zy(t)=Z,, =2, =0
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holds for each t € R and each X, € E,only in the absence of perturbations. At the same time, the
equation

Z(t,X,) = ¢n(X;) =gu(x,) =0 3.7)
may hold for each for each t € R and some X, € E, not only in the absence of perturbations. If the

function Z describes a standing wave then equation (3.7) determines the nodes of the wave.

2) At the same time, in accordance with Hypothesis 3.1, it is hereafter assumed that
Z(t,x,) # 0 for some (t,x,) e RxE,, (3.8)
i.e. Z=C,, where C, is a constant function, every value of each equals 0. Hence,
¢m(X,) <0<y, (x,) forsome x, €E,. (3.9)

A liquid layer, for which (3.8), or (3.9), holds is called “perturbed”.e
Definition 3.1. The subscript “f’, or ‘n’, in a functional constant (or variable) signifies that
that constant (or that variable) stands for a function of a function, or for a function of a real number,

respectively. In particular, with * D’ being an ellipsis, D, is a function of a function, whereas D, is
a function of a real number. Similarly, D, is a function of two arguments, both of which are
functions; Dy, is a function of two arguments, of which the first is a function, and the second is a
real number; D, is a function of two arguments, of which the first is a real number, and the second
is a function; D, is a function of two real numbers.e
Definition 3.2.
D®(-h,Z(t,)) = {(52, z)x, e E,and z e (- h(x,), Z(t,X,))} for each te R, (3.10)

D¥(-h,z) = | Jlt3x DX (-h, Z(t’,))). (3.11)

tt'eR
and similarly with each one of the following three pairs of strings: (‘oc’, ‘z e(, ]°), (‘co’,
‘ze[,)’), and (‘cc’, “z€[, ] ) in place of (‘00’, “z e(, )’) respectively. A double-letter
superscript ‘oo’, ‘oc’, ‘co’, or ‘cc’ to ‘D’ is descriptive of the fact that the entire variable bearing

that superscript stands, respectively, for the open-open (open), open-closed, closed-open, or closed-

closed (closed) liquid layer, which is enclosed between the surfaces described by the equations
z=-h(x,) and z=2(t,x,). Thus, particularly, Dg’(-h,Cy) or Dg’(-h,0) is the liquid layer in

equilibrium, the understanding being that C, is, as before, the constant function, every value of each
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equals 0. The set D’ (—h,Z ) as defined by (3.11) is said to be folded with respect to all values of
the variable “t * or, briefly, time-folded, and similarly with ‘oc’, “‘co’, or ‘cc’ in place of ‘00’. Either
of the above two synonymous terms, and also the sets, which they denote, are suggestions of my

own, — they are not in common usage. e

3.2. Eulerian variables of a fluid flow versus Lagrangian ones
3.2.1. Eulerian variables
No matter how a mass of fluid is geometrically configured, under the continuum hypothesis,
two different ways of specification (description) of a fluid flow are possible. These are known as the
Eulerian specification and the Lagrangian specification, although both are in reality due to Euler
(see, e.g., Lamb [1932, pp. 2-15], Batchelor [1967, pp. 71-73], Landau. and Lifshitz [1987, pp. 1-

5)).
In the framework of the Eulerian specification, all characteristics of a fluid flow are described
by functional forms (extensional functional variables), which depend on two independent variables,

namely, a time variable, as ‘t’, and a spatial vector variable, as ‘x’ subject to
X = (X, X,, ;) =(X,y,2). Thus for instance, V (t, X), defined as

V(t,%) = (V,(t,X),V, (8, %), Vs (t, X))
is the fluid velocity, while p(t,x) and P(t,x) are the fluid mass density and fluid pressure,
respectively — all at a temporo-spatial point <t,5> , Which is given relative to a certain clock and also

relative to a certain rectangular rectilinear right-handed coordinate system. The real-valued variables

x’, “y’, “z” and the corresponding vector-valued variable ‘ x * are said to be Eulerian independent
variables, whereas a functional form depending of “t ” and * x’ is said to be an Eulerian functional
form.

Definition 3.3. 1) Unless stated otherwise. “ F(t,x)’ is hereafter a placeholder for any
Eulerian functional form (as ‘V (t,X)’, “‘V.(t,X) ", * p(t,x) ’, or “ P(t,x)").

2) In this case, both the definiendum and the definiens of the definition:

DF(t,x) . Ft.X) (v
Dt A +[;Vi(t1l)vij':(t’£) (3.12)
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subject to

v, z% for each i e(1,2,3), (3.13)

is called the convectional, or path, derivative of the function F at the temporo-spatial point <t, 5}.
. . D, .
Accordingly, the operator ot defined as:

D_272 o <
— = 4+V(t,X -VE—+§V t,X)V, , 3.14
Dta‘t—(—)—dkﬂk(‘)k (314

is called the convectional, or path, differential operator at the above point.e

Definition 3.4. 1) Given teR, if a functional form ‘F(t,X)’ is defined for each

x e Dg’(=h,Z(t,)) then the set Dg’(—h,Z(t,)) is said to be the spatial domain of definition of that
form and also the spatial domain of definition of the momentary associated function F(t, ) of the
form *F(t,x)". If *F(t,x)’ is defined for each teR and each xe Dg’(-h,Z(t,)), i.e. for each
(t,x)e D¥(~h,Z), then the set DX (~h,Z) is said to be the total (temporo-spatial) domain of
definition of that form and also that of the total (complete) associated function F of the functional
form “F(t,x)’, whereas D% (—h,Z) is the domain of definition of the function F. The domains
Dg (—h,Z(t,)) and D (-h,Z) can be extended to Dg (-h,Z(t,)) and to D% (-h,Z)
respectively with the help of the definitions:

[F (), ey = IMIF ), 0y [F 0]z = IMIFE], 50, 0 (315)
provided of course that the limits are supposed to exist. In accordance with (3.15), it will hereafter be
assumed that F(t, ) is defined on D¢ (—h,Z(t, )) and that hence F is defined on Df (-h,Z).

2) As contrasted to the local bulk characteristics of the fluid flow, which are denoted by
“F(t, x)’, the characteristics as defined by (3.15), and also h(x,) and Z(t,x,) themselves, will be
called “local surface characteristics of the fluid flow”. Accordingly, local bulk and local surface
characteristics of the fluid flow will collectively be called “local characteristics”.e

Comment 3.2. The fact that Dg’(—h,Z(t, )) or Dg (=h,Z(t, )) depends on t is the very

reason why all functional forms (extensional functional variables) occurring in this exposition are, in
contrast to the common practice, formed in such a way that the time variable “t’ is always

mentioned (listed) before the spatial vector variable as “ x * or “ X, ’, — just as in theory of relativity.e
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Definition 3.5. Given a real or complex number a,C, is the constant function, with any
given domain of definition, whose every value equals a. Particularly, C, is the null-valued function,
i.e. the constant function whose every value equals null. For avoidance of notation conflicts, the null-
valued function C, defined on a concrete domain may in the sequel be denoted differently.e

Convention 3.1. 1) In accordance with the common practice, in making statements about
local characteristics of a fluid flow and particularly in stating equations for a fluid flow, I shall, for

the sake of brevity, omit the strings “ (t,X,)’, “(X,) ’, “(t,x)’, and “ (x) * from some (strictly some or

all) pertinent functional forms every time when this seems to be safe so as not to lead to the
confusion between a function and its value at given arguments, and also be safe so as not to mislead
with regard to which independent variables are actually involved in the abbreviated functional form.

Accordingly, it is assumed that every abbreviated bulk relation is preceded either by the appropriate
quantifiers such as ‘for each (t,gz)e RxE, and each z e[-h(Xx,),Z(t,Xx,)]:” in that order or
equivalentlyby these: “‘for each teR and each x e D (~h,Z(t,):” in that order, or else by this single

quantifier: “for each (t,x)e D¥(~h,Z):”, — unless of course the quantifiers are written down or

unless it is stated otherwise.

2) In order to indicate explicitly that an intensional functional variable as ‘F’ is used

equivocally both as a name of the associated function F of a functional form as F(t,x) and as an
abbreviation of that form, | shall often make a definition either of the form ‘F = F(t,x)” or of the
form “‘F(t,x) = F . If ‘F’ is contextually regarded as an abbreviation of F(t,x) then the equation
“F(t,x)=0" will briefly be written as “ F(t,x) =0". If, however, ‘F’ is contextually regarded as a
name of the associated function F of “ F(t,x)’ then the equation “ F(t,x) =0’ will briefly be written
as‘F=C,".

3) Unless stated otherwise, the subscript variable ‘i’ which occurs in a statement as an

apparent free variable is assumed to be bound by the quantifier ‘for each ie @, :’; and similarly.

with any other equivalent variable from *j’ to ‘n’ in place of “i’.e

3.2.2. Lagrangian variables

N In the framework of the Lagrangian specification, the ordered triple x of coordinates of a

given fluid particle at any given instant of time t is determined by the ordered triple
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a=(a,a,,a,)=(a,b,c) of coordinates of that particle at some initial instant t,, which are called

Lagrangian variables. Thus, values of “ x’ are actually values of a functional form “ x(t,a) ’, which

depends on the independent variables ‘t’ and ‘a’, so that x(t,,a)=a. Accordingly, the fluid

velocity V(t,a), mass density p(t,a), and pressure P(t,a) of the fluid particle a at the instant t are
values of the corresponding functional forms depending on * x(t,a) *:

ita)= 288, pa)= pl(a), Pta) = Fx(a).

In this case, the condition of conservation of mass during the motion of a fluid element (the equation

of continuity) is accordingly written as:

plxt.a )a(x(t’%(i(tﬁ))’ 12) _ 5(a),

where p(a) is the initial mass density at the temporo-spatial point (t,,a): p(x(t,,a))= p(a). If the
fluid is incompressible fluid then 5(x(t,,a))= 5(a)= p, , where * o, " is a constant. Consequently,

A(x(t,a), y(t, a), 2(t,a))
d(a,b,c)

A functional form depending of “t* and “a’ is said to be a Lagrangian functional form. A

Lagrangian functional form describes the whole dynamical history of the associated physical
characteristic of each fluid particle and is therefore more fundamental than the corresponding
Eulerian functional form. At the same time, the Lagrangian specification of a fluid flow leads, as a
rule, to a very cumbersome analysis, largely because it does not allow determining directly any
spatial partial derivatives of physical characteristics of the fluid flow as its velocity, mass density, or
pressure (cf. Batchelor [1967, p. 71]). Therefore the Eulerian specification of fluid flows is taken for
granted practically in all studies on fluid mechanics and particularly in this exposition.

Still, in all boundary value problems of fluid mechanics, in which boundary conditions are
given at varying surfaces, especially in the cases where the surfaces are not known, the Eulerian
formalism leads to some grave paradoxes (contradictions), which make questionable, not only the
validity of solutions of some problems of this kind, but also the validity of the formulations of the
problems as such. In this connection, it is to be remarked that all problems of fluid mechanics in
general, and boundary value problems in particular, are nonlinear ones, which cannot be solved

analytically. Therefore, various approximations (as the linear one), and also various analytical

25



methods (as an asymptotic one or as the method of averaging an equation and its unknowns with
respect to the time argument or with respect to some spatial arguments), are often used to allow
solving the problem. The paradoxes, which arise in the result of the approximations, made or in the
result of the analytical methods used, sometimes remain unnoticed by the writers or they are tacitly
ignored by the writers as some freak properties of the approximations or methods, which should
disappear once the problem is rigorously solved by somebody else. Still, as a rule, rigorous solutions
of the problems are not and will not ever be available. Therefore, once a paradox is detected in an
axiomatic theory, such as the water wave dynamics based on the Eulerian specification of fluid
flows, it is important to show that this paradox can, not only be eliminated, but be eliminated in such
a way that its elimination creates no other paradoxes. It is clear that any given paradox can be
eliminated without eliminating the analytical methods, which engender it, only by explicitly
formulating and granting certain additional implicit hypotheses (assumptions) underlying the
methods. In this case, the additional hypotheses can result in some other (secondary) paradoxes
(contradictions). If this happens then the entire strong theory, which includes both its basic principles
(axioms) and the additional hypotheses, is contradictory. In order to get a consistent theory, some or
all additional hypotheses, along with the corresponding analytical methods, should be rejected. In
this connection, it should be recalled that according to the most general rule of constructing
axiomatic theories, if an axiomatic theory turns out to be contradictory then the number of its axioms

must be decreased.

4. Basic equations for a fluid flow

4.1. The continuity equation of the fluid mass density
The differential equation of conservation of mass during a fluid flow is called the mass
continuity equation or simply the continuity equation whenever there is no danger of
misunderstanding. In accordance, e.g., with Landau and Lifshitz [1987, pp. 1-2], the continuity
equation for the fluid mass density flow relative to a given rectangular rectilinear laboratory

coordinate system, can, in the given version of Eulerian specification, be written as:
P 1v.(pv)=0, (4.1)
ot

where p is the mass density and \LE<V1,V2,V3> is the fluid velocity, at a temporo-spatial point

(t,X) = (t, X, X,, %;) = (t, X, ¥, Z). The vector
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J=pV (4.2)
is called the mass flux density,
Hypothesis 4.1. It is hereafter assumed that the liquid is incompressible in the sense that its

mass density p(t,x) is constant throughout the layer; i.e. p(t,g): Py, While * p;,” is a constant. The

continuity equation (4.1) of the liquid flow in the layer has the form

3
i\LEZ'\LEZVJ’ijoy (43)
j=1
because
Dp _ op
=24V .Vp=0. 4.4)e
ot a 7 (4.4)

4.2. The continuity equation of the fluid momentum flux density
In accordance, e.g., with Landau and Lifshitz [1987, pp. 44-45], the continuity equation for

the fluid momentum flux density can be written as:

: 3011,
8(pV,)+Z U =0 foreach i e o, (4.5)
ot a1 OX; ’

where /7 is the momentum flux density tensor. The latter is defined thus:

Hij = P5ij +pViVj -7 = —0jj +pViVj ) (46)
subject to:
o; =-Po; +1y, (4.7)
oV 3 :
ij = M J _25112% 45'12%

OX; 0% 3 i 0% 1 0%, (4.8)

2 3

v v v e (e -2 v
k=1

with coefficients # and " independent of the velocity. The tensor o is called the total stress tensor,
—Po; is called the inviscid stress tensor, and z; is called the viscous stress tensor. The above form

of the invicid stress tensor, in which the scalar coefficient P is pressure, is predetermined by the fact
that that liquid as such (in the absence of the field of gravity, e.g.) is isotropic. The coefficients # and
( are strictly positive (>0 and >0) and they are called the coefficients of viscosity; the first one and

the second one respectively. In the general case, # and {'depend on pressure P and temperature T, the
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latter and hence the former not being constant throughout the fluid. Therefore, upon substitution

113, subject to (4.6)—(4.8), into (4.5), ‘n” and “C” cannot be taken outside the differential operator

In most cases of liquid flows, however, ‘4’ and ‘" can be regarded as constant, so that
equation (4.5) subject to (4.1) and (4.6)—(4.8) becomes:

3 3
o) M, DV,V, M [=-VP+nAv, +(g+1n)vi2vkv : (4.9)
6t j=1 3 k=1
where ‘A’ is the Laplacian operator, defined as:
3 3 aZ
A=V.V= Z z (4.10)
k= =1 an

In developing (4.9) from (4.5), the expression on the left-hand side of equation (4.5) can be
developed with the help of (4.1) thus:

a(PVi):p%+V8_p=paV VzglV (pV )

at ot ot
v, (4.91)
= p—-V, ZV Vi.p-pV, Zv V.
ot P}
At the same time, the item * pV.V.’ of (4.6) contributes into the expression on the right-hand side of

equation (4.5) the following expression:
3 OpVV
-y p. OPVV; _ p(zvv}v vavp vavv (4.9,)
j=1 j=1
The first two terms on the final expression of (4.9;) are congruent tokens of the last two terms in
(4.9,), so that all these are cancelled in the final expression for (4.5).
The equation (4.9) is a conventional equation of motion of compressible viscous fluid, which
called the Navier-Stokes equation. The scalar mass continuity equation (4.1) and the 3-vector
momentum flux density continuity equation (4.9) form the set of four homogeneous partial

differential equations for four unknown functional variables V,, V,, V,, and P, the understanding

being that these equations should be supplemented by the appropriated boundary conditions at the

upper (free) and bottom (rigid) boundary surfaces.
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Equation (4.9) becomes considerably simpler if the fluid may be regarded as incompressible,
so that equation (4.3) holds, and the last term on the right-hand side of (4.9) vanishes. In discussing
viscous fluids, the latter are almost always regarded as incompressible, so that equation (4.9) takes
the form:

3
%Jr Vv, i:—iviP-FVAVi, (4.11)
EE = p

where the coefficient “v’, defined as:
vn/p. (4.12)
is called the kinematic viscosity, while the coefficient ‘5’ itself is called the dynamic viscosity.

Consequently, the stress tensor in an incompressible fluid becomes:

- 0V,
o; =-P5; + n(%+—1) (4.13)

oX; 0%

If processes of dissipation of energy are unimportant in motion of a fluid then one may set
n=¢=0 (4.14)

and call this fluid inviscid or ideal. In this case, equation (4.9) turns into:

3
N, DV, i=—1vip (4.15)
ot j=1 P

which is called the Euler equation.
In the motion of an ideal fluid, there is no heat exchange among different parts of the fluid

and also between the fluid and the bodies adjoining it. This means that that motion must be adiabatic
or isentropic, Denoting the entropy per unit fluid mass at a temporo-spatial point (t,Z) by ‘s(t,g)’,

the condition for its adiabatic motion:

s(t,x)=s,, (4.16)
where ‘s’ is a constant, implies that
DS.3 v.vs=o (4.17)
Dt &
(cf. (4.4)). Owing to (4.16), the familiar thermodynamic equation:
dw=Tds + vdP, (4.18)
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where w is the enthalpy (heat function) per unit mass of fluid, v=1/p is the specific volume, and T
is the temperature, turns into
dw=vdP =dP/p. (4.19)

Hence, (4.15) can be rewritten as

LS
E'+{Z;vjvj)vi =-Vw. (4.20)
=

If the ideal fluid in question is incompressible, so that for every pertinent temporo-spatial
point (t,g), p= p(t,g): Py, Where “ p,,” is a constant, then either equation (4.15) or (4.20) can be

rewritten as:

VL[~ __v|FP
E{;vjvj)vi_ Vi(po} (4.21)

In this case, either equation (4.15) or (4.21) implies that a necessary condition for the fluid in

question to be at rest (in mechanical equilibrium) that corresponds to \L(t,x)=constant is that
P(t,x)=P,(t), where P, is a function of t only. Nether equation (4.15) nor (4.21) has a solution that

describes the hydrostatic equilibrium of the liquid layer in a homogeneous field of gravity.

If a fluid is in a homogeneous gravitational field then an additional mass force pg, where

g= <0,0,—g> subject to g > 0 is the acceleration due to gravity, acts on any unit volume. Therefore,
the ith component of this force, pg; subject to

g, =—-99, foreach iew,, (g >0), (4.22)
must be added to the ith component of pressure force, —V P, on the right-hand side of equation

(4.21). Hence, in the presence of the above homogeneous field of gravity, equation (4.21) is replaced

with

oV, 3 1
b Ev_v_ =——_V.P+a0q. 4.23
ot [,—=1 : ‘}/' p “29

subject to (4.22). If the fluid is incompressible one of a constant mass density p, then equation

(4.23) can be written as:
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N[5 __v| P
Sl e

Comment 4.1. If V. =(V,,V,,V,)=(0,0,0), which means that the liquid layer is in equilibrium

which comes instead of (4.21).

(at rest), and if P is denoted in this case by ‘ P,” then equation (4.24), subject to (4.22), reduces to the

following set of three partial differential equations
ok, _ 0 (a) OP,
OX oy

In accordance with equations (4.25,a) and (4.25,b), the function “ P,” is independent of ‘x’ and ‘y’, so

-0 (). T2 =-pg ©) (4.25)

that it can depend only on ‘t” and ‘z’, i.e. P, = P,(t,z), while integration of both sides of equation

(4.25,c) between 0 and a given real number z yields

Pe(t,Z)— Pe(t10):_pogjd2’:_pogza (4.26)
0
which is valid for
each te R, each (x,y)e E,, and each ze[-h(x,y)0], (4.27)
i.e for
each (t,x)e D¥(~h,Z). (4.27")

In this case, the boundary functional form * Pe(t,o)’ and hence equation (4.26) can be specified in the

following two ways.
i) If the part of space above the upper boundary surface z=0 of the liquid layer is vacuous

then Pe(t,O)z 0 and hence equation (4.26) becomes
P.(t,z)=P,(z)= -p,02, (4.28)
so that P, (z) thus defined is the net hydrostatic pressure at the depth —z>0.
ii) If the above part of space is occupied with air then P,(t,0)=P,(t), where P,(t) is a given

atmospheric pressure at z=0, and hence equation (4.26) becomes
R.(t.z)=P.(t.2) 2 R(t)+ R(z)=P.(t)- po02, (4.29)

so that P,(t, z) thus defined is the total equilibrium pressure at a depth —z>0.e
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4.3. A potential, or irrotational, fluid flow

The cross product of any two arithmetical vectors a and b in E3 can be written as:

3 3
(anb)=>>e,ab, foreachica,, (4.30)

j=1 k=1

where ‘g, " is the completely antisymmetrical unit pseudo-tensor of Levi-Civita. Equation (4.30)
with ‘V” as ‘a’ and ‘V’ as ‘b’ becomes

(curlV) =(VAV) = iigukv V, foreach icaw,;, (4.31)
j=1 k=1
A fluid flow is said to be a potential, or irrotational, one if curl V = 0 throughout the flow and a
rotational one if curl V # 0 in some part of the flow; 0 defined as 0= (0,0,0) is the arithmetical null
3-vector. The velocity V in_potential flow can be expressed as the gradient of some scalar, which is
called the velocity potential and which will be denoted by ‘®’, so that
V=grad®,ie V,=V,® foreach iew,;. (4.32)

In this case, (4.31) becomes
3 3
(curl Vo), = (V A VD), E[ZZgukv \% ]CD 0 for each i € @,,. (4.33)
i 1

By (4.32), equation (4.3) becomes
AD =0 (4.34)
subject to (4.10). Applying the operator V, to both sides of (4.34) and making use of (4.32) once
again yield
AV, =0 foreach i€ w, ;. (4.35)

Hence, equation (4.11) turns into (4.15).

4.4. An unsteady Bernoulli equation: the first integral of the Euler equation
With “V” as ‘a’ and “curlV * as ‘b’, equation (4.30) can be written as:
3 3 3 3
[\L/\(M\i)]l [V /\(V/\V) =Zzzzgukv gklmvv
k=1 1=1

j=1 1=1 m=1

(4.36)

w

1oz [<
:Z;(vjvivj “ViV V) =SV - Z;v,v =0,
1= I=

where use of the equation
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3
Zgijk Em = 5i|5jm _5im5j| (4.37)
k=1

has been made. By (4.32) and (4.36), for each (t,x)e D (~h,Z) Euler’s equation (4.24) becomes

V,¥(t,x) =0 foreach i c o, (4.38)
subject to
Pt = p ab(t X) —po[_(D(t N + Pt X) + 07
(4.39)
= Py @g'l) +E (LX) +P(t.X)+E,(2)=p qu)g X L E@,x) + Pt ),
where
E (0= oV ] = Ll e 0], (4.40)
E,(2)=-R.(2)=py0z, (4.41)
E(t,X) = E (t,X) + E,(2), (4.42)

by (4.28) and (4.32). In this case, the former domain of definition of the functional form ‘Phs(z)’,

which is defined by the relation

ze[-h(x,y)0], (4.43)

occurring in (4.27), is supposed to be automatically extended so as to satisfy the relation
ze[-h(x,y)Z(t,xy)]. (4.44)
It is understood that E,(t,x), E (z), and E(t,x), defined by (4.40)—(4.42), are respectively the
volumetric kinetic, potential, and total energy densities of the liquid at the temporo-spatial point
(t,X).
Given teR, let X' =(x,y’,z’) and x"=(x",y",z") be two arbitrary different points located in
the fluid at the instant t . Let, also, L(x’,x") be an arbitrary Jordan arc (see, e.g., Apostol [1963, p.
170]) joining x’ and x” and lying entirely in the fluid at that instant, i.e. L(xX,x") < D¢ (-h,Z(t,)) .
Taking the line integrals of both sides of equation (4.38) along L(x’,x”) from x’ to x”, one gets
Y(t,x") =Y(t,x") (4.45)
independent of the path of integration. Since the points x’ and x” are different, therefore equation

(4.45) holds if and only if
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W(t,x) = P,(t) foreach t e R and each x € Df (-h,Z(t,), (4.46)
where ‘P, (t)” is an arbitrary real-valued functional form independent of ‘x” and hence possibly

depending only on “t’. Thus, equation (4.46) subject to (4.39) is the first integral of equation (4.38),
i.e. the first integral of Euler’s equation (4.24), — the one, which will be called the unsteady
Bernoulli equation for an ideal incompressible fluid flow in an infinite layer.

Without loss of generality, ‘ P,(t)* can be specified thus:

R 2 [PEX]L ), (4.47)
the understanding being that (a) if the part of space above the upper boundary surface z = Z(t, 52) of
the liquid layer is vacuous then

[P.X] 2, =0 (4.48)
and that (b) if the above part of space is occupied with air then

[P.X)].2x,) 2R, (4.49)
where Pa(t) IS a given atmospheric pressure at z = Z(t,gz). In the latter case, | have tacitly assumed
that P,(t) is the same at least for z [Z,Z,,] and also | have neglected the surface tension of the

liquid. Consequently, in both above cases, the Bernoulli equation (4.46) subject to (4.39)—(4.42) can

be written as:

P - [PAX] ) =0 T E (1)
(4.50)
AD(t, AD(t, 1 2
= _po%_ E(t,X) - Ep(z): _po%_gpo[zq)(tal)] — P92
and also as:

P(tX) =[Pt X)], ) = Pt X) + Pi(2), (4.51)

where P, (t, x), defined as:
0= -7 T8 g 0= -5, PO s e o, (4.52)

is the dynamic pressure at the temporo-spatial point (t,x) € D (—h,Z) and Phs(z), defined by (4.41),

is the hydrostatic pressure at each temporo-spatial point (t,x) € D (=h,Z) of the horizontal plane
with the applicate z.

Comment 4.2. Equation (4.20) can be written as a variant of equation (4.38), namely
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VY'(t,x)=0 foreach iew,, (4.38")
subject to
w02 0L v g . (4.39)
a 2
Therefore, in analogy with (4.46), the first integral of (4.20) can be written as:

W't x) = w,(t), (4.46")
where “w,(t)’ is as before an arbitrary real-valued functional form depending only on ‘t’. Let in
(4.32)

D(t,x) = D'(t,X) —D,(t) subjectto @'(t,x) = D(t,X)+ D, (t), (4.32)
where * @ (t) ’ is another arbitrary real-valued functional form depending only on ‘t’. Hence,
V(t,x) = VO(t,x) = VO'(t, X) . (4.32;)
At the same time, given t, € R, one may particularly set

D, (t) = -jwo ) dt’, (4.32)

%)
whence, by the Leibnitz rule of differentiation of an integral with variable limits,
0D, (t) _

—w, (t) . 4.32"
25 =-w() (4.32")

Consequently, by (4.32,), (4.32,), and (4.32"), equation (4.46") subject to (4.39') becomes
% + %\L 2(t,x) +w(t) =0. (4.46")

Owing to (4.32y)), ‘“®" can be freed of its initial denotatum, defined by (4.32;), and denote @, while

(4.46") means that one can, without loss of generality, put w,(t) =0 in (4.46").e

4.5. The momentum flux density tensor

When regarded as a pertinent instance of (4.5), equation (4.24) can be written as:

3

4 0S;.
o % + Za—x” =0 for each i€ w,, (4.53)
i=1 X,

subject to the pertinent total momentum flux density tensor S;, defined for each iew,, and

ij

each je w ; as
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Sy =P3, + pVV, + Py 028,55, (4.54)
Accordingly, in the presence of the field of gravity, the liquid becomes as if anisotropic.

Strictly speaking, however, the pertinent instance of (4.5) is the homogeneous equation:

oV, 0S5y .
—t4+» 2 =0 foreach icw 4,53
Po ot JZ; 8Xj C W3 ( 1)
subject to the pertinent abridged momentum flux density tensor S;, defined as
Sy =PS; + PV, (4.54;)
whereas equation (4.24) subject to (4.22) can be written as the inhomogeneous equation:
- 3, 0S;
pO% +y —L=-g5, foreach icw,, (4.53)
ot 440 '

In this case, passage from the homogeneous equation (4.53;) to the inhomogeneous equation (4.53;)
changes the meaning of the unknown functional variables involved, particularly of ‘P’. The
following simplest example illustrates the above said. The homogeneous Newtonian equation
d*x(t)
dt?

of a material particle with a constant velocity. At the same time, the inhomogeneous Newtonian

=0 implicitly defines a functional form “ x(t)’, descriptive of one-dimensional steady motion

2
equation %Z(t): f(t) implicitly defines the homographic functional form *x(t)’, descriptive of

one-dimensional unsteady (accelerated) motion of a material particle with a varying velocity.

The unsteady Bernoulli equation (4.50) or (4.51) subject to (4.52) is the first integral of the
Euler momentum flux density continuity equation (4.24), i.e. (4.53) subject to (4.54). Therefore, the
latter equation subject to the former one is a tautology, which will be demonstrated before long in

what follows. At the same time, the total momentum flux density tensor S itself subject to the

unsteady Bernoulli equation, which is made explicit below, is a useful characteristic of wave motion.
Substitution of P, defined by (4.50), into (4.54) yields

- D
Si = [Po(t)_ Po E}@J - Pogz(é}j - 5}3513)+ (Eij - EJ; )’ (4.55)
subject to (4.40) and (4.47)—(4.49) and also subject to
~ oD | 0D
E; = pViV; = p (Vio)v jq)): p{G_XJ[G_XJ ) (4.56)
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by (4.32). The 3x3-tensor S, defined by (4.55), satisfies the equation:

!

3 3,65, N,
Z;Vjsu = Z;TJ: ot (4.57)
i= i= j
because
3 AD D N
Z;vj(gauj = 7' :EI’ (4.57,)
j=
3
> v, [Rt)s,]= VR (t)=0, (4.57,)
j=1
3
Zvj [Pogz(é‘ij - é‘isé‘ja)]: pog(viz - 6}3V3Z) = pogé‘ia(l_l) =0, (4.573)
i-1
3 3
>V (E,~Es,)=V E,~V,E =0. (4.574)
i=t j=1

The first three of equations (4.57,)—(4.57,) are self-evident, whereas the last one follows from (4.56)
by (4.3), (4.36), and (4.40) thus:

3 3 3 3
Z;VJE“_ - pOZ;vj(vivj)z po(z;vjvj)vi +poviz;vjvj
1= ]= ]= j=
3 1 )
= po(zvjvj)\/ :Epovi\i =ViE.

j=1

(4.58)

Equation (4.57), being formally the same as (4.53), is tautological as expected.

4.6. The energy continuity equation
Besides (4.38) subject to (4.39), equation (4.24) subject to (4.22),can be written as:

oV, 3
pOEI'Fpo(Zlevj}/i +Vi(P+pogZ)=O. (4.59)
i

Multiplying both sides of equation (4.61) by V, and then summing up the result with respect to i
from 1 through 3 yields

%+iviq -0, (4.60)

subject to (4.40) and also subject to the equation
Q=Q(t,X)=V,(P+E+p,02)=V,(P+E +E,)=V,(P+E) foreach ie ;.  (4.61)
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In this case, V, =V,® by (4.32), while E,, E,, and E are defined by (4.40)—(4.42) respectively. In

developing (4.60) from (4.59), use has been made of the self-evident equation:

3

Zviati Zath =E, (4.60,)
i=1

and also, by (4.3), of the equations:

3 3 3 3 3
P02 D VNV, = %ZZVJVJ.VM = %ZVjVJV 2
j=L

i=1 j=1 i=1 j=1

3 3 (4611)
:%Zvi(\/i\iz): zvi(ViEk)’
ij=1 i-1

3 3
D VViP+pgz)= D ViVi(P + pygz)]. (4.612)

i=1 i=1

By (4.42), it follows that

(LX) _ dpygz _ 0 (4.62)

a a

because ‘ p,” and ‘g’ are constants, and also because the variables “t” and *z” are independent. At

the same time, by (4.47)—(4.49), it follows from (4.50) that

AD(t, x 5&) t, X
P+ ELX) =[P ) 2 B = By (1) - p, TEH. (4.63)
In this case, by (4.3), it follows from (4.61) and (4.63) that
2 D
>vQ -3 vlE-El-3v v(R0-2 T
i=1 i=1 i=1 (464)
51) _ 3
“nge(u ) zve.
i=1
where
- . oD .
Qi = QLX) ==p,— foreach ic . (4.65)
At the same time, equation (4.61) subject to (4.63) and (4.65) reduces to
Q =Qi(t,x) Evi(PO(t)_pO %) =Q/(t,x) + Po(t)‘/i foreach i e w ;. (4.61a)
By (4.62) and (4.64), equation (4.60) is equivalent to this;
% EZ_ZVQ - ZVQ (4.66)
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subject to (4.40), (4.42), (4.61), and (4.65). The 3-vector Q(t,x), whose components are defined by

(4.61), is called the flux density vector across the unit area, or Poynting vector, of the liquid at the

temporo-spatial point (t, 5). The 3-vector Q,(t,x), whose components are defined by (4.65), is

called the effective flux density vector across the unit area, or effective Poynting vector, of the liquid

at the temporo-spatial point (t, x).

4.7. The dynamic boundary condition at the upper (free) surface of the liquid layer
For each for each (t,x,) e RxE,, equation (4.50) or (4.51), subject to (4.52), at z = Z(t, x,)
can conveniently be rewritten thus:

T (%) B Y1) N (4.67)

0 -2ty Po

2(tx) = | B
g a

which is the dynamic boundary condition at the upper (free) surface of the ideal incompressible
irrotational liquid layer, no matter whether the space above that surface is vacuous) or whether it is
air-filled. I regard equation (4.67) as an implicit definition of the function Z in terms of the function

®, which will be justified in the sequel by asymptotically solving that equation with respect to @.

4.8. Kinematic boundary conditions at the bottom and upper surfaces of the liquid

layer

D
Application of the operator Dt as defined by (3.14), to both sides of each one of equations

(3.1) and (3.2) yields

lim | 2% _ i | 2202) =0 (4.68)
£>+0 Dt 2=—h(x,)+¢ e>+0 Dt 7=Z(t,x,)-¢ ' |

whence

Sveamsuen] <o (459

Z:—h(ﬁz)

éz(;’t&)‘i'{ivj (t,l)vjz(tllz)_vs(tvﬁ)} =0, (4.70)
j=1 2=7(t,x,)

subject to the general definitions (3.15). Equations (4.69) and (4.70) are the basic kinematic

boundary conditions at the bottom (rigid) and upper (free) boundary surfaces of the liquid layer,
39



respectively. If the fluid flow is incompressible and irrotational then equations (4.69) and (4.70),

subject to (4.32), become

[ZZ: V.0t x)) @g’x (4.71)

ﬂz(t,zz) {i(v @(t,x)\V,Z(t, x,)) -

=0, (4.72)
a i=1 } Z(t,x,)

which are the pertinent kinematic boundary conditions at the bottom and upper boundary surfaces of

the liquid layer respectively. If

h=C,,ie h(x,)=d foreach x, €E,, (4.73)

where “d ’ is a constant, then equation (4.71) reduces to
{—ﬁp (t,x)} ~0. (4.74)

éz z=—d

From the relevant theoretical considerations and practical experience, one can assume

(postulate) that, in the absence of macroscopic currents,

hIim [Vﬂ)(t,g)]z:_h(zz) =0 foreach (t,x,) e RxE, and each i € @, ;. (4.75)

If (4.73) holds then (4.75) trivially becomes
gim[%} =0 foreach (t,x,) e RxE,. (4.76)

—o0 1e—d

By (4.75), equation (4.71) turns into the tautology 0=0 as h, — o and thus becomes ineffective.

By (4.76), the same applies to equation (4.74) as d — «. Hence, the two cases are equivalent.
Comment 4.3. In the case of a real, viscous fluid, there always exist short-range attractive

forces between molecules in the surface of a solid body and molecules in the thin layer of the fluid

immediately adjacent to the solid surface. These attractive forces result in adhesion of the adjacent

fluid to the solid bottom surface, so that

v, (t’l)]z:_h@ =0 for each (t,x,)e RxE, and each i € @, ,. (4.77)

This relation is the dynamico-kinematic boundary condition at the bottom surface of a viscous fluid

flow, which comes instead of either condition (4.69) or (4.71).e

4.9. A dynamico-kinematic boundary condition at the free surface of the liquid layer
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Theorem 4.1. For each (t,x,)e RxE,:

at 9 a  pg A

1 [ab(t,x)+ 1 oEk(t,x)Lm

g, a p a

M:{“iﬁ@(t,xh 1 Ek(t,z)}

(4.78)

Equation (4.72) subject to (4.78) is called dynamico-kinematic boundary condition at the free surface

of the liquid layer.
Proof: Equation (4.67) can be developed thus:
_Lav(tx, Z(tx,) 1

Z(t’&): g a 009 Ek(t;&’z(t’lz))’
Therefore,
oZ(t,x,)  1[a0(t;x,,2) 1[ ap(t; x,,2)
o _5{ a l=z(t,x2) _E{ a l=z(t,xz)
1 [ &, (t;x,,2) 1 [ &, (t;x,,2)
B o9 ‘: a j|z_Z(t,x2) B o9 ‘: a jlz_z(t,xz)
whence

which immediately reduces to (4.78).e

(4.79)

(4.791)

(4.79,)

Comment 4.4. The set (conjunction) of four equations: (4.34), (4.67), (4.71), and (4.72) will
be denoted by ‘Q(®,Z)’, and the set of four equations: (4.34), (4.67), (4.74), and (4.72) by

‘Qu(D,2)’, where the subscript ‘U’ is a capitalized first letter of the word ‘uniform’. Likewise, the

set of four equations: (4.34), (4.67), (4.75) or (4.76), and (4.72) will be denoted by ‘Q_(®,Z2)".

Since, however, the function Z is an unknown, therefore the boundary condition (4.72) is ineffective.

In order to make such a set of equations effective, it should be supplemented by one or more

additional hypotheses (assumptions), which restrict the class of problems, to which that set applies.

One of such hypotheses is stated and discussed in the next section.e
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4.10. Paradoxes of the Eulerian formalism
Let

Por (2) = {Hx, € B2 {(x,,2)x, € Eo} (4.80)
i.e. PXY(z) is the plane perpendicular to the applicate and crossing the latter at a given point z. In this
case, however, in accordance with (3.5), a given spatial point
x=(x,2)eE, x[Z,,Z,] (4.81)
can belong to a fluid particle for some teR and it cannot belong to any fluid particles at some other
teR. Consequently, by Definition 3.2, given teR, the part P (t,z) of P (z), which is defined by
the relation:
Pe (t,2)= P (2)N D (=h, Z(t,)) 2 D, (4.82)
passes through liquid, while the complementary part P, (t,z) of P,,(z), defined as
Polt2)= Py (2)- P (t,2)=2, (4.83)
is vacuous (immaterial), so that no liquid characteristics are defined for (x,,z)e Py, (t,z).

In the literature on the Airy (linear) theory of gravity waves on a liquid layer, the boundary
condition (4.67) is replaced by the corresponding linear boundary condition, which is evaluated at
the coordinate XY-plane P,,(0), defined by the equation z =0, and not at the exact but unknown
free (upper) surface S; of the liquid layer, defined by the equation z = Z(t, x,) (see, e.g., Lamb [1932,
p. 364], Landau and Lifshitz [1987, p. 32], Mei [1989, p. 8], Dingemans [1997, pp. 39-41]).

However, given teR, the velocity potential (D(t;gz,o) and all related liquid characteristics are

defined only on P;,(t,0) and are not defined on P, (t,0). Therefore, the tricky device of replacing

the boundary condition at the exact but unknown disturbed free surface of the liquid layer by an as if
approximate boundary condition at the liquid free surface in equilibrium is paradoxical that can be
called the paradox of the boundary condition at a free liquid surface.

A problem of fluid flow cannot, as a rule, be solved analytically. Therefore, it is often

desirable to average either some governing equations or some fluid characteristics before solving the

problem. In this case, the time average F(t,g)t of the fluid characteristic, taking on values of a

certain functional form, is supposed to be defined by the universal formula:
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T/2
F(t,x) = lim 2 jF(t,g)dt (4.84)

-T/2

for any given spatial point x in the fluid (see, e.g., Mei [1989, Sec. 10.2, pp. 453-463] or Dingemans
[1997, part 1, sec.2.9, pp. 184-215]). However, given x subject to (4.81), F(t,x) is, in accordance

with the above-said, defined only on a part of the entire interval in (4.84). Therefore, for any such

spatial point, the time average mt as defined by (4.84) does not exist. I call this inconsistency of
the formula (4.84) the paradox of time averages.

Both the above paradoxes are results of describing a fluid flow by Eulerian variables. The
first of them will explicitly be solved asymptotically in the next section.

4.11. The analytical extension of ®
Both paradoxes that have been indicated in the previous subsection can be solved
(eliminated) by subjecting the velocity potential ® of a potential (irrotational) fluid flow in a liquid
layer as specified in subsection 3.1 to the following hypothesis.
Hypothesis 4.2: The hypothesis of analytical extension of ®. In the case of a potential
(irrotational) fluid flow in a liquid layer as specified in subsection 3.1, there exists a harmonic
function ®, which satisfies the Laplace equation (4.34) for in the whole time-space, i.e. for all

<t,g> e RxE;, and which also satisfies all pertinent equations of subsections 4.8 and 4.9, -
particularly equations (4.52) or (4.54), (4.71), (4.72), (4.76) and (4.78).e

Comment 4.5. To be more specific, Hypothesis 4.2 means that that for each <t,52> eRxE,:
there is the analytical extension (continuation) of the function ®(t,(x,, )) from the interval
[-h(x,),Z(t,x,)] to the whole applicate axis (—oo,oo). In this case, the function @ is denoted by the
same letter “@’. Accordingly, the pertinent analytical extension of any bulk function (as V,, P,, etc)
will be denoted by the same symbol as that denoting the original function itself (as “V,’, *P,’, etc,

respectively).

Hypothesis 4.2 makes explicit the assumption, which remains implicit when the temporal
partial derivative or a time average of a bulk characteristic of the fluid flow is unrestrictedly
computed at all points of the flow with the help of the corresponding conventional formula as if the
characteristic were defined on the whole three-dimensional space at any instant of time; or when the
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boundary conditions at the free surface of the liquid, i.e. at z=7Z(t,x,), are replaced by appropriate
approximate boundary conditions at z =0 (see the next section).

Incidentally, every approximate solution for @, which is obtained in the literature in the
framework of the conventional linear wave theory, proves to be analytical on the whole infinite
space. This fact agrees with Hypothesis 4.2, but it does not, however, prove that Hypothesis 4.2 is
true, i.e. that it is a theorem of hydrodynamics.

The analytical extension of ® in question is analogous to the extension of the electrostatic
potential, which is tacitly done in solving electrostatic problems by the method of images (see, e.g.,
losilevskii [1978]).e

Convention 4.1. In accordance with Hypothesis 4.2 and Comment 4.5,

1) any bulk function (as @, V,, P,, etc) will be denoted by the same symbol as that denoting
the original function itself (as “®’, *V,’, * P,’, etc, respectively);
2) each bulk relation, which is stated for the liquid layer as a true one, is assumed to be

preceded either by the quantifier ‘for each (t,x) e Rx E;:’.e

4.12. Corollaries of Hypothesis 4.2: Modified boundary conditions at the free surface
1) It follows from Hypothesis 4.2 that for each <t,g> e RxE;:
D(t,x) =D (L, x,)2", (4.85)
m-o M:
where
D™ (t,X,) EVZ—(”E’K)} foreach me @,, ®(t,x,) =[®(t,x)],,,  (4.86)
z=0
and where, as usual, 0!=1.e
2) By (4.32), (4.85), and (4.86), it follows that

V. (t,X) = V,&(t, X) = i%[vicpm (t.x,)}z" foreach i< {12}, (4.87)

_ qu)(tvl) _ C 1 (m) m-1 _ S = (M) m
Vot X)=— ‘;(m-uq’ (t.x,)z —%m!CD (t,x,)z", (4.88)
O'tD(t,Z) — S iéq)(m)(t!XZ) Zm' (489)

a “Zm a
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3) It follows from (4.40) and (4.85)—(4.89) that

0

E ) =3 TED (%2 (4.90)

1=0 1=
where

0 - é’lEk(tiﬁ)
Ek (tlﬁz)—{ §Z| :|Z=O

=% i l{i(viq)('_n)(t,lz)xvid)(")(t,xz))JrCD("””)(t,gz)(l)‘””)(t,gz)} (4.92)

foreach | € w,,

the understanding being that

EQ(tx,) =[E, (t.X)],_ :—po'z{i( ®‘°>(t,zz))2+(<D<”(t,xz)ﬂ. (4.92)

i=1

Indeed, equation (4.40) can be developed by (4.85)—(4.89) thus:

E(6X) = Y [V, o OV, 0t 0]

i=1

=30 i[ivicb“”)(t,zz)zm}{ivw(t.mz“}

i=1 [ m=0

(4.90,)

0

1 = 1 m m-1 1 n
+E,Do g(m—l)!q)( )(t152)z j||:z QD( )(t X,)Z" }

n =l

=%poiii{zzz(v @™ (t,x )XV @™ (t,x ))+CD('“+1’(t X,) DM, xz)} .

Let =m+n sothat m=1-n. Then (4.90,) reduces to

o |
E, (t, %) :%pozz i [Z(v U (t, %,) [V, @ (t,X,) )+ DD (1, x, )DL, xz)}
1=0 n:O
(4.90)
which can be rewritten as (4.90) subject to (4.91).
4) By (4.87)—(4.89), expanding the expressions on the left-hand sides of equations (4.67) and
(4.70) and (4.72) into the Maclaurin series with respect to powers of “Z ’ yields

:—z P™(t,x,)Z"(t,x,)

P09 mom!

w ] (4.93)
R [E(m)(t ' >+po%}zm<t,&>,

209 mom!
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B3 S e ) -0 ) )0 (@94

m=o M| 7=

where, in accordance with (4.86) and (4.90),

Pt x,) = [%“)} foreach me @5 R%(t,x;)= [P (6. X))o (4.95)
z=0
5) Since
© (m) 0 = (m) 0 = (m+1)
iO’tD Zm _ D n iﬁb m O’tD +z AD Zm+l’ (4931)
=ml & a &=moa 0(m+1)' a

therefore (4.93) can be rewritten as

©
Z(talz)"‘la@ ait,XZ):Ad(talz)1 (4.96)
where
Z H(m)tx Z"(t,X,) (4.97)
mOm
subject to
H™(t,x,)= - L E™(t, x,)+—22 &D(mﬂ)(t’&)z(t,xz) for each m e @, . (4.98)
250 7 m+1 a - °

Equation (4.96) subject to (4.97) and (4.98) is the pertinent modified dynamic boundary condition at
z=7(t,%,).

6) Since
S cD(m+1)Zm q)(l) cD(erl)Zm CD(l) q)(m+2)zm+1’ 494
> S ey +1)' (#9%)
therefore (4.94) can be rewritten as
O’Zg&)_@m(t’&):Ak(talz)' (4.99)
where
=1
5 _E t 4.100
X)= 2 Z"(t,x, ) (4.100)
subject to
20 (t,x,)2 -3 Vo™ (tx,)[V, 2t 5, )] ml 0™, )2(1,x,) for each me.a, . (4.101)
i 1 +
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In this case, by (4.31), (4.32), and (4.86), equation (4.101) at m =0 can be developed thus

ZO = _2(Viq)(o) XViZ)+ ®?7 = (_ 2Viviz + ZV3V3J

2 2c0 (4.102)
= —Z Viviz+zvyv),_, = _Z[Vi (ViZ)]Z:O

2
i1 i
Equation (4.99) subject to (4.100) and (4.101) is the pertinent modified kinematic boundary condition
at z=7(t,x,).
7) Subtraction of equation (4.99) from the equation tha is obtained by differentiating both
sides of equation (4.96) with respect to “t ’ yields

2.4(0) 2
q)(l)(tiﬁz)‘f‘ié, % gt,lz) — 0’@('[,%)_'_10” CD(;[,K) =A(t,§2), (4.103)
g a a g a -
where
A(L&)E%—AK(L&). (4.104)

Equation (4.103) subject to (4.104), is the pertinent modified dynamico-kinematic boundary
conditionat z=7(t,x,).

Comment 4.6. In accordance with the definitions of Comment 4.4, the following notation
will be used under Convention 4.1.

a) Equation (4.34) subject to Convention 4.1 will be referred to as (4.34.).

b) The set (conjunction) of four equations: (4.34.), (4.93) subject to (4.95), (4.71), and (4.99)
subject to (4.100) and (4.101) will be denoted by ‘ Q. (®,Z) ’, and the set of four equations: (4.34.),
(4.93) subject to (4.95), (4.74), and (4.99) subject to (4.100) and (4.101) will be denoted by
‘Qu.(®,Z)’. Likewise, the set of four equations: (4.34.), (4.93) subject to (4.95), (4.75) or (4.76),

and (4.99) subject to (4.100) and (4.101) will be denoted by ‘Q_ . (D,Z) .
c) Analogously, the set (conjunction) of three equations (4.34.), (4.103) subject to (4.104),
and (4.71) will be denoted by ‘T (®,Z)’, and the set of three equations: (4.34.), (4.103) subject to

(4.104), and (4.74) will be denoted by ‘T, (®P,Z)’. Likewise, the set of three equations: (4.34.),

(4.103) subject to (4.104), and (4.75) or (4.76) will be denoted by ‘T _, (®,Z)".

Since the function Z is as before an unknown, therefore each one of the three boundary
conditions: three equations (4.93) subject to (4.95), (4.99) subject to (4.100) and (4.101), and (4.103)
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subject to (4.104), is ineffective. In order to make such a set of equations effective, it should be
supplemented by one or more additional hypotheses (assumptions), which restrict the class of
problems, to which that set applies. One of such hypotheses is stated and discussed in the next

section.e

5. Arecursive asymptotic analysis of basic fields and equations of an
irrotational incompressible fluid flow

5.1. The hypothesis of recursive asymptotic representations of the free surface of a
perturbed liquid layer and of the velocity potential of the pertinent fluid flow

Hypothesis 5.1. There exists a real number ¢ e [0,1) such that the following relations hold.

1) For each (t,x,) e Rx E,:

Z(t,x,)= Z(t: X,. ) ~ Z, (X5, ) Ze Coltixs,e), (5.1)

where ‘~’ is the sign of [full] asymptotic correspondence (cf. Erdélyi [1956, pp. 11-14], Olver
[1974, pp. 4-8], or Van Dyke [1975, pp. 26-28]), so that

Coltixe)=lim e Z(tx;,¢), (5.2)
and for each me w, :
é/(m)(t’52) = SILTO gim.[z(t;ﬁzag)_ Z[m—l,l](t;XZ'g)]' (5-3)
subject to
m-1 m-1
Ly g t Xz’ E Z(n) tX,, ¢ E 5n§(n)(t Xy) - (5.4)
n=1 n=1
It is understood that
1
Zuy(t:X,,6)= D7 (6 X,,8) = Zyy (i X, 6), (5.5)
n=1
[ool](t X5, € )5 I'm Z[m 11](t X2, & ) (5.6)
Zw(t:X,,8)= 6"y (t,%,) foreach ne o, (5.7)

2) Analogously, for each (t,x) e Rx Ej:
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D(t,x)= D(t;x,8) ~ Dy 4t X, ) Zs By (1. X)), (5.8)

so that
by (t.X) = lim et x,¢), (5.9)
and for each me w, :
By (1.X) = lim 7" ot x,£)- ®[m_l’1](t;5,g)], (5.10)
subject to
m-1 m-1
Dy (tixe) =Y @ txe) =D "¢ (t,X) . (5.11)
n=1 n=1
It is understood that
1
cD[l,l](t;X’g) = ch(n)(t;lag): q)(l)(til’g)' (5.12)
n=1
q)[w,l](tix.g)z lim (D[mf1,1](t;ﬁ’5)' (5.13)
D, (t:x,6)= "¢, (t,X) foreach new,. (5.14)e

Comment 5.1. In stating Hypothesis 5.1, | have is tacitly assumed that macroscopic currents
transferring liquid masses in the layer are absent. In order to take into account such currents, one
should have set the lower limit of summation in (5.2) to 0, and not to 1. Accordingly, | regard
Hypothesis 5.1 as a sufficient condition that an allowable perturbation of the liquid layer can be
interpreted as a single whole water wave. The real number ¢ introduced in Hypothesis 5.1
characterizes the choppiness (dynamic roughness) of the disturbed water free surface, and therefore
the variable ‘¢’ will be properly called the choppiness parameter. In theory of asymptotic series, such
a parameter is commonly called a scaling parameter or similarity parameter. In the sequel, ‘&’ will

be defined as: ¢ =ka, where a is the surface amplitude of a wave associated with @, (t;x,&) and k

is the wave number of that wave. After a given problem is solved, one may, when desired, pass to the

limit d — +oo (or in general h,, — +o) in all relevant final formulae.e

5.2. General recipes for the asymptotic power expansions of any pertinent bulk

functional forms
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Preliminary Remark 5.1. In this subsection, | shall formulate basic concepts of asymptotic
expansions of functions into asymptotic power series in such a form which is most convenient for
subsequent applications in the exposition. | shall also make explicit some properties of asymptotic
power series, which are not discussed in the standard reference monographs on asymptotic
expansions (as Erdélyi [1956], Olver [1974], and Van Dyke [1975]), but which will be most useful in
the sequel both for proving theorems and for the adequate interpretation of the theory and its
implications.e

Definition 5.1. 1) * F(z, &) ” is a placeholder for, — or, semantically, F(z,¢) is, —a functional
form, which is defined on a certain domain Tx[0,1), i.e. for each z € T and each & <[0,1), where &,
is a given strictly positive real number or . It is assumed that there exists a natural number uewy

such that for each 7 e T and for each & €[0,1):

F(r,6) ~ R q(m.8) =D (D)€", (5.15)
n=p
where ‘~ is the sign of [full] asymptotic correspondence, so that
f, ()= !Lrpo e "F(r,¢), (5.16)
and for each me o, ;:
fiy () = lim e ™F(r.8) - Ry 1(n8)], (5.17)
subject to
m-1 m-1
Fn1q(7.6) =D Foy(r,e) =D (n)e". (5.18)
n=u n=u
It is understood that
u
P (z:6) = Z Foy(z.6)=F,(7,8), (5.19)
n=u
Fo.q(7,€) = rInI—II]o Fina,q(7:€), (5.20)
Foy(z.8) = f (r)e" foreach new, . (5.21)

Also, the conjunction of (5.16) and (5.17) subject to me @, , is equivalent to (5.17) alone subject to

1+1

me o, , because

Fu1q(7.6)=0. (5.22)
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2) Given 7 €T, if the conjunction of (5.16) and (5.17) holds then the infinite sum

‘F..(z,&) " is said to be the [full] infinite asymptotic series for “ F(z,&)” in integer powers of ‘¢’
in the set w,, or briefly the infinite asymptotic series for “ F(z,&)” with respect to ‘&’ about the

point £ =0. This point is said to be the distinguished point of the series. The sign ‘~’ is said to be the
sign of asymptotic correspondence. The variable ‘&’ is said to be the scaling (or similarity)

parameter of each one of the following objects: (i) the asymptotic series ‘F, ,(z,&)’, (ii) the
functional form “ F(z,&)’, (iii) either of the associated functions F(z, ) and F of the functional
form* F(z,¢)’.

3) For each ne w,, for each (z,£) € Tx[0,1): the functional form f, (z) is said to be the nth

(n

non-scaled partial asymptotic image of the functional form F(z,&) with respect to ¢, whereas the

functional form F (z,¢) is said to be the nth scaled partial asymptotic image of the functional form
F(z,¢) with respect to &. Consequently, the associated function f,, of the functional form f ()
and the associated function F of the functional form F,(z,&) are respectively said to be the nth
non-scaled and nth scaled partial asymptotic images of the associated function F of the functional
form F(z,&) with respectto * &”.

4) For each me w,, for each <r,g> e Tx|[0,1): the functional form Fim.(7,€) s said to be
the mth cumulative asymptotic image of (or mth asymptotic approximation to) the functional form

F(z,&) with respect to ¢. In this case, instead of the prepositive quantifier “mth”, either postpositive
quantifier “of mth order” or “of order m” can alternatively be used before the qualifier “with respect
to &”. The above definition applies with “function F,, ,” and “function F” instead of “functional
form F,, ,(z,&)” and “functional form F(z,&)” respectively.

5) Given mew,, the above item can by definition be formally restated in either of the
following two ways.

a) For each (r,¢) e Tx[0,1): F(r,&) » R, 4(z.€) or F(z,&) ~ F,, ,(7,€) +O(™").

b) F ~ F[m'ﬂ].
The sign ‘~’, as defined above for each given me w,, will be called the sign of a cut cumulative

m+1

asymptotic correspondence. The symbol “O(¢™"") ” stands ad hoc for the cut reminder of the power

o1



asymptotic series, i.e. O(g™") = Foomiy (7€) . If the power series  F, ,(z,¢) is a Maclaurin one
then 1 shall write ‘o(¢™")” instead of ‘O(s™")’, the understanding being that o(s™*') is the

remainder of the Maclaurin series, of the order of ¢™" in Peano’s form.

6) The above five items apply with ‘G’, ‘g’, and ‘v’, and also with *H’, *h’, and ‘A’, in place
of ‘F’, ‘f’, and ‘u’ respectively.e

Comment 5.2. In the first sentence of Definition 5.1, the description “natural number uewg”

can be replaced with this one: “natural integer x<1_, ,”. Inthis case, the occurrences of ‘w,,,” and

u+1

‘w,” in the item 1 of Definition 5.1 should be replaced with occurrences of “1 ;.

“and ‘I, "
respectively. However, one of the main purposes of this paper is to demarcate the difference between
the asymptotic power series of a functional form, which is not the Taylor series of that function, and
the asymptotic power series of a functional form, which is not its Taylor series. Also, no asymptotic
power series relevant to water waves involve any negative powers of a scaling parameter. Therefore,
Definition 5.1 is confined to the case, where x, v, and A are natural numbers, and not natural
integers.e

Comment 5.3. In Definition 5.1(1), the function F(z, ) has been assumed to be defined on
[0,1) exclusively for the sake of definiteness. The case, where F(z, ) is defined on [0,~1), can be
considered analogously. In particular, in this case, the limiting transition *&— +0” in (5.16) and
(5.17), and also in all other relevant relations below in this section, should be replaced by ‘& — —0".
It is understood that if F(z, ) is defined on (-11) and is continuous in a neighborhood of the point
& =0 then either one of the above two limiting transitions can be replaced by ‘& — 0.

Comment 5.4. 1) In accordance with Definition 5.1, “F’, “* f’, “«’, “T’, and ‘7’ (e.g.) are
ellipses (place-holders), which can be replaced by various specific variables or constants.
Particularly, “ 7 * is an ellipsis for any string of variables as “t,x ’, “t,x,”, “*x’,or “x, .

2) Equation (5.20) should, as usual, be understood syntactically, i.e. in the sense that

‘F..,(z,&) " is the definiendum, which will be used instead of the definiens ‘z::ﬂ Foy (7€) . The

problem of convergence of the infinite sum is unimportant in this case.e
Comment 5.5. Definition 5.1(1) is in agreement with the conventional general definition of

the infinite asymptotic series of a functional form in terms of an infinite sequence of given gauge
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functional forms * &, (&)’ instead of “ £"” subject to ne w, (see, e.g. Erdélyi [1956, p. 12, equation
(5)] or Van Dyke [1975, p. 27, equation (3.11)]). Definition 5.1(1) is also in agreement with the
definition of the asymptotic series of a functional form relative to an infinite point as given, e.g., in
Smirnov [1964, vol. 111, part 1, art. 106, equations (127) and (128)]).e

Comment 5.6. The sign ‘=, introduced by Definition 5.1(5), should not be confused with
the conventional sign ‘=’ of approximate equality. The latter can, for instance, be defined by the
following definition.

Given 6 (0, 01], for each x € (—o0,+) and for each X, € (—o0,+0):

X = X, ifand only if x e[x, —8/2,%, +6/2].

In this case, the relation * x = x,” can also be written as ‘ x = X, + O(0) ".e

Corollary 5.1. If “*F(z, &)’ has an infinite asymptotic power series about the point ¢ =0
then that series is unique.

Proof: The corollary immediately follows from Definition 5.1.(1)e

Corollary 5.2. It immediately follows from Definition 5.1(1,6) that, for instance, for each
<T,6‘> e Tx [0,1): if H(z,&)=F(r,6)+G(zr,¢) then F, ,(r,e)=F, ,(z.&) G, ,(r,&) subject to
A =min{y,v}. In this case,

a) if u>vthan h (z) =g, (r)foreach new, , ;;

b) if v>u than h, () = f, (z)foreach new,, ,;

€) hy(7) = o) (7) + 9 (7) for each ne @y, 1 -0

vt
Theorem 5.1. Given a set T, for each zeT: if F(r,&)=0 for each £<[01) then
fm(7) =0 foreach ne w,.

Proof: Under the hypothesis (antecedent) of the theorem, (5.16)—(5.22) become

fo(7)=0, (5.16¢)
fim (7) = —JLrpO & "Fp19(7,€) foreach mem, (5.170)
m-1 m-1
Fin101(7:8) = 2 Fio (7,8) 22 Ty (0)e" (5.180)
n=0 n=0
0
Floo (7,6) = Z Foy(7,6) = Fo(7,¢), (5.190)
n=0

53



Froo(7,8) = M Ry (7,6) (5.200)

Fo (z.6) = f,(r)e" foreach ne w,, (5.21p)
Fiio (r,e) =0, (5.22))
respectively. By (5.16o), it follows from (5.190) and from (5.21¢) at n= 0 that K, (z,&) =0. Hence,
(5.17¢) at m=1 vyields f,(z)=0, so that F,,(r,&)=0, by (5.180) at m=2. Consequently,
f,)(z) =0, by (5.170) at m=2; and so on ad infinitum. The validity of the equation f (z)=0 for
each m e @, can be proved formally by induction on values of *m” as follows. Given | € @, , assume
that f,(z) =0 for each neew,,. In this case, it follows from (5.18¢) at m=1+1 that F, ;,(z,&) =0
for each ¢ €[0,1). Hence, equation (5.170) at m= I +1 yields f,; (r) =0. QED.e
Comment 5.7. The equation ‘F(z,&) =0’ can be algebraic, differential, integral, integro-
differential, differential-substitutional (as a boundary or initial condition), etc. Therefore, Theorem
5.1 s a basis for constructing various perturbation theories.e
Corollary 5.3. Given a set T, for each 7 €T, for each 86[0,1): if F(r,&)=0 then
F(r,&) ~0.

Proof: It immediately follows from Theorem 5.1 that if F(z,&) =0 then
F(r,8) ~ F.q(r,6) =) 0" =0. (5.150)
n=0

QED.e
Comment 5.8. Substitution of * 0" for * F(z, &)’ into (5.15¢) yields 0~ 0.e

Definition 5.2. O (7,¢)’, ‘O _(z,¢)’, ‘O(r,¢)’, and “o(z) " are called the null functional
forms, while their associated functions O,, O_, O, and o are called the null functions, on Tx[0.1),
Tx[0,-1), Tx(~11), and T respectively, provided that they are defined as follows.

a) O, (r,&)=F(r,&)=0 foreach <z’,g> eTx [0,1) subject to Theorem 5.1.

b) O_(r,&) = F(z,&) =0 for each (r,&)eTx|[0,~1) subject to the variant of Theorem 5.1

with *[0,-1)” in place of [0,1) .
c) O(r,¢) = F(r,&) =0 for each <T,€> e Tx(-11) subject to the variant of Theorem 5.1 with

“(-11)” in place of *[0,1)".
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d) o(z) = f,,(r) =0 foreach r € T and for each n e w, subject to any one of the above three

variants of Theorem 5.1.

Thus, O,, O_, O, and o are the pertinent specifications (restrictions) of the universal null function
C,.®

Definition 5.3. 1) A functional form*®,(z,&)’, defined on T x(0,:) so that ®, =0, is
said to have ‘O, (z,&)’ as its asymptote, and accordingly the function ®. is said to have O, as its

asymptote, if and only if for each (r,&) e Tx[01):

®,(r,e)~ > 0" =0, (5.23)
n=0
i.e. ifand only if foreach 7 €T
0, (r) =0 for each ne (5.24)

where “ 6, (r) is defined by the variants of (5.16o) and (5.17o) subject io (5.180)—(5.220) with * &’
and ‘@, " in place of “ f ” and “ F ” respectively.

2) The item 1 applies (a) with *®_" and ‘[0,—1)’ or (b) with ‘®’ and “ (-1,1)” in place of *®,’
and *[0,1) respectively.e

Comment 5.9. There is an indefinite number of functional forms of each of the three classes

defined in Definition 5.3. This is illustrated by the following example.

Let “a(z)’ and “b(z)’ be given real-valued functional forms defined and bounded for each
7 €T, subjectto a(z) >0 for each z € T . Then the functional form *®, (z,&)’, defined by
0, (r,8) =b(r)e ™' for each (r,&)e Tx[0,1), (5.25)
has the properties indicated in Definition 5.3. Indeed, in this case it follows that for each m e o, :
Oy (7) = i £770 (7€) =b(z) Jim £"e "

(5.26)

=b(z) glirpw( d dmjmm J(d r;egfn . J =mi[a(z)] "b(r) Jim e ?¢ =,

In developing this train of equations for solving the pertinent indeterminate functional form of the
type of ‘oo /oo, after the substitution £=1/¢ subject to & €(0,1), use has repeatedly been made m

times of the relevant versions of the I'Hospitale rule (see, e.g., Smirnov [1964, vol. |, art. 65, pp.

—a(r)/&l

153-155]). Given p € w,, given g € o, , the functional form “b(z)e"e
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Corollary 5.4: The inverse of Corollary 5.1. Infinitely many mutually different functions
may have one and the same asymptotic power series. Hence, a function is not uniquely determined
by its asymptotic power series.

Proof: Let a functional form * F(z,&) ’ have an infinite asymptotic power series, for instance
on Tx[0,1), with respect to * & * about the point £ = 0. Then, by Definition 5.3 and Comment 5.9, the
functional form * F(z,&) + O, (7,¢) * has the same asymptotic series. QED.e

Comment 5.10. The conjunctions of Corollaries 5.1 and 5.3 means that the mapping from the
class of functional forms, having asymptotic power series, onto the class of the latter is strictly
surjective, i.e. surjective but not bijective.e

Theorem 5.2: The asymptotic power series of the direct product of two functions. The
relevance of the above title to the following theorem is established by the fact that the associated
function of the product of two functional forms “ F(z,&)G(z, )’ is often denoted by ‘ F ® G’ and is

called “the direct product of the functions F and G .

Given u € w,, given v € m,, let for each <r,g> eTx [0,1):

F(r,e) ~ R, 4(7,8),G(r,¢) ~ G, ,(7,¢), (5.27)
where, in accordance with the appropriate variants of (5.15),
F..(7.6)= Z fm (D)™, G,y (7,6) = Z I (7)™ (5.28)
m=u n=v

Then for each (r,&) e Tx[01):

H(z,e) = F(7,&)G(r,¢) ~ H, ,.,(7,€), (5.29)
where
e (F16) = S hyy (2)e' (5.30)
S

subject to

hy, (z) = Ii fom (7)1 _m (7) = Ii fi ()9 (7) foreach lew,,, . (5.31)
Mo v
Proof: By (5.28), it follows that
F(r.£)6(r,6) ~ F y(2.6)Gp 0 (7.6) = 33 oy (1)Gy (0)E™" (5.29,)
"
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Let I=m+n,sothat | € w,,, . Consequently, the following two options are possible.

a) If ‘I’ is employed as a new variable of summation instead of ‘n’, so that n=1—-m, then the

domain of values of the variable ‘m” is determined by the conjunction of two relations: (i) me w,,

i.e y<m<oo, and (ii) given lew,,,, N=l-mew,, i.e. v<|I-m<oo or equivalently m<1-v.

+v !
Hence, given lew,,,, u<m<o and m<l-v,sothat u<m<Il-v,ie. meo,,,.

b) If ‘I’ is employed as a new variable of summation instead of ‘m’, so that m=1-n, then

the domain of values of the variable ‘n’ is determined by the conjunction of two relations: (i) n€ o, ,

i.e. v<n<oo, and (ii) given lew,,,, m=l-new,, i.e. u<I-n<ow orequivalently n<I-u.

+v !

Hence, given lew,,,, v<n<l-yu,ie. new,, ,.

Therefore, the final expression in (5.29;) can be developed as (5.30) subject to (5.31). QED.e

Comment 5.11. 1) Theorem 5.2 is of fundamental importance in constructing the recursive
asymptotic theory in question. However, this theorem will not, as a rule, be mentioned explicitly
either in making relevant statements or in their proofs.

2) In connection with Theorem 5.2, it is worthy of noticing that multiplication of asymptotic
series other than power ones does not lead to an asymptotic series (see, e.g., Erdélyi [1956, pp. 17—

20]. At the same time, Theorem 5.2 can be generalized somewhat as done below.

Let 4, M, v, and N be natural integers such that xel ,,, Mel , vel  _, and
N el,, . Let foreach (r,e) e Tx[01) (e.9.):
M N
Fim a(7,6) = Z fim) ()™, Gin(7.8) = Z 9y (2)e". (5.32)
m=u n=vy
In this case, the self-evident equality
M N
F[M,/.z] (T’g)G[N,v] (r,8) = zz f(m) (T)g(n) (r)e™" (5.33)

M=y n=v

can be developed in analogy with (5.29,) by letting | =m+n, sothat | € |

u+v,M+N *
a) If ‘I’ is employed as a new variable of summation instead of ‘n’ then the domain of values

of the variable ‘m’ is determined by the conjunction of two relations: (i) mel,, ,i.e. u<m<M,

and (ii) given |l el n=l-mel, , ie. v<I-m<N or equivalently I -N<m<|-v.

u+v,M+N 1

Hence, given l eI, u<m<M and I -N <m<I|-v,sothat

+v,M +N ?
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max{u, | =N}<m<min{M,l =v}, i.e. mel o Ny mingmivy - (5.34)

b) If I’ is employed as a new variable of summation instead of ‘m’ then the domain of values

of the variable ‘n’ is determined by the conjunction of two relations: (i) nel,,i.e. v<n<N, and

(if) given 1 e m=Il-nel, ,,ie. u<l-n<M orequivalently I -M <n<I- 4. Hence,

“+v,M+N?

given l €| v<n<Nand | -M <n<Il-y,sothat

H+v,M+N ?
max{v,| =M}<n<min{N,I -z}, i.e. mel o wymingni - (5.35)

Therefore, the equality (5.33) can be developed thus;

M+N
F[M,,u](TI‘C")G[N,v](T'g) = Zh(n(f)gl (5.36)
l=p+v
subject to
min{M,l-v} min{N |-z}
hyy(7) = Z{: If(m;(r)g(l—m) (r) = ;Ifu—}n) (T)9m(7) foreach lel ., y.y- (5.37)
m=max{x,|-N n=max{v,I-M

As M- and N—oo, the equalities (5.36) and (5.37) turn into the pertinent homographs of the

equalities (5.30) and (5.31) respectively.e

5.3. The Maclaurin series of an analytical function as its asymptotic power series

Theorem 5.3. For each (r,e)eTx(-11), let the functional form F(r,£) have partial

derivatives with respect to ‘¢’ of all orders and let F(z,0) = 0. Then

F(r,e) =R, q(7,€)= Z foy(2)e", (5.38)
n=0
where
f,0) =2 2FCE ) foreach nea,, (5.39)
n! oe" o
subject to
_ 1| °F(r,¢ R _
f(O) (’Z') = a{%} . = F(T,O) * 0, 0'21 (540)

That is to say, F(z,&) has the Maclaurin series F_ ,(z,&) with respect to ‘¢’, which is, at the same

time, the infinite asymptotic power series of F(z,&) about the point £=0.
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Proof: The theorem is proved from (5.16)—(5.18) with x=0 and with *(-11)" in place of
“[0)". Particularly, (5.16)) with =0 becomes
fo(7) = Iglm F(r,e)=F(z,0). (5.40)
At the same time, by (5.18), for each m € @, the functional form F, , ;(z,&) is a polynomial of the
order m-1 with respect to ‘¢’. Therefore, for each m e @, :

ﬁmF[mflvy](r,g) _
o™

0 (5.41)

and hence (5.17) yields

fi (7) = lim & ™ F (,5) = Iiml(d il j d mF(T’ﬂ - i{w} , (5.42)

=0 | dg™ o™ m! oe"

where use of the I'Hospitale rule has been made m times with respect to the variable “ ¢’ for solving
the indeterminate functional form of the type of *0/0’; it goes without saying that
dme™
de"

Comment 5.12. Given 7 €T, if the functional form F(z,&) has the Maclaurin series

=m!. (5.42;)e

F...0(7,&) of a convergence radius 1 then, in accordance with (5.18) with 4=0, the asymptotic series
(5.15) of the pertinent functional form F(z,&) for each (z,&) e Tx(-11) can be written as:
F(7,6) ~ Fo(7.6) = R (7,6) + R (7, 6) (5.151)
or as:
F(r,e)=F, n(7.e)+ o(e™"), (5.15y)

m+1

for any given m € @, . In this case, o(¢™") is the remainder of the Maclaurin series, of the order of

£™ in Peano’s form.e

5.4. Asymptotic power series of the pertinent basic bulk characteristics and bulk
equations of a potential fluid flow
Preliminary Remark 5.2. In accordance with Hypothesis 5.1, the functional form

Z(t,x,)= Z(t;x,,¢) is supposed to be defined for each (t;x,,e)eRx[E,x[01)], i.e. for each

<t, 52> e RxE, and each ¢ e [0,1), and to be expandable into an asymptotic power series with respect
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to ‘e’ about the point €=0. At the same time, in accordance with Definitions 3.2-3.4, all asymptotic

power series of bulk characteristics and bulk equations of a fluid flow in a perturbed liquid layer,

which occur below in this subsection, are or are supposed to be included under either one of the two

equivalent conditions:

“For each teR and each x € E,” and “For each (t,x) e Rx E;”.

However, Z(t;gz,g) is an unknown. Therefore, all above-mentioned asymptotic power series should

be regarded as conditional.e

5.4.1. The mass continuity equation
Substitution of (5.8) into (4.32) yields for each i e m,,:

Vi(t,x) =Vt x, &) ~ ignv(n)i(tal)

subject to
Vii (6, X) = Vg, (t,x) foreach ne o, .

At the same time, substitution of (5.8) into (4.34) yields
0~ "V, (t.x) foreach ne a,.
n=1

Hence, by Theorem 5.1,
Adpy (1, X) = V74, (t,x) =0 for each ne o,

By (5.43), equation (4.3) is equivalent to
3
V Vi (t,X) =D Vv (t,X) =0 foreach ne .
i=1
At the same time, by (5.44), application of the operator V, to both sides of (5.46) yields

V*V,,i(t,X) =0 for each i € w, and each ne ;.

Equations (5.48) can also be deduced from (4.35) by (5.43).

5.4.2. The unsteady Bernoulli equation.
By the pertinent instance of Theorem 5.2, substitution of (5.8) into (4.40) yields
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E (X)) 2 E (txe) ~ > ey (t.X) (5.49)

subject to

1-1 3

1
&y (6, X) = Epgzzv(m)i (6, X)V_my (t,X) foreach | € w, . (5.50)

m=1 i=1

Consequently, substitution of (5.8) into (4.50) subject to (4.40)—(4.41) and (4.47)—(4.49) yields:

P(t,x) = P(t;x,&) ~ Po(t)—pogz —gpo%m—ig'[po%m

+ek(|)(t'X)] (5.51)
which is the asymptotic expansion of the local pressure P(t;g,g) at the liquid point (t,x); P (t) is
the pressure above the free surface of the liquid layer that either equals O or P,(t). The relation

(5.51) can be rewritten as:

P(t;x,6) ~ Zgl Py (6 X) (5.511)
1=0
where
- - . Oy (LX)
P (t,x) = Po(t)+ Phs(z)= Po(t)_pogza Pay (t,x)= pd(l)(tﬁ): _Po%,
(5.51,)
= . dhy(tX)
Py, (t,x) = pdu)(t,x)— —poT—ek(l)(t,x) foreach | € w,.

In this case, by (4.52),

Py(t,X) = Py(t;x, &) ~ D &"py, (t.X) (5.513)
1=1

subject to the pertinent definitions of (5.51,).

5.4.3. The momentum flux density tensor and the momentum flux density continuity
equation
By the pertinent instance of Theorem 5.2 and in analogy with (5.49) and (5.50), substitution
of (5.43) into (4.56) yields for each i € @ ; and each jew,;:

E;(t,X) = E;(tx,) = p V(X &)V, (X, &) ~ is'e(.)i,- (t,x), (5.52)

subject to
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-1 3
€y (1 X) = 25 D D Vi (6, X)Vy_py; (8, X) for each | € o, (5.53)

m=1 =1l

Particularly, for 1 =2 or | =3, equation (5.53) becomes
€2y (t, X) = PoViayi (8, X)Viyy; (£, X) (5.531)
€ (LX) = py |_V(1)i (6, X)V () (6, X) + Vi (£, X)) (t1Z)J- (5.53y)

Substitution of (5.51;) subject to (5.51,) and of (5.52) into equation (4.54) or, alternatively,
the above substitution along with substitution of (5.8) into equation (4.55) yields

Sy(t,X) = S, (tx,8) ~ D'y, (1.9), (5.54)
where
Sy 60 = P13, ~ o208, 30 5,0, (00= Py (.08, =, VD 5
S (1.X) = Py (1,008, + &y (6,) = —{po%mﬁ ek(.)(t,x)}z,- tetX)  (555)

ag,, (t, X
=P %5‘” + [e(l)ij (t,X) _ek(l)(tvl)é}j] foreachl € w,.

The successive non-scaled 3x3 tensors, defined by (5.55), satisfy the equations (cf. (4.57) subject to
(4.571)-(4.574)):

3 3
zij(O)ij (t,x)= Zvj [Po(t)é}j - p092(5ij _5i3513)]
j=1 j=1

(5.560)
=V, Po(t)—pog(ViZ _5i3V3Z): Pogé‘ia(l_l) =0,
: IR N iy (. X) Ny (£, X)
Zvjs(l)ij (t,x)= Zvj Paw (tyl)é‘ij =0 (;)t =Py (Dﬁ (5.56,)
j=l j=1
: IR Ny (£, X)
ZVJS(I)U t,x)= ZVJ [pd(l)(t'l)é}j *€uyij (t’l)]: ) —3
= = (5.56,)
v S _ Ny (8, X)
~ Ve tX) + DV kg t,x) = O foreach | € w,.
j=1
In developing the final result in equation (5.56,), use has been made of the equation:
3
DV ey (6. X) = Viggy (t,X) =0 for each | € w,, (5.57)

j=1
which follows from (4.57,) by (5.49) and (5.52). Alternatively, (5.57) can be proved

straightforwardly as follows.
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By (5.8), equations (4.3) and (4.33) yield

3
VoV =2V Vi =0, (5.58)
=1
3 3
VAvm) = Z;;gijkvjv(n)k =0 for each i € @, (5.59)
j=1k=

for each ne @, . Therefore, given new,, given pew,, ,: the following tautology, analogous to

(4.36), is established straightforwardly with the help of (4.37) and (5.58):

3 3
Viy ANV AV ZZ 2 €V iEanV Vin- pym

j=1 k=1 1=1 m=1

(5.60)
3
Z_; n)J( Vin-p)j _VjV(nfmi):O-
By (5.59) and (5.60), it follows from (5.53) that
ZV i = poz;zlv(l iV Vi = PoZ;Z;V(l miViVim; foreach lew,. (5.61)
J=lm j=1m
Set m'=1-m in (5.61) and then omit all occurrences of the prime on ‘m’ in the result. The half-sum
of the variant of (5.61) so obtained and of (5.61) itself can be written as
ZV i = pOV Z:Zv(m”v(I mi = Viee foreach lew,, (5.62)

j=1m=1
where use of (5.50) has been made in writing the final result. Thus, (5.62) is a tautology, and it
coincides with (5.57). QED.
Thus, equations (5.56,) and (5.56,) are tautologies

N (4,X) S
/’o%“szjsmu (t,x)=0 foreach e, (5.63)
j=1
which, along with equation (5.56p), are non-scaled successive asymptotic approximations to the

tautological equation (4.53) with respect to successive powers of ka.

5.4.4. The energy continuity equation
By the pertinent instance of Theorem 5.2 with =1 and v=1, substitution of (5.8) and (5.43)

into (4.65) yields for each i € @,

Q.i(t,x)= Q*. X, g Zg q*(|)|(t X) (5.64)
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subject to

Oy _m (t,X) < ¢(n)( ,X)

1-1
q*(,)i(t,g)E—pOZv(m)i(t,g)T Zv(, i (t,X)—"——"= for each | e ,. (5.65)
m=1

Particularly, for I =2 or | =3, equation (5.65) yields

27 ap 27
Ui = —PoVoi 0,;1) 1 Ouayi = —Po| Vi 0,(:) +Vii 0,;1) : (5.651)
Now, by (5.43) and (5.52), equation (4.61a) yields;
Qt,x)= Q L, X, 5 Zg gy (6 X) (5.66)
where
Oy (€ X) = Pyt Ve (6, %), iy (6, X) = Gy (6 X) + Py (t)vy; (8, X) for each | € o, (5.67)

subjest to (5.44). and (5.53). Substituting (5.49), (5.52), and (5.54) into the pertinent terms of (4.66)
and making use of (5.47) yields

Ry (t,X) _

3 3
Py _zviqU)i(t’Z) = _zviq*(l)i (t,x) foreach | e w, . (5.68)
i1 i1

6. A recursive asymptotic analysis of the boundary conditions

6.1. Asymptotic expansions of 2™(t,x,), H™(t,x,), and Z"(t,x,)
1. By (5.8), equations (4.86) yield

o™ (t,x,) Ze A0 (t,x,) for each m e (6.1)
where

2" (t, X
M)(t X, )= {g—>n£—)} for each m € w, andeach n e @, (6.2)
=0

the understanding being that
g (t,x,)= [¢(n)(t, 5)]220 foreachn e o, . (6.20)

2. By (4.87) and (4.88), it follows from (5.43) and (5.44) that
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VM (t,x,) = V,0M( x, Zgnv (. x,) Zg v (t,x,)foreachi e

(m) e (m) ¢ (m (
VM (t, x,) = @™ (t, x, Zg A Zg v (t,x,)
foreachm € w,,
where

VOt x,) 2 Vgt x,) = {%QM} {%ﬁt’g} for eachi € .
=0 =0

m M 69m+1¢'1 tLZ (va ) tLX
V%)= 40 x,) = {%} _ { %} |
=0 7=0
foreach m € w,,and eachn € @,.

the understanding being that

V((g;.( ) \Z ¢((r?)) (t X ) [Vi¢(n) (tfl)]po = [V(n)i(t'X)Lo foreachie @, 5,

A I

z=0
foreachn e w,.

(6.3)

(6.4)

(6.40)

By (5.47) and (5.48), the functional forms v{J)(t,x,) with i€, , and v{Ti(t,x, ), as defined by (6.4),

are interrelated in the following ways:

V((r:n))l( ) V, (15(m)(t X ) I:w} :V{O’mlva¢(n)(t,§)i|

(n) a am™
m-1,
_ Vi[w} = Vot x,)
z=0

foreachie w,,,eachme w,andeachn € w,,

m(tx,)= {-ﬁm\/(nﬁ(t’x) _ {W*V?,v(n)s(t,g)}
dz=0 z=0

Viny3 S

m-1 2 _7m*
|Gt - Tt - Soges
z=0

z=0 i=1

foreachm e w,and each n € @,.
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i O™V 4t X om?
V((n))s(tiﬁz)=[¢} { V3 Vst X)}
=0

&m &m 2 o
oM 2 2, é’m_zv(n)s(tvl)
_ — ZV Vi, tx)} =->V, {—m (6.45)
{& ’ " 2=0 i=1 am’ =0

- _ZV v 2(t, x, ) for each m € w,, and each n € ;.

3. By (4.91) and (4.92), it follows from (5.49) and (5.50) that

EM(t,x,)~ ig”eﬁ?n))(t,xz) for each m € ,, (6.5)

n=2

where

it

I:é’mek(n)(t,ﬁ)

eﬁTn)) (t Xz) am

for each m € a,, &), (t, X, ) = [ek(n)(t,l)]zz :
for each n € w,.

4. By Theorem 5.2 and in analogy with (5.49) and (5.50), substitution of (5.1), (6.1), and
(6.5) into (4.98) yields

H™(t,x,) 23“77((;")) ) for each m € a,, (6.7)
where
1 n-1 A4 (m+1) t X )
Mt x )= — e(m) Po (p) t,x
Min) ( 2) 09‘: k(n) A m+1pz; g(n—p)( _2)

n-1 A/(M

1 | gm P (t. x )
= ——g|:e|£(n))(t,X2)+ mil%‘ (p)aét iy (t’&):l (6.8)

for each m € @,, and each n € w,.

Particularly, equation (6.8) at m =0 becomes

21 A (t, x,
U((r?))( ): - {eﬁ?n)(t Zz)"’ Po z%g(n—p)(t!ZZ)}
° N (6.80)
1 0) < 10’1/((2))3('[ X )
== ek(n)( X2)+Poz—§(n—p)(t’X2) foreachn e o,
pog p:l d

(cf. (6.40)).
5. In the same way, substitution of (5.1) and (6.1) into (4.101) yields
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=M, Zs EM(t,x,) for each me @, (6.9)

where
2

m S m 1 m+2
&t x,)= Z{ Z(V a5 (& x, XV Copltix ))+m o) )(t’lz)éu(n—m(t’lz)}

i=1

=1
n 2 m 1 e

:Z[ ZV((p))l t, X (Vié/(n—p)(thZ)) m+1V((p)3l)(t XZ)é/(np)(t1X2):| (6.10)
p=1

for each m € @, and each n € w,,

subject to (6.4) and (6.4o). Particularly, by (5.44), (5.47), and (6.2), equation (6.10) at m=0 reduces
to

()= [ S UL (XM (06 1 0 (00 )}

p=1 i=1

—_ZZV-[V((?)l(t X2 ) o (0, ] ZV ZV((?»)M 6% )0 gy (t.X,) (6.100)

p=l i=1

foreachn € w,,

because

Aot : 0
Via(t, Zz)z[%} :{Zl“viv(p”(t’x)} _zvv((p))' (6.11)

foreach p e ..
by the pertinent instances of definitions (6.4).

6. In accordance with (5.1), given me w, :

- ﬁignyg(n“)(taﬁz): (6.12)

p=ln,=1

the understanding being that

Hzgnllé/(nﬂ)(tiﬁz)

u=ln,=1

0

= iZ Z Z“:nﬁnﬁ G (X ) (6 X Lo (6% ) (E %) (6.121)

n,=1n, =lng =

0 o0

= Zmzl ilignl+n2+ Gty X0 ) (0 (8 X0 iy (6% ) (X )

Let us introduce m new variables of summation “I,’, ..., “I_’ instead of “n,’, ..., “n_~ with

the help of the equations
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U
vaz L1+, foreach yeaw,,

V=

I

Il nl’ U

so that

n=Il,n,=1,-1_ foreach ueam, .

By (6.13,), the train of equations (6.12;) can be developed thus:

o0

ﬁ zgnﬂg(n“)(t’&)

u=ln,=1
o =
= Z g Z ZZQI —Imi)(t X5 §(Im1 mz)(t X, ). 'g(lzfll)(tvlz)g(ll)(tllz)-
Ip=m lpa=m-1 1,=21=1
Hence, (6.12) reduces to
Ze'm &a™ (tx,) foreach mea,,

Ip=m

where

-l ly-ll,-1

g(Tm)> E Z ZZQ’(I “lys) t X )g(lml—lmz)( Xz) g(l |)(t X )§(|)( _2)

lpa=m-1 1,=21,=1

foreach me @, and foreachl, € w,,
the understanding being that

& (t,x,) =0 foreach me @, and for each | € e, ;.

(6.13)

(6.131)

(6.12,)

(6.14)

(6.15)

(6.15¢)

Relation (6.14) subject (6.15) regarded as a result of applying Theorem 5.2 with z=v =1 to

(6.12) m—1 times.. Particularly, for each m € e, ;, equation (6.15) becomes

5(711;( 2)56(.1)(t,52) for m=1 and foreach |, € @,

-1

&5t x Zg”(l (6,50, (tx,) for m=2 and for each |, € o,
11,1
Say tx ZZ% (X2 )0, 1 (X2 )0, (6. 2)
l,=2l,-1

for m = 3and for each |, € w,,

respectively. In turn, equation (6.17) for each |, € w, , , €.9., yields

2 2 2
Sy =S S = 2nle o = Lnée To

whereas equation (6.18) for each I, € @, 5, €.9., yields
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G =00 G = ¥l 4 = (G + 65 (6.20)

In general, given m € @, it follows from (6.15) that

CEm (%) = Loy (6 %0 ) = [Co )] (6.21)

6.2. Asymptotic expansions of A, A,,and A
1. By (6.7), (6.9), and (6.14), it follows that for each m € @, :

20 S| Seecirien)
— zzglmmn((:w)) t X éz<m>( )

l,=mn=2
E(m)(t, X |:zg 5((:)1) t, X, j|{zglm§(<lm)> i|
= ZZS“”&‘S’ tx, )y (., )

l,=mn=2

(6.22)

(6.23)

which are variants of each other with (‘H’,'n’) and (‘E’,°€”) exchanged.
The final expression in (6.22) or (6.23) can be developed further in analogy with item b of the

proof of Theorem 5.2 as follows. Let 1 =1 +n, so that | e

m+2 !

because | =m+2 when |, =m
and n=2 If ‘I’ is employed as a new variable of summation instead of ‘ly,’, so that | =1 —n, then
the domain of values of the variable ‘n’ is determined by the conjunction of two relations: (i) n € w,,
i.e. 2<n<oo, and (ii)) n=l-m at | =m. Hence, 2<n<l-m, i.e. new,, ,. Therefore, (6.22)

and (6.23) become

0

H™(t,x,)Z" (t,x, Z 23'77(({3 t, X, cj(, n)(t X, ), (6.24)
I=m+2 n=2

EM(t,x,)Z ~ > Zg EM(L X, )eqm (t,%,), (6.25)
I=m+2 n=2

foreach me @,.
By (6.7)—(6.100), (6.24), and (6.25), it follows from (4.97) and (4.100) that
Aqglt,x,)=HOtx,)+ A (t.X,), (6.26)

where
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HO®,x,)~ S &0 (t,x,), (6.27)

/id(t,xz)fZ%H(’”)(t,xz)z””(t,xz%f_)i i g EDt X, )i (tx,),  (6.28)

m=1 m m=1 m! I=m+2 n=2
and that
At x,) =20t x,)+ A, (t.x,), (6.29)
where
E(O) Zg af((l‘;’ t, x (6.30)

o0 o |-m
Z_H(m) VA BAEDY 1. 2 St x )5 (X, ). (6.31)

m=1 ' |=m+2 n=2
In (6.27) and (6.30), the variable of summation ‘1’ has been employed instead of ‘n’ that is
employed in (6.8) and (6.10p).
Let ‘q’, defined as q=1-m, be a new variable of summation to be employed in (6.28) and
(6.31) instead of “m’. Therefore, (i) g=2 when I=m+2 and (ii) g=1-1 when m=1, so that

0 € w,, . At the same time, since | =m+q, therefore | =3 if m=1 and g=2, so that | € w,. Also,

m=1-q. Hence, (6.28) and (6.31) reduce to

q
Zﬂ& Dt %, )¢5 (6x,), (6.32)
n=2

Aka,xz)ée'iﬁ GO ). (6:33)

Comment 6.1. Relations (6.32) and (6.33) are of fundamental importance for the recursive
theory in progress. Therefore, to be doubly sure that relations (6.32) and (6.33) are deduced below
somewhat differently. The final expression in (6.22) or (6.23) can alternatively be developed further

in analogy with item b of the proof of Theorem 5.2 as follows. Let q=1,—m+n, so that q € w,,
because g=2 when | =m and n=2. If *q’ is employed as a new variable of summation instead of
‘In’, so that | =m-n+q, then the domain of values of the variable ‘n’ is determined by the
conjunction of two relations: (i) ne w,, i.e. 2<n<ow, and (i) n=q at I, =m. Hence, 2<n<q,

i.e. ne w,,. Therefore, (6.22) and (6.23) become
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H™(t,x,)Z"(t,x,) iigm%g;';)tx ) o (t.X2), (6.24,)

=2 n=2

© g
EM(t,x,)Z )= D3 ™ IED(t X, ) iy (1. Xs), (6.25,)

=2

o

o
||
N
>

for each m € @, .In this case, relations (6.26), (6.27), (6.29), and (6.30) hold, whereas the relations

N 1 m Sl S m+q._(m <m>
Agltxe)= 2T HO ()27 (1 x) ~ 223 D e™ i) (6 X ol (LX), (6.281)

=2

3

N

3

i

N

3

o

i

N

=)

C 1 m . 1 - 2 m+ m <m>
A tx,)= > =EM(,x,)Z"(t,x,) Zﬁzzce (X )Co  (X,). (6.31y)

come instead of (6.28) and (6.31).

Let ‘I’ defined as | =m+q be a new variable of summation to be employed in (6.28;) and
(6.31;) instead of “m’. If m=1 and g=2 then I=3, so that | € @,. At the same time, since g=1-m
therefore q=1-1 if m=1, so that qe w,, ,. Also, m=1-q. Hence, (6.28;) and (6.31;) reduce to

(6.32) and (6.33) as expected.e
By (6.27) subject to (6.28) and (6.32), relation (6.26) implies that

o0

ZAd(I) t, X2 igladu)(t’ﬁz)n (6.34)
I—2

1=2

where

. 1 g (8, X
ad(z)(t’lz): ’7((?))('[152): - g {el(;?z)(t Zz)+po %4(1)('[152):]

0

1 At x
= _Elieli(g)(t X2)+p0 %Qn(t:ﬁz{l (6.35)
0
1 N st X
:__{ek(Z)(tl)"‘Po (1)3( )4’(1)( ' 2)} '
pog z=0
-1 q
gt %,)= 7 (t, %, )+ Zn(‘;)q’ t, %, )¢5 (t,x,) foreachl e w,,  (6.36)
a=2 n—2

subject to the pertinent variants of (6.8), (6.80), and (6.15). Particularly, in developing the final
expression in (6.35), use of equation (6.8p) at n = 2 has been made.
Similarly, by (6.30) and (6.33), relation (6.29) implies that
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iAk(l) ): gglaku)(talz)y (6.37)

1=2

where

U (1. %) = EQ (LX) = ZV [v((f)’I (t %,)C 0 (t. X,) ] ZV [V(1). (t X)¢ (6, x )] ,» (6.38)

0‘k(|)(tvl2)E 5((|(;)(t,xz "‘Z L ZSC((:]) q) t,X, 4/(<|I n?>(t152)f0r eachl e w;, (6.39)

subject to the pertinent variants of (6.10), (6.10,), and (6.15). Particularly, in developing the final
expression in (6.38), use of equation (6.100) at n = 2 has been made.
Relations (6.34) and (6.37) imply that

Ay (t. %) = ey (t.X,) = 0. (6.40)

2. At |1=3, equations (6.36) and (6.39) become
Ay (t,%) = 15 (6, %, )+ 13 (6, %, )&, (. x,), (6.41)
3 (t:%,) = £5)(6.%,)+ £ (6%, )6, (1. x,). (6.42)

where use of (6.16) at I, =1 has been made. In this case, at m=0 and n = 3, equation (6.8) becomes

@

1 P X,
77((3)) (t Xz) {eﬁ% (t Xz)‘*‘poz (p)( )é/(?,p) (t,lz )}
£o9 p=1 a

1 2 0’(/(0) t, X
== elEQ)S)(tilz)+po ZMQs—p)(tn&) (6-43)
pog p=l d

1 ©) 0’0((10))3@,52) él‘(((z)))s(ta&)
- t X —= e t, ——=Ct, :
009 |:ek(3)( )"'po[ a é’(z)( Xz)"' Py 4/(1)( Xz)

whereas equation (6.10) reduces to

&5 ( ZV|Z[ V(6 X2 )5 oy (X )]

- (6.44)
=—2v V%, )¢ (8, )+ VLt X, ) (t., )]

via (6.10p) at n = 3. At the same time, at m=1 and n =2, equations (6.8) and (6.10) become
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~ 1 1 ¢(2)
)=~ L) 1 M
0

t, X,
n )
1 X 1 a/(l)
—m{eﬁé) (t.x,)

(6.45)
2)+ 5P %QD&’ZZ)}
Eop(tx,)= 22:[ By (t. X, )
.

9 oot 2 0 6 K (6,)

L2 (6.46)
(1)3(t' X, Ivié/(l)(t'XZ)]_Ezvizv((f))C% t, X )4/(1)('[ X )
i=1
because
\Z ¢((11))(t X ) ViV((B)s(t X) ¢((1?;)(t X ) V(1)3(t X _zvizv((lo))s(t,l ) (6.461)
i=1
by the pertinent instances of (6.4), (6.41), and (6.43). By (6.46), it follows that
5((213(1: X )é,(l)(twlz)
2
- [ 3 QU)o 7 TR ﬂ 6.47)
i=1 i=1
1
= —EZ:,V [(Vlv((f)g (t,x,) )4(1) (t.x, ]
By (6.43) and (6.45), equation (6.41) becomes
1 2 A© (t X )
Ay (t,X, )= — e (t,x,)+ — e 22 e (X,
d(S)( _2) Pog{ k(3)( _2) Poé a 5(3 p)( )
l o) 1 dl(q;?; (t’ XZ )
- t =
Y |:ek(2)( 52)"' 5 Po

a 4/(1)('[’52)}4’1“42)
1 2 éb(p)i’:(t X)

= e ltix)r o X =
g {e ( X)+p

(6.48)
S )
1 {azek(z)(t’ﬁ) 1

x=0
O™V p5(t, X)
+= s t,x
009 a 5 2 A é/(l)( )
whereas by (6.44) and (6.47), equation (6.42) reduces to

(B ZZ:V {Z[v“’)

(p)i

t,X, 4”(3 N (t,x, ]+ g(l) t, X )Vlv((f))s(t X )}
2 2
= _Zv{

;l(LXZ)’

x=0

i=1 p=1

(6.49)
Z[V(p). (6, %) (t X, ]+ 5(1) t, X, )V Vst X)} :
z=0
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3. By (6.34) and (6.37), it follows from (4.104) that

iA(l) 2)2250((')('[,52), (6.50)

where

2 —a,(t.x,) foreach lew,. (6.51)

6.3. Infinite recursive sequences of dynamic, kinematic, and dynamico-kinematic
boundary conditions at the free surface
Corollary 6.1. By Theorem 5.1, equations (4.96), (4.99), and (4.104), subject to (5.1), (5.8),
(6.34), (6.37), and (6.50), reduce to the following three infinite recursive sequences of equations with

successive | € @, :

(0) t,
évu(l)(t X3 )+a ¢(I); XZ)—adu)(t’Zz)' (6.52)
%_ ((ll))(t X ) ak(n(t’Xz)’ (6.53)
o
) BT ) 5
subject to
Ay (t,lz) = O (t’lz) =Qy (tyﬁz) =0, (6.55)
by (6.40) and (6.51). It is understood that
é%?( )5[0"%(&5)} ’ (6.56)
a a o
o - 0”¢(|)(t’5)
a5 (6, x )—[ 2 | (6.57)
i (0x )E[a%gt,z)} | (6.58)
a a o

Therefore, equations (6.52)-(6.54) with ascending | € @,, subject to (6.55), are three recursive
asymptotic sequences of boundary conditions at z=0, — dynamic, kinematic, and dynamico-

kinematic, respectively.e
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Corollary 6.2. Given | € w,, the value of each of the three functional forms ad(,)(t,gz),
o (t.X;), and a,(t,x,) can be expressed (i) in terms of the values of some spatial, temporal, or
spatiotemporal derivatives at z=0 of the functional form ¢(n)(t,g) with all newm,,, and (ii)
ultimately, in terms of those of the functional form ¢, (t,x).

Proof: i) Item (i) of the corollary follows from the definitions of «,,, ap, and «;, as

given by (6.35), (6.36), (6.38), (6.39), and (6.51). This general recursive property is illustrated by
(6.35) (or (6.57)), (6.38), (6.48), and (6.49).
i) Item (ii) of the corollary follows from the Hypothesis 5.1 implies that the functional form

¢(,)(t,x) with any | € o, is ultimately expressible in terms of functional form ¢, (t.x).e

Corollary 6.3. With allowance for (6.55), equation (6.52) can be written as these two:

(0)
5(1)(tllz)= _é%t,&) for I =1, (6.52;)
1 a0 (t,
Soltx,)= ad(l)(tllz)—a% foreach l e w,, (6.52,)

whereas equation (6.53) can be written as these two:

ﬁé(l)g,zz) — g0t x,) for 1=1, (6.53,)
OZ(I);[’ZZ) = oy (t.X,) + 45 (t.x,) for each | € o, (6.53,)

From (6.52;) and (6.52;), subject to (6.56), it follows that Corollary 6.2 applies with ‘g“(l)(t,gz)’ in

place of “ oy, (t, X,)’, while from (6.53) and (6.53z), subject to (6.57), it follows that Corollary 6.2

A\t X,), . ,
applies with % in place of ‘ak(l)(t,gz)’. The latter conclusion also follows from the

former one, for differentiating both sides of each one of equations (6.52;) and (6.52,) yields

a g a°

&;u)(t’&) _ ﬁad(l)(t’XZ)_l 52¢((|(;)(t’lz)
a g a?

-1, (6.525)

foreach |l € w, . (6.52,)e
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Comment 6.2. Comparison of the pair of equation (6.53;) and (6.53;) and the pair of
equation (6.523) and (6.52,) yields

A (8, x 1 %2t
Follh)_ oy, 2 AT

a0‘d(|)(tyl ) 1 2 ¢((|(;)( _2)
a g A?

for | = (6.59)

=05k(|)(t152)+ ((ll))(t X, )= foreach | e w,, (6.60)

Of)é/(n(t’&)
a

whence

() ;M@?(t X, ){%(t,x) 1%y (tx)

=0 for | =1, 6.61
@ A’ oz g a’ }0 (6.61)

Ax,)s ;5¢(ﬁ?’(t X, ){a@.)(t,x) 1%yt x)}

() 2 2
o a 0z g a (6.62)
ooyt X B
= %—akm(t,gz): a,(t,x,)foreach| € ,,
in agreement with (6.54) subject to (6.51) and (6.55)—(6.58).e
Comment 6.3. By (6.52,), equations (6.35) and (6.38) can alternatively be written as
1 0o O85 (6. x,) At x,)
t,x O, x,)=— e® (t,x @ @ , 6.35.
ad(Z)( _) ’7(z)( _2) ] |:k(2)( ) g a 2 ( )
0”¢‘°) t, X

A (t.X,) = EQ (. x,) ZV {v((f)), (1); 2) . (6.38,)

Consequently, substitution of (6.52;) and (6.52,) at 1=2 subject to (6.35.) into (6.48) and (6.49)

allows eliminating ¢, (t,x,) and ¢ (t,x,) from a4 (t.x,) and a4 (t,X,), and thus representing

the two latter in terms of ad(z)(t, X,) and the other pertinent functional forms that are preserved.e

6.4. An infinite recursive sequence of kinematic boundary conditions at the bottom
surface
Substituting (5.8) into (4.71), and then making use of Theorem 5.1 yields the following
infinite sequence of kinematic boundary conditions at z = —h(x, ):

{i[vih(lz)][Vi¢(|)(tv5)]+%#(t’x)} =0 foreach | e w,, (6.58)

=1 z=-h(x,)
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where the variable ‘I’ is employed in place of ‘n” for convenience in making subsequent statements.
If (4.73) holds then (6.58) turns into

[M

} =0 foreach l e @,. (6.59)
éi z=—d

Alternatively, (6.59) can be deduced directly from (4.74). Accordingly, if (4.76) holds then (6.59)

turns into

AP (t,
Iim{%} =0 foreach l e @,. (6.60)
z=—d

d—oo

It goes without saying that each one of equations (6.58)—(6.60) holds for each (t,x,) e RxE,.

7. A general recursive asymptotic wave problem for a liquid layer of a
uniform depth

7.1. Basic equations constituting the problem
Corollary 7.1. In the case of a liquid layer of a uniform depth d, in accordance with (5.8) and
(6.50), application of the pertinent instances of Theorem 5.1 to the following three equations: (i)
(4.34) extended to all x € E;; (ii) (4.74); and (iii) (4.103) subject to (4.104), (6.50), and (6.51) results
in the following infinite recursive sequence of non-scaled two-plane boundary value problems for

the partial velocity potentials ¢, of successive asymptotic approximations with ascending | € &;:

A¢(I)(t,§)20, ()
{M} _0 (7.2)
a z=—d |
Ay (t.x) 1%, (tx
{ (éi )+5 25 )1_0:0‘(.)&,52), (7.3)
where
i tx,) 20, 79

in accordance with (6.55). Equation (7.1) is the variant of (5.46) with ‘I’ in place of ‘n’, whereas

equation (7.2) is just an occurrence (token) of (6.59).e
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Definition 7.1. 1) In compliance with the nomenclature introduced in Comment 4.6(c), the
triple of equations (7.1)—(7.3) subject to (7.4) will be denoted by ‘Tu(l)(qﬁ(,))’ for each given value of
‘I’ in the set ,; the subscript ‘u’ is the first letter of the word “uniform’ (cf. Comment 4.4). All the
above equations are valid under Hypothesis 4.2. Therefore, in contrast to the symbol “ T, (®,Z)” and
all other relevant symbols that have been introduced in Comment 4.6(c), the symbol ‘Tu(,)(¢(,))’ does

not carry a subscript ‘+’ that is indicative of Hypothesis 4.2.

2) Given me w,, the finite sequence of triples Tu(|)(¢(|)) with ascending | e w,,, will be

denoted by ‘<Tu(l) (¢(1) ) Tu(z)(¢(2) ),...,Tu(m)(qﬁ(m) )> or briefly by ‘<Tu(,)(¢(|))> . Accordingly, either one

lemy

of the strings ‘<Tu(l) (¢(1)), T2 (¢(2) )> and ‘<Tu(|)(¢(|))> * stands for an infinite sequence of triples

lea.,
Tu(l)(¢(l)) with ascending | € o,

3) The version of T, (¢,,) with (6.60) in place of (7.2) will be denoted by “T,,(¢,,)” and be
called a non-scaled two-plane boundary value problem for the partial velocity potential ¢, of
successive asymptotic approximation with ascending | € @;. The denotata of “T,,(4,,)” and of the

variants with ‘o0’ in place of ‘u’, of all symbols introduced in the previous item apply to a liquid
semi-space z<0.

4) The version of Tu(|)(¢(|)) with (6.58) in place of (7.2) will be denoted by ‘T(l)((/ﬁ(l))’ and be
called a non-scaled two-surface boundary value problem for the partial velocity potential ¢, of
successive asymptotic approximation with ascending | € m,. The denotata of ‘T(,)(¢(|))’ and of the

variants with T, ” in place of “T,,,”, of all symbols introduced in the previous item apply to a liquid

layer with a non-uniform (variable) depth described by the functional form “ - h(gz)’. the same time,

with an arbitrary depth function h, the triple T(l)(¢ ) is unsolvable analytically, — to say nothing of

()
T(l)(qﬁ(l)) with | € w, . Therefore, | shall hereafter treat mainly of Tu(l)(¢(,)), whereas Tw(,)(¢(|)), being
the limit of T,,(,,) as h, — oo, will be regarded as the limit of T,,(¢,, ) as d->cc.e

Corollary 7.2. In accordance with the general place-holding formula (5.21), multiplying both

sides of each one of equations (7.1)—(7.4) by ‘&'’ results in the following upper case variants of

those equations:
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AD,(t,x,£)=0, (7.5)

@ tl 1
{—“’( z ‘9)} -0, (7.6)
ﬁl z=—d
ap,, (t, X, D, (t, X,
ollx) 1FROXD |4 1,0), (17)
a g a o
where

A(1)(t’5275)5 0. (7.8)

It goes without saying that
D, (6%, 6)= gy X', Ayt X,,6) = o (L, X,)e' foreach 1 e . (7.9)

In this case, it is also understood that for each | € o, ‘A(,)(t,gz,g)’ can be expressed as the variant
of “a,,(t,%,)’, in which all constituent functional forms are replaced with their upper case variants

in accordance with the pertinent instances of the place-holding formula (5.21) Accordingly, ‘¢’

becomes a hidden parameter of * A, (t, ,,£) .0

Definition 7.2. Definition 7.1 applies with “(7.5)”-*(7.8)” and ‘® in place of “(7.1)"-"(7.4)”

and ‘¢’ respectively.e
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7.2. Reduction of Tu(l)(¢(,)) for le

1. | shall seek a solution of the Laplace equation (7.1) at any | e ®, by the method of

separation of variables in the form:

dy(t.X)= 0, (2w, (t. x,) for each | € (7.10)
so that
d26,,(z
e(l)(Z)AzV/(l)(t’Xz)"'#()W(n(t,&): 0, (7.11)
where

A, 2A(X)E S5+ 52—t (7.12)

It follows from (7.11) that
1

mAzV/(l)(t’Xz): - 6’(,)(2) 472 = _k(zl) , (7.13)
where k, >0 is a real-valued constant. Therefore,
Az'//u)(t!lz)*'k(2|)V/(|)(taX2)=O1 (7.14)
2
d Z;"Z(Z) —k{\8,,(2)=0. (7.15)
It follows from (7.15) that
01y (2)= € ™" +cype 7, (7.16)

where c,y, and c,,, are arbitrary real-valued constants and k,, >0 is a strictly positive real number.
Substitution of (7.8) subject to (7.16) into (7.2) yields:

Cae " =y (7.17)
so that (7.16) can be developed as:

Oy (2) =2 [ek“) e e ]: Cayoe ™" [ek“)(z+d) +e (Hd)]

coshk, (z+d 7.16
= 2c,,,6""" coshky, (z +d) = 0(2+d) : (716,
coshk,d
where | have set
e 7.17
Cppy = ————. .
M2 2 coshk,,.d (7.17)

(M

Thus, (7.16;) can ultimately be written as:
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Az'//(l)(t’lz)"‘ k(2|)‘//(|)(t’lz): 0, (7.14)
coshk,(z+d)

0,(z2)= for each | , 7.18
0(2) coshk,d €A (7.18)
so that
@] (7.19)
dz e

Owing to (7.19), the functional form ¢, (t,x), defined by (7.10) subject to (7.18), satisfies the

boundary condition (7.2) automatically.

At the same time, substitution of (7.10) into the left-hand side of equation (7.3) yields:

dé,(z 1 %yt
o )y/(l)(t 2)+=6,(z )# =a,(t,x,) foreach | e @, (7.20)
dz g a o
whereas it follows from (7.18) that
do,
6,,(0)=1 (a), {%} =k, tanhk,d (b). (7.21)
x=0
By (7.4) and (7.21), relation (7.20) becomes
0”
(kg (6. ,) ‘”g( )0 for 1 -1, (7.22)
3w (¢,
é{QZ(k(I)),/,(I)(t,&)JF%} =t x,) foreach l e w,, (7.23)
where
2% (k) = gk,ytanhk, d foreach | € . (7.24)

2. Thus, under the definition (7.10), the triple of equations (7.1)—(7.3) subject to (7.4) reduces
to the quadruple (conjunction of four) equations (7.14), (7.18), (7.22), and (7.23), subject to (7.24), —

the conjunction set that involves an infinite set of arbitrary strictly positive real numbers k, >0
with | € @,. However, Hypothesis 5.1 implies that the functional form ¢(|)(t,§) with any | € @, is
ultimately expressible in terms of the functional form ¢(1)(t,5). Therefore, once a real number
Ky >0 is selected, the following relation must hold:

Kgy =Kq =k >0 foreach | € w,, (7.30)
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the understanding being that the variable “k,,’ is thereby abbreviated as ‘k’. Hence, the above

@

quadruple of equations reduces to the following one for each | € @, :

Ao (t.X,)+ K2y, (t,x,) =0 for each | € w,, (7.31)
6,,(2)=0(z)=0(z,k)=6(z,k,d)= % for each | € o, (7.32)
2 é’ZW(l)(tylz)
Q (k)y/(l)(t,gz)JrT: 0 for I =1, (7.33)
3w (t,
él:!)z(k)y/(,)(t,xzﬁ %} = a,,(t, x,) for each | € w,, (7.34)
where
2%(k) =[2(k) ] = gktanhkd . (7.35)
Consequently, in accordance with (7.32) and (7.35), equations (7.19) and (7.21)
{de_(z)} =0. (7.36)
dz x=-d
de(l)(z) - 2
6(0)=1 (a), —4 =ktanhkd = Q%(k) (b). (7.37)
x=0

The quantity, i.e. the dimensional strictly positive real number of a dimension “time™”, @(k),
defined as

Q(k) = Q(k,d) = /gktanhkd >0, (7.38)
is called a main initial cyclic eigenfrequency of gravity waves on the liquid layer, whereas the
functional form “Q(k,d)’ or its definies ‘\/gktam’ is called the dispersion functional form of

those waves.
Theorem 7.1.

Aoty (t, %, )+ K% (t, x,) = 0 for each | € @, (7.39)
Proof: Equations (7.31) and (7.34) can conveniently be written as:
K (x,, kg (t,x,) =0 for each | € o, (7.40)
subject to
K(x,,K)Z A, (x,)+k2= A, +k? (7.41)

(cf. (7.12)) and as
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L(t, 2(k)w, (t. x,) = 9 (t,x,) for each | € o, (7.42)
subject to
~ o
L(t,2(k))= 0 2(k). (7.43)
Differentiation of both sides of equation (7.40) with respect to ‘t” twice yields

- 3w (t,
K(gz,k)%&) 0 foreach | c @, (7.40,)

Therefore, applying of the operator K(gz,k) to both sides of equation (7.42) and then making use of
equations (7.43), (7.404), and (7.40) in this order, one obtains

I2()(2’k)|-(t -Q( ))‘//(l)(t X )

= K(Xz’k){%(tx)ﬂo (K (t.x;) | =0 (7.40,)
= gK (x,,K)a,, (t, x, ) for each | € w,,
whence
K (x,,K)ag, (t, x,)=0 for each | € w,. (7.44)
QED.e

7.3. Particular solutions of equation (7.34) for | € w,
Theorem 7.2. Given a time instant t, € R, for each (t,x,)e RxE,, the functional form

Wy (t. X, 1), defined as:
Wyt Xa b E J.a(l) t', x, sin[Q(k )t —t")]dt’ for each | € w, ., (7.45)

IS a unique particular solution of the equation

2
Ky txont,)+ ‘”(H*é(tt}”to) = gay (t.x,) for each | e w,, (7.46)

being the pertinent variant of equation (7.34), — the solution that automatically satisfies its identifying

conditions:

Ol t,X,,t
Wt X, 1) = 0 (8) and {W} 0 (b) foreach | € a,. (7.47)

t=t,
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Since equation (7.45) holds both for t > t, and for t <t,, therefore I call equations (7.47) “identifying

conditions”, thus avoiding calling them “initial conditions”.

Proof: Equation (7.45) will be deduced from a lemma to be stated and proved deductively in
the next subsection. Meanwhile, | shall verify the validity of (7.45) and (7.47) by the following
straightforward calculations. Equation (7.47a) subject to (7.45) at t=t, is self-evident, while
differentiating both sides of (7.45) with respect to t in accordance with the Leibnitz rule of
differentiation of an integral with variable limits yields

a'//(l)*(t’ﬁz’to)
ot

g ar ¢, Joosf 2k~ )] = g [ ¢, Josf 2k e~ )]

% to

- Q%k) [a(l) (t'.x, )sin[_Q(k)(t - t’)]l’:t
(7.45,)

whence (7.47b) follows immediately. At the same time, another differentiation of both sides of

(7.45;) with respect to t yields

W =9 [“(l)(t"&)cos[g(k)(t - t')]L‘

- gQ(k)ja(,)(t’,gz)sin[.Q(k)(t—t')]dt’ (7.457)

to

t
= ga(l)(t’ﬁz)_ gg(k).[a(|)(t”52 )sin[!)(k)(t - t')]dt’-
to
Substituting (7.45) and (7.45,) into the left-hand side of equation (7.46), one obtains

é’ZW(|)*(t152!t0)
dZ

- gQ(k)ja(l)(t’, x, sin[Q(k )t —t")]dt’

to

+ 9o (6%, ) - gﬂ(k)jam(t’,zz)sin[!?(k)(t —t)]dt' = gar, t.x,),

to

Qz(k)‘/’(l)*(tiﬁz’to)Jr
(7.46,)

thus proving (7.46).e

Comment 7.1. If t, eR, denoted by “t,’, is a time instant distinct from the time instant

t, € R that has been denoted by “t,” then Theorem 7.2 holds with “t,” in place “t,’. That is to say,

for each (t,x,) e Rx E,, the functional form ., (t,x,,t,), defined as:
t
Vot X01) = % [ty (1", in[2(k )t —t)]dt’ for each I o, (7.45a)
4
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is a unique particular solution of the equation

Wt X, t
(K g (6, X, 1) + d W(";iz’lz' ) = gay,(t,x,) foreach | e w,, (7.46a)

being the pertinent variant of equation (7.34), — the solution that automatically satisfies its identifying

conditions:

V(X2 t)=0 (a) and [W} =0 (b) foreach l e o, (7.47a)

t=t;
and that therefore and differs from the solution W(,)*(t,gz,to) given by (7.45).

Subtraction of equation (7.46a) from equation (7.46) yields

52
[Qz(k)"‘?}[’V(n*(t’Xz’to)_V/(n*(taKz'tl)]: 0 foreach | € o, (7.46b)
which is a variant of the homogeneous equation (7.33). At the same time, by (7.45) and (7.45a), it
follows that
t
'/’u)*(talz’t ) ‘//(|)* t,X, 4 :%Iau)t Xz)sm[Q )(t t)]dt
t
g ! H ’ !
Wf[au)(t aXZ)sm{ ( )(t _t) Iau) t' Xz)sm ( )(t -t )]dt (7.45b)
4
! H ! ! g ! H r !
+m.!.a(|)(t ,gz)sm[_()(k)(t -t )]dt = m{[au)(t ,XZ)SII‘I[.Q(k)(t —t )]dt
foreach| € w,,
whence
G ;t v lat)]_ g gja(.) t,x, Joos[2(k )\t —t)]dt’, (7.45by)

O

-t xat 812 vt ~g (k)] (t . sinf(k)t-1)]dt . (7.45b,)

By (7.45) and (7.45Dh,), the expression on the left-hand side of equation (7.46b) vanishes as expected.
Assume that a certain functional form v, (t, 52), satisfying both equation (7.31) at I=1 and

equation (7.33), is found. Then it follows from (7.46b) that
!//(|)*(t152,t0)—!//(|)*(t,52,t1): C(l)W(l)(t’Zz) foreach l e o, (7.45¢)
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where ¢, is a certain real number other than 0. Thus, to any given solution y/(l)(t,gz) of equation
(7.33), there corresponds continuum of particular solutions v/u)*(t,&,to) of equations (7.45) that are

determined by values of the variable “t,” in continuum (uncountable set) of real numbers, R.
This result contradicts Hypothesis 5.1, by the argument similar to that used in item 2 of the previous
subsection for deducing (7.30).

At the same time, there is a general philosophical principle of “saving thoughts”, the original
version of which is known under the name “Ockham’s razor” or “The Ockham’s razor principle”,
after the English Scholastic philosopher William of Ockham or Occam (A.D. cal300-cal349). This
principle says that entities should not be multiplied unless necessary. Consequently, Ockham’s razor
is the most general groundwork for formulating axiomatic theories, because in setting up any
particular axiomatic theory, it suggests that, for avoidance contradictions, the number of axioms
(permanent postulates, permanent hypotheses) should be as small as possible. Therefore, in
accordance with Ockham’s razor, | shall adopt the following additional hypothesis, being the

instance of Theorem 7.2 fort, =0 .e

Hypothesis 7.1. For each (t,x,) € Rx E,, the functional form v, (t,x,), defined as:

o (t.X:) 2wt Zz,o)z%ja(,)(t', X, sin[Q(k )t —t")]dt’ foreach | e w,,  (7.48)

is the only pertinent full solution of equation (7.34), — the solution that automatically satisfies its

identifying conditions:

Ve (0.%,)=0 (@) and {%} _0 (b) foreach | € .. (7.49)

t=0

In this case, the qualifier “full” to “solution” means that t//(l)(t,gz) is actually defined for each | € w,

as:

W (£ X,) = Cuw i (t. X, )+ w . (t, X,,0) subject to ¢, =0. (7.48a)e

7.4. An auxiliary identifying value problem of a forced motion of an abstract unit one-

dimensional harmonic oscillator
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Lemma 7.1. Let a real-valued functional form * f (t)* of time variable “t ’, which is assumed
to be defined for all t e R and whose values are assumed to be absolutely integrable on any finite

interval of R. Then, given a real number >0, for each t € R the functional form “u(t) ’, defined as:

u(t) = lj f (t")sinew(t—t") dt’, (7.50)
w 0
is a unique particular solution of the equation
l(t) + o’u(t) = (1), (7.51)
which satisfies its identifying conditions:
u(0)=0 (a) and u(0) =0 (b); (7.52)
it is understood that
1 =20 4= 10, 759

Just as (7.45), equation (7.50) holds both for t>t, and for t <t,. Therefore, equations (7.52) are

called “identifying conditions”, and not “initial conditions”.
Most naturally, equation (7.51) can be interpreted as one that describes, at each given time

instant t, the one-dimensional displacement u(t) of a point material particle, or of the mass center of
a material solid body, of unit mass from its equilibrium position u(0) =0 under the action both of the
internal recovering force — w°u(t) with a stiffness coefficient (per unit mass) »? and of the external
force f(t). The imaginary one-dimensional system of the material point particle, or of the material
body, of unit mass, acted upon only by the recovering force —wu(t), is capable of executing one-
dimensional free vibrations with cyclic frequency @ >0, and is therefore called an abstract unit one-
dimensional harmonic oscillator (cf. Landau and Lifshitz [1988, p. 58]).

Proof: 1) It is understood that Theorem 7.2 and Hypothesis 7.1 are instance of this lemma.
Therefore, in analogy with the proof of Theorem 7.2, the validity of equations (7.50) and (7.52) can
be verified by the following straightforward calculations. Equation (7.52a) subject to (7.50) at t=0
is self-evident, while differentiating both sides of (7.50) with respect to t yields

d“()_l[ f(t'pinw(t -t)], t+j t')cosw(t —t') dt’ = jf(t')cosw*(t—t’)dt’, (7.50)
dt w 0
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whence (7.52b) follows immediately. At the same time, another differentiation of both sides of

(7.50,) with respect to t yields

d;‘tjz(t) =[f(t')cosa(t —t)]._, - a)j f(t'sino(t —t') dt’
t ° (7.50,)
= t(t)-of f(t'ine,(t-t) dt"

0

Substituting (7.50) and (7.50,) into the left-hand side of equation (7.51) subject to (7.53) yields s

duft
SU) orute)

t t (7-511)
= t(t)-of f(tino(t -t) dt' +of f (' bine, (t-t) dt' = ()

0
thus proving (7.51). Still, in order to establish the foundations of equation (7.50), it is instructive to
deduce it from (7.51)-(7.53) by the pertinent instance of the method of variation of parameters (see
Ellsgolts [1980, pp. 122-126, especially Example 3, pp. 125-126]}, which is done below.

2) The general solution of the homogeneous equation
y(t) + @y(t) =0, (7.54)
adjoint of (7.51), has the form

y(t) :ZZ:Ci (t)y,(t) =c,cosat +c,sinawt, (7.55)

i=1
the understanding being that y,(t) and v, (t), defined as
y,(t) =coswt and v, (t) =sinwt, (7.56)
are fundamental solutions of (7.54), while ‘c,” and “c,’ are arbitrary real-valued constants. In

applying the method of variation of parameters to the nonhomogeneous equation (7.51), the solution

of the latter is sought in the form
2
u(t) =>_c(t)y;(t) =c,(t)cosat +c,(t)sin wt , (7.57)
i=1
so that two unknown functions c,(t) and c,(t) are introduced in place of the one unknown function

u(t) . Since the former two functions have to satisfy only one equation (7.51) subject to (7.57), it can

be required that they should satisfy some other additional equation. The latter is chosen to have the

form
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Zzlci (t)y,(t) =c,(t)cosamt + ¢, (t)sinwt =0, (7.58)
so that
00 = O30+ X6 O%0 = X6 030 = o Osin et + oc, @ coset.  (7.59)

That is, owing to (7.57), u(t) has the same form that it would have in the case of constant ¢, and c, .

By (7.55) and (7.56), it follows from (7.59) that

1) =36 O30+ 6030 =Y 6030 + 6050

(7.60)
2 2
=Y E )Y (t) - 0® Y c )y (t) = —at, (t)sin et + wt, (t) coswt — @’u(t),
i=1 i=1
Consequently, by (7.55) and (7.60), equation (7.51) becomes
— ¢, (t)sin ot + o, (t)coswt = f (t). (7.61)

Solving the system of two linear algebraic equations (7.58) and (7.60) with respect to ¢, (t) and

C,(t) yields
. 1 . _ 1
&) === f(hsinat, &,(t) =— f(Ocosat = (1), (7.62)
whence
17 17
c(t) = ——j f(r)sinwdr +¢, c,(t) = —j f (r)coswrdr +C,, (7.63)
w 0 w 0

“C,” and * C,” being arbitrary real-valued constants. Equation (7.57) subject to (7.63) becomes

oS ot | . sin ot |
u(t)=- f(t)sinwt'dt’ + f (t") coswt'dt’
! ! (7.64)

+C, Cos wt + C, Sin wt

or

1 : :
u(t) = —I[sm wtcoswt’ — cos wtsin wt'] f (t')dt’ + €, cos wt + T, sin ot
w

0 t (7.65)
= lIsin ot —t')f (t')dt' + T, cos et + C, sin e,
@ 0
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where use of the pertinent variant of the first one of the following two general equations has been
made:

sin (¢ + ) =sin @ cos B+t cosasin S (a),

. . (7.66)
cos(a £ ) =cosa cos fxsinasin g (b).
In accordance with (7.50) and (7.50,), it follows from (7.65) that
u(0) =5, (a), U(0)=c, (b). (7.67)
Therefore, u(t) given by (7.65) satisfies equations (7.52) if and only if
C,=C,=0. (7.68)
The lemma is established.e
Comment 7.2. With @ =0, equation (5.33) subject to (5.34) becomes
2
ddtzgt) _ f(t) foreach teR. (7.69)

The general solution of this equation can be obtained straightforwardly by two successive

integrations with respect to t thus:
u(t) = j'dt”]z dt'f (t")+C +C,t (7.70)
0 0
subject to (7.67). At the same time, as w—0, equation (7.65) becomes
u(t) = j(t —t')f (t)dt' +, (7.71)
0

subject to (7.67,a) and (7.52,b). Making use of the Leibnitz rule of differentiation of an integral with

variable limits, it can readily be verified by the pertinent straightforward calculations that u(t), given

by (7.71), satisfies equation (7.69) indeed; namely:

dl;—gt) =[O f @)k + ! F(t')dt = ! f(t')dt, (7.71,)
dut) d o
atz dt-([ f(t)dt'= £ (1) (7.71)

(cf. (7.50,) and (7.50,)); equation (7.52,b) follows from (7.71;) immediately.e

7.5. Reduction T

U(,)(QD(,)) and its solutions for | e
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Multiplying both sides of equation (7.10) subject to (7.32) by &' yields:

D, (t,x)= 0(2)¥,,(t,x,) for each | € @, (7.72)
where

P, (1 X,) =y, (t,X,)e" foreach | e @, (7.73)
in addition to (7.9). In this case, equation (7.14) is replaced with this one:

A, (t %)+ kG P (tx,)=0. (7.74)

Consequently, under the definition (7.72), the following three equations subject to (7.8) come instead
of equations (7.31), (7.33), and (7.34) respectively:

A, (t, x,)+ K2, (t, x,) =0 foreach | € e, (7.75)
2 ¥y (t.x,)
Q (k)‘P(l)(t,gz)+T:O for =1, (7.76)
2
1 Qz(k)‘P(l)(t,gz)+M = A (t,x,) foreach l e w, . (7.77)

dz

g

Likewise, all of the rest of subsections 7.2 and 7.3 apply with the upper case letter variants of

functional variables in place of the lower case ones.

7.6. A general recursive asymptotic wave problem for a liquid semi-infinite space

A liquid semi-infinite space z<0 can be regarded as the limiting case of a gravity wave of a

short wavelength 2 =27z/k on a liquid layer of a uniform depth d, such that kd—oo. Therefore, all
formulas of subsection ns 7.2, 7.3, and 7.5 that involve tokens of the functional form *4(z)’ defined

by (7.32) hold if those tokens are replaced with tokens of the functional form * 900(2)’ defined as:

- . _ . coshk(z+d) . e ek
0.(2)z0,(z,k)= kIdlinooé?(z, k,d)= lim ok lim el (7.78)
subject to z<0. In this case, it follows from (7.38) that
2,() = lim 2(k,d) = k!jlinww/gktanhkd =Jgk >0, (7.79)
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8. A progressive or standing plane monochromatic water wave as the
first non-vanishing approximation of the recursive theory

8.1. Fundamental solutions of the set of equations (7.31) at I=1 and (7.33)
The basic Eulerian equation of motion (4.24), an asymptotic solution of which is under the

study, is nonlinear. Therefore, its solutions, whatever they could be, do not satisfy a principle of

superposition. For instance, if V® and V® are two different solutions of equation (4.24) then the
sum V¥ +V® does not satisfy that equation. Therefore, the functional form w,(t,x,), which
determines both the scaled velocity potential of the first approximation ¢, (t, 5) (see equation (7.10)
subject to (7.32)), and the non-scaled one <I)(1)(t,5) (see equations (7.72) subject to (7.73), for 1=1),

is sought as a solution of ¢ In compliance with Definition 7.1(1), this set of equations will be denoted

by ‘D(z//(l))’. The set of equation (7.75) at I=1 and of equation (7.76) is the pertinent variant of the
above set and it will therefore be denoted by ‘D(‘P(l))’. The set D(z//(l)) implies that v, (t, 52) should

be interpreted as a single plane monochromatic wave of a wave number k >0 (introduced by

equations (7.13) and (7.30)) and of the cyclic eigenfrequency «2(k), defined by equation (7.38).
Accordingly, neither y, (t,x,) nor ¥, (t,x,) can be sought, e.g., in the form of any Fourier integral.
Both equation (7.31) at 1=1 and equation (7.33) are linear in y/(l)(t,gz) and homogeneous.

Fundamental real solutions of the former equation are given by these two trigonometric functional

forms:
cosk,-x, and sink,-X,, (8.1)
where
K, = (ki k) = (k, K, ) (8.2)
subject to
ko =k,” =k’ +k,5 =k?, (8.3)
and also where
X = (X %,) = (X, Y). (8.4)
Fundamental real solutions of equation (7.33) are given by these two trigonometric functional forms:
cos.2(k)t and sin (Kt , (8.5)
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subject to (7.38). Functional forms (8.1) can be combined with functional forms (8.5) so as to create

various fundamental trigonometric functional forms satisfying D(n//(l)), i.e. both equations: (7.31) at

I=1 and (7.33) simultaneously. To be specific, each one of the following four fundamental

trigonometric functional forms satisfies D(y/(l)) and is descriptive of a plane standing gravity wave:

2t X, k,) 2 sin Q(K)tsink, - x,  (a),
Ha(t %5,k ) =sin 2(k)t cosk, - x, (),
Z—l,l(t’XZ!KZ)E COS-Q(k)t Sinkz "X (C),
714t X, K, ) = cos 2(K)t cosk, - x, (d),

(8.6)

whereas each one of the following four fundamental trigonometric functional forms also satisfies
D(z//(l)) but it is descriptive of a plane progressive gravity wave:
7 (6 X, k;) =sin[(k)t -k, - x,] (@),
2 (%0, k, ) = sin[Q(K)t +k, %, (b),

)
2a(t X, k) = cos[(k)t -k, - x,] (€,
pa taZkaz)E COS[-Q(k)t +k, '52] (d).

(8.7)

The first or second or only occurrence of the subscript “;” or “.;” in a definiendum of definitions (8.6)
and (8.7) is indicative of the respective occurrence of ‘sin” or ‘cos’ in the definiens. The definientia

of definitions (8.7) have been deduced from (8.1) and (8.5) by the instances of equations (7.66) with
a=0(K)t and S =Kk, X,. (8.8)

In addition to the appropriate fundamental trigonometric functional form or forms selected from (8.7)

and (8.8), z//(l)(t,gz) may in principle involve an arbitrary real-valued constant factor. Still, this

factor will be particularized in accordance with the following considerations.

8.2. A dimension factor of the velocity potential

In accordance with (5.8) and (5.14), the functional form q)(l)(t,g) is the a scaled velocity

potential in the first, linear approximation with respect to the dimensionless scaling parameter

¢ €[01). Therefore, ®,,(t,x) should have a dimension of 1?/t, where ‘I’ stands for ‘length’ and “t’

@

for ‘time’. Each one of the pertinent functional forms ¥,;,(t,x,), ¢y (t, ), and w(t,x,) must have

the same dimension; that is, symbolically
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[(D(l) (t,x)]= [IP(I) (tx,)]= [¢(1)(t,5)]=[z//(,)(t,§2)]: I°/t, (8.9)
where a pair of square brackets | ] stands for the dimension of the expression that it encloses. At the

same time, it will be assumed that & =ka, where ‘a’ is an arbitrary real-valued constant, whose

value can be particularized when desired and be called the effective amplitude of @, (t,x) and hence
that of ‘P(l)( 2); the sense of the name “effective amplitude” will be explicated before long. Since
[KI=I", therefore [a]=I. Either ¢, (t, x) or y(t.x,) does not involve ¢ and therefore it does not
involve a. Therefore, in order to provide w,,(t, x,) and hence ¢,(t, x) with the necessary dimension,

I shall supplement the entire pure trigonometric functional form, involved in each one of the two

functional forms y,(t,x,) and ¢,(t,x), with a certain constant dimension factor y(k) to be

composed of some appropriate parameterrs available in the problem. Namely, | define that factor
thus:

I

g g 2
- 0, so that [(k)] = I12/t. 8.10
k() \ktanhkd ~ 0 k))=r/ (8.10)

7w(k)55m7(k)_5mm(k) s \/ktanhkd \/t k.Q Y (8.11)

Beside the dimension factor ;/(k) some entire pure trigonometric functional forms can for

y(k)

Consequently,

(cf. (7.79)).

convenience be supplemented by a sign factor — or +. Criteria for the choice of both the dimension
factor and the sign factor are relevant to the sense of ‘a’, i.e. to the sense of the name “effective

amplitude”, so that they will be explicated in due course before long.

8.3. A plane monochromatic standing or progressive gravity wave on a liquid layer as
the first approximation of the recursive asymptotic series
8.3.1. General definitions
1. In accordance with the two previous subsections, the solution of the set of equations (7.31)

at I=1 and (7.33) will be selected either as one of the following four, descriptive of standing waves:

v, (%K, )= =1y (K)z,,., (t. X5, K, ) for (u,v)e{l-1}x {L-1}, (8.12)

subject to (8.6) and (8.10), or as one of the following four, descriptive of progressive waves:
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Wit %o K,) = —up(K) ) (6 X0, K,) for (u,A) e -1+, (8.13)
subject to (8.7) and (8.10). That is, once either x and v in (8.12) or x and 4 in (8.13) are selected, |

shall set either

Vot X)) 2y, [t X, k)= —uy(k)z,, (t.x, k) (8.14)
or
VeltX.) 2wt X, k,) = —r(K)z (t X, K, ) (8.15)
respectively. By (7.10) subject to (7.32), | shall also set either
bo(t.x)= 4, (Lxk,)= 0y, (t.x, k,) (8.16)
in the case of (8.14) or
by (t.X) = 47t x. K, ) 2 02wt X K, ) (8.17)

in the case of (8.15). In accordance with (5.8), (5.14), (7.72), and (7.73), @, (t,x) and ‘P(l)(t,gz) are

defined correspondingly either as

Dy (t, )= 0(2)¥ (t, ) = 24, (t X k) = £6(2)y,,, (t.X,.k,), (8.18)
so that
Wt Xo) = ew,,, (6 X, k,), (8.19)
—in the case of (8.14), or as
@ (t, X) = 0(2) ¥, (t.X,) = 245 (t. x k) = 0(2)y s (t. X, K, ), (8.20)
so that
Wy (tx,)= ey (t X, k,), (8.21)

—in the case of (8.15) (cf. Lamb [1932, Arts 228, 229]).
2. By (7.10) subject to (7.32), equation (6.52;) subject to (6.56) becomes

1340(x,) 1 0p,(tx,)
5(1)('['&):—5 md : - (l)o’t 2 (8.22)

and hence, by (5.1) and (5.7),

a_k 0’7‘//(1)('[1%2)

Z(l)(tlz):gé/(l)(tlz):aké’(l)(tilz):— q P (8.23)

Consequently, by (8.14) subject to (8.6), equation (8.22) can be specified thus:
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= L 10y, (X0 K,)  up(k) S, (t X, k,)
é/(l)(txz):gﬂ,v(t’XZ’Kz):—a 2 1 22=2) _ g() u d2 2

— ,U aly,v(t’lz’&) =£ t k
- kQ(k) a k Zﬁt,v( )521_2),

(8.24)

and hence equation (8.23) yields:
Z(l)(t’&)zz (t X5, K ) akd, (t X2,k ) aZ—,u,v(tlZZIKZ)' (8.25)
By (8.6), the last equation particularly means that
Z,,(t,x,,k,) = acos2(k)tsink, - x, (),
Z, ,(t,x,,k,) = acos 2(k)t cosk, - x, (b),
Z .,(t,x,.k,) = asin 2(k)tsink, -x, (c),
Z., .t x,k,)=asin 2(k)t cosk, - x, (d),

(8.25,)

while equation (8.24) is particularized by the variant of (8.25;) with ‘¢ and ‘k™ in place of ‘Z’ and
‘a’ respectively. Analogously, by (8.15) subject to (8.7), equation (8.22) can be specified thus:

= L 10vitxK,)  up(k) Sri(t X, k,)
é/(l)(tizz):é/j(thkaz):—a 4 dz 2/ _ g() u dz 2

orttx, k,) 1
:k.(;(k) ;(dZ Z)ZEny(t’Zz’Kz)v

(8.26)

and hence equation (8.23) yields:
Zoy(t.X,) 2 Z, (6 X, K, ) 2 ARG (t X, K, ) = 277, (6 X, K, ). (8.27)
By (8.7), the last equation particularly means that
Z; (t.x, k,) = acos[2(K)t -k, - x,] (a),
Z; (t.x, k,) = acos[(K)t +k; - x,] (b),
Z7,(t,x,,k,) = asin[Q(K)t -k, - x,] (c),
Z1(t X, k) = asin[Q(K)t + k, - X, ]

(8.271)

while equation (8.26) is particularized by the variant of (8.27;) with ‘¢ and ‘k™ in place of ‘Z’ and
‘a’ respectively. Thus, in accordance with (8.25;) and (8.27,), a is the amplitude of displacement of
the free surface of the liquid layer due to either a standing gravity wave or a progressive gravity

wave. This interpretation of ‘a’ is preserved also in the case of a semi-infinite liquid space z<0,

provided that “ ©2(k)* defined by (7.38) is replaced with “ €2, (k) * defined by (7.79).
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3. Once a non-scaled velocity potential ¢(1,(t, x) or the respective scaled velocity potential
O (t,g) is selected, — the former from those defined by (8.16) and (8.17 ) and the latter from those

defined by (8.18) and (8.20), — all pertinent characteristics of the fluid flow can be calculated.
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8.3.2. A progressive plane monochromatic gravity water wave
Concention 8.1. 1) For the sake of definiteness and without loss of generality, I shall
henceforth confine myself to the following non-scaled velocity potential of a plane progressive

monochromatic gravity water wave:

by (t.X)= 8, (6, .k, ) = 0(2), (8, X5, K, ) = —p7 (K)O(2) 1, (t X k) (8.28)
and hence to the respective scaled one:
Oy (1) = eg, (t.x.k,) = 0(2hy (. X, K, ) = ~aky (K)0(2)z, (tx, ko), (8:29)

subject to (8.7,a,c) and hence subject to some particular ye{l,—l} and subject to A=—. It is

understood that (8.28) and (8.29) can alternatively be specified for and A=+, whereas
206X, K,) = 7, (6%, k,). (8.28:)
2) In order to make statements relevant to both versions of g, (t,x) or @, (t,x), I set
7, =sin, 7, =C0S, (8.30)e

1. Under Convention 8.1, for each u e {1,-1}:

2.0 k,) =7, (2t =k, x,), (8.31)
al;(t’leZ) _ 6T,u(‘(g(k)t _KZ XZ) — ,Ll.Q(k)ZL I(Q(k)t _Kz 'Xz)a (832)
ot ot !
aﬂ(,:(t’lzykz) B arﬂ(Q(k)t -k, ‘Xz) _
ox oX. =~z ()= K; -, (8.33)
foreachi e {1,2},
Consequently, by (7.32), (8.10), and (8.30), equation (8.28) (e.g.) becomes
¢(1) (LZ) = ¢,:(th'£2)= O(Z)V;(ta&akz)z —W(k)@(z)){;(t,&,&)
___M _k..
= a0 200K o) (8.34)
_ M g COShk(Z+d)T(Q(k)t—k X,)
k \ktanhkd ~ coshkd * m2 s
whence, in view of (8.33),
O (t, X or (2Kt -k, x,
n(03) =gy 1.0)= 28 () 22200 s )
‘ ‘ (8.35a)

k g coshk(z+d) _
X Q(K)t—k, - x,)foreachi e {1,2},
k Vktanhkd  coshkd 7 (QK)t -k, - x;) ie{l,2}
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¢y
V(1)3(t,5) 3¢(1)( ) ¢(a))Et X) _,UV(k)ﬁggz)Tﬂ (Q(k)t -k, '52)

g sinhk(z+d) .
=- Q(k)t -k, -x,)fori=3.
“Vianhkd cosnka 7+ (20 —Ka xefor

Particularly, equations (8.34), (8.35a), and (8.35b) at z=0 become

#O(t.x,)= g, t.%)] = f(‘ ,/ktar?hk Q0 -k; x,), (8.34)
K | _ |
Vi (t.x,) = [V(l). (t, X)]Z S kl m r_(Q@)t—k,-x,)foreachie L2}, (8.35a)

[ gtanhkd . ,
V((lo))s(t Zz)E [V(l)S(t'X)]ZZO =—H g aT( T;,(Q(k)t _Kz 'Zz) fori=3. (8-35b)

At the same time, equation (8.26) at A=— becomes

(8.35b)

Coltix,)= gg(t,xz,K2)=%z:#(t,xz,gz)%r_,,(a(k)t —kyX,). (8.36)

2. By (8.3), (8.35a), and (8.35b), equation (5.50) at I=2 can be developed thus:

€ (t,X) = ; Z(V(l)l(t X))z { ) (V(1)|(t X))2 (\/(1)3(t X))z}

0,0 {(cosh k(z+d)} e (0t -k, x,) (8.37)

~ 2ktanhkd |\ coshkd

sinhk(z+d)Y" L
+(wj 7, (Q)t—k, Zz):|-

At the same time, equations (7.66) with f=a yield

sin2a = 2sinacosa (a), cos2a = cos’ a —sin‘a (b), 1=cos’a +sin“a (c), (8.38)
whereas the half-difference and half-sum of (8.38c) and (8.38Db) yield
2sin’a =1-cos2a (a), 2cos’a =1+cos2a (b). (8.39)
By (8.30), the pertinent instances of (8.39) become

2, Q) -k, %)= %[1; ucos2(Q(K)t—k, -x,)] foreach uefl—1}.  (8.40)

Since
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sinha:%(e“—e“)z—isinia @), cosha:%(e“+e“):cosia (b), (8.41)

therefore equations (8.38) and (8.39) are equivalent to the following ones of hyperbolic

trigonometry:

sinh2a = 2sinhacosha (@), cosh2a = cosh? o +sinh?a (b),

1=cosh?a —sinh’«a (c), (842)
2sinh® o = cosh 2a -1 (a), 2cosh® a = cosh 2 +1 (b), (8.43)

respectively. It is also noteworthy that
2tanhkd cosh? kd = ZSi”:EShCE;hZ KA _ 2sinh kd coshkd = sinh 2kd , (8.44)

by the instance of (8.41a) with a =kd .
Making use of (8.40) and of the instances of (8.42b) and (8.42c) with a =k(z+d) in that

order, and also making use of the train of equations (8.44), equation (8.37) can be developed thus:

8 (1X) = %{coshz k(z +d)[L+ pcos2(2(K)t —k, - x,)]

+sinh?k(z + d)[L— ucos2(Q(K)t — k, - X, )]} (8.45)

_ m[cosh 2k(z +d) + ucos2(Q2(K)t -k, - x, )]

Particularly, equation (8.45) at z=0 becomes

e (t,%,) = e (6. 0)] |, ==——29__[cosh2kd + ucos2(@()t -k, -x,)].  (8.45)

2k sinh 2kd
3. Let

k, =k, =0, so that |k| =k |=k >0. (8.46)
Then, by (8.44), equations (8.34), (8.35a), and (8.35b) reduce to
B (t.X) = g (t, %, 2,k,) = 6, (t,(x,0), 2, (k,,0))
=0(2)7, (t, x,k,) = 02, (¢, (x,0),(k,,0))

—urB)Z, (1, =~ (0B(2) 2, (%0} (6, ) (847

M ) M /2_9 _
— kQ(k)G(Z)Tﬂ(_Q(k)t k x)= ” ksinthdr#(Q(k)t k,X),
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Viaye (6, X) = Vg, (6%, 2.k, ) = v (6,(x,0), 2(K,.,0))

K 29 (8.48)
K29 coshk(z+d)r (0Kt —k x),
Vs 2k “osk 2+ d)z (20t —kx)

V(l)z(t’x V(l)z t,X,2,k, )= V(l)z( )
)

1/ sinh k(z+d)r .Q(k)t—kxx
ksmh 2kd

the understanding being that v, (t,x)= 0. By (8.30), it follows from (8.48) and (8.49) that

29 B 2 2g i ’
[V(l)x(tyl)]z{ /m cosh k(z+d)} +[V(1)z(til):| [W’—ksinh oKd sinh k(2+d)} (8.50)

=7 (2@t —kx)+7_ (20Kt —k,x)=1.

(8.49)

8.3.3. A standing plane monochromatic gravity water wave
Convention 8.2. For the sake of brevity and without loss of generality, | shall, under
definition (8.30), write the non-scaled velocity potential of a plane standing monochromatic gravity

water wave as

¢(1) (t' X) = ¢yv (t! X! KZ) = e(z)l//,uv (t’ KZ ' KZ) = —ﬂ]/(k)e(Z)Zyv (t’ XZ ' KZ) (851)
and hence the respective scaled one as:
(D(l) (t7X)E ‘c"¢,uv(tlx!K2)= ( )l//,uv(t X2' k ) _lua'ky(k)e(z)l,uv(t’KZIKZ)’ (852)

subject to (8.6) and hence subject to some particular u e {1,-1} and v € {L,-1}.¢
1. Under definition (8.30) it follows from (8.6) that for each x e {L,—1} and each v € {L,-1}:

X (LXK, ) =7, (20)0)z, (k; - X,), (8:53)
alﬂv(téf”&) _ %% (z (k)t)rv (k, - x,) = u2(K)z_, (Q(K)t)r, (k, - X,), (8.54)
aZyv(t’ZZ’KZ)_ afv(kz'lz)_
e (Q(k)t)@—xi = —wkz, (200t ), (k, - X,) (8.55)

for eachi e 1,2},
Consequently, by (7.32), (8.10), and (8.30), equation (8.50) (e.g.) becomes
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by (6.X) = 4, (LXK, ) = 02y, (6. X5, K, ) =~ (K)O(2) 7,0, (1. X2 k)

___ M .
o, (), ) (8.56)

u g coshk(z+d)
Tk QK1) (K, X, )
Viannkd  coshkg (20 (ke x2)

whence, in view of (8.55),

So (b .
Vi (6.X) = Vb (£,%) = % = —uk)(2)r, (00D 7% (5; X,)
: i (8.57a)

g coshk(z+d) _
Q(k)t k. - f h 12!
k ktanhkd  coshkd Tu( ( ))T_V(_z Zz) or eac |e{ }

0
V(l)s(t’l) 3¢(1)( ) % —M/(k)aggz)rﬂ(()(k)t)rv(&-52)
3 (8.57b)

g sinhk(z+d) _
- Q) (K. -x.)fori = 3.
M\ it cosnkd+(2KIr, (k; -, fori

Particularly, equations (8.56), (8.57a), and (8.57b) at z=0 become

9 (t.x,) [¢(1) (t.x) ]z 0= /:\/ ktar?hkd z,(Q()t), (k- X,), (8.56")

V%)= by 0 00] = i [ 8 (@000 K x2) 6.572)

foreachi € {1,2},

tanhkd . :
Vb (t.26) = s 0.0)],, =~y T (2000, (k, - x;) fori =3, (857b)

At the same time, equation (8.24) becomes

1%

é,(l)(t’KZ)E gy,v(t!&akz) = %Z—y,v(t’x27k2) = %T—#(Q(k)t)fv(Kz 'Kz)- (8-58)

2. By (8.3), (8.57a), and (8.57b), equation (5.50) at I=2 can be developed thus:

€2 t,x)== 2 Z(V(l)|(t X))z { (V(l)l(t X))Z (V(1)3(t X))Z}

,Ogg 2 2
= cosh“k(z +d k. .x 8.59
TPl UL (Y (8.59)

+sinh?k(z+d)r, (K, - %), 2(2(K)t)
By (8.30), the pertinent instances of (8.39) become
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2, 2@ = %[11 1c0s2Q(K)t] for each u e {11}, (8.60)

7,0k, %,)= %[1; veos2(k, - x,)] for each v e {,-1}. (8.61)

Making use of (8.60) and (8.61) and of the instances of (8.42b) and (8.42c) with « =k(z +d) in that

order, and also making use of the train of equations (8.44), equation (8.59) can be developed thus:

€ (LX) = m{cosh2 k(z+d)L+vcos2(k,-x,)]

+sinh?k(z +d)L—vcos2(k, - X, )|}[L - z2cos 22(K)t] (8.62)

_Lg . —
= aicainh 2 (C0sN 2k (@ + )+ veos2(k, - x, )J1 - ucos22(k)t]

Particularly, equation (8.62) at z=0 becomes
eli?;) (t,x,)= [ek(Z) (t, X)LO

= Lg . —
= [cosh 2kd +vcos2(k, - x, )L — ucos22(k)t]

3. If (8.46) hold then. by (8.44), equations (8.56), (8.57a), and (8.57b) reduce to

b (t.X)= 4, (6% 2.k) = 4, (t,(x,0),2,(k,.0))
=0(z)7,, (t, x k)= 02w, (t,(x,0),(k,,0))

=—ur(K)0(2)7,, (t.x.k,) = 1y (k)0(2)z,, (t.(x.0).(k,.0)) (8.63)

___ M _ M 29
=oAL )= = g AR 200U (o)
Ve (t:X) 2 V[t %, 2.k, ) 2 V(l)x(t’<x’0>’ z<kx,0>)

k g coshk(z+d)
=T Q(k)t)r, (k 8.64
" Vktanhkd ~ coshkd r,(20k)t), (k,x) (8.64)

—ope |20
= v i s aig oSk + Dz, (20t), (k,x),

(8.62)

V(l)z (t’l) = \7(1)z(t’ X, Z, kx) = V(l)z(t1<x’0>' Z<kx ’O>)

g sinhk(z+d)
_— QM) (k 8.65
M anndcosnka 200t (k,x) (8.65)

_ [ 2
=~ st 2k sinhk(z +d)z, (2@K)t), (kX)

the understanding being that v(l)y(t,z)E 0. By (8.30), it follows from (8.64) and (8.65) that
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2 29 : 29 i k
[Vu)x(t,l)] {\/m‘mhk(”d)} +[V(1>z(t’X)]{\/msmhk(Hd)} (8.66))

= 2 QU] 2 (kX)+ 7,2 (kX)) = 7,2 (2000

9. The cyclic frequency and related scalar characteristic of a progressive
plane monochromatic gravity water wave
9.1. The second dimensionless parameter and basic scalar characteristics of a
progressive plane monochromatic gravity water wave

1. Besides the dimensionless strictly positive parameter ¢ =ka >0, there is in the recursive
asymptotic problem in question another dimensionless strictly positive parameter 6 =kd >0, whose
value affects the character of solutions of the problem (cf. (7.78), (7.79), and (8.11)). Various aspects
of this parameter are made explicated below in this subsection,

Definition 9.1. Given d>0,

2(5)= %.Q(g,dj =+/Stanhs >0, (9.2)

the understanding being that, given k, € E,,
8 =|6,|=+/6] +6; =|k,|d =kd >0, subjectto 5, =k,d . (9.2)e
Lemma 9.1 (and at the same time a definition of “s;”, “s,’, and “m,, ). For each & € (0,+) :

a5(5)

Sg (5) = 7 = ml(§)5p (5) > 0 y (93)
where
. 2(5) [tanho
,(0) = s 1 5 >0, (9.4)
.1 20
m,, (29) = 2(1isinh 25]>0. (9.5)

By (9.3), the values of the functional form “ X(5)’, as defined by (9.1), monotonically increase from
2(0) =0 to X (+w) = +w0as J increases from 0 to +oo.

Proof: It follows from (9.1) that
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oX(9) :%[5“2(tanh 5)M'2 + 52 (tanh 8) /2 (cosh 5)72]

o " (9.31)
- (5'[3225) (“ sinh 55cosh 5} - 22(5‘) (1+ sin2h525j'
QED.e
Comment 9.1. Except for the useful relations
5,(0) —s,(0) =m_,(20)s,(5), (9.6)
m,(28) +m_;(25) =1, (9.7)

which immediately follow from (9.3) and (9.5) respectively, the functional form ‘m_(29)’ is
irrelevant to ‘s (o) as such. This form appears in some formulae relevant to depth-integrated
characteristics of the fluid flow.e
Lemma 9.2 (and at the same time a definition of *X™*"). For each & €[0,+x): there is
exactly one X'(o) € [O,oo) such that for each & €[0,+»):
5=2X"(o) ifand only if () =0 (9.8)
Proof: Owing to strictly monotonic increase of X(5) with increase of ¢ in the real semi-axis,

as stated in Lemma 9.1, given o [0,+x): the equation X(5) = o has a unique solution with respect
to *5°. This solution is denoted by ‘ X*(o)’, so that X" is the inverse of the bijective function X.
QED.e

Comment 9.2. For the sake of brevity, | use ‘ 22?(k)’ (e.g.) interchangeably with *[@2(k)[ .
At the same time, ‘> ()’ has by definition nothing to do either with ‘[Z(c)]*” or with
‘13(c)’.e

Corollary 9.1 (and at the same time a definition of “c,” and “c,’). Given d € (0,), for each

k €[0,+0):
QK) = 2(k,d) = %2(kd)=@2(kd):3—°2(kd), (9.9)
cg(k)acg(k,d)z%:\g[difq d(dl:(d)=\/g_dsg(kd)=cosg(kd), (9.10)
c,(k)=c,(k,d)= Q(';’d) =\EZ(:") =\/g_d—2$d) = Jods, (kd) = c,5, (kd),  (9.12)
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the understanding being that

c, =4/9d >0, (9.12)
and that, in accordance with (9.6),
c,(k,d) =m,(2kd)c,(k,d) >0, (9.13)
It is understood that for each & [0,+o0):
s,(0) = (gd)‘“zcg(éld,d) = co’lcg (6/d,d), (9.10y)
s,(0) = (gd)‘“ch(éld,d) = co’lcp(5/d,d), (9.11,)

which are converse of (9.10) and (9.11).

Proof: The trains of equations (9.9)-(9.11) along with (9.12) and (9.13) immediately follow
from (9.1) and (9.3)-(9.5). Equations (9.10;) and (9.11;) immediately follow from (9.10) and (9.11).
QED.e

Comment 9.3. 1) The dispersion functional form “«(k,d)’ is a characteristic of the whole

recursive asymptotic wave problem in question. Still, the most natural interpretation of * 2(k ,d) ’ is
that, given a wave vector k, € E, -<0,0>, Q(k,d) is the cyclic frequency of a progressive plane
monochromatic gravity water wave, of the wave number k E|K2| >0 and hence of the wavelength
A=2zx/k, the understanding being that the velocity potential of the associated fluid flow is a
particular solution of the problem Tu(l)(g/ﬁ(l)), I.e. of the triple of equations (7.1)—(7.3) at I=1 subject to
(7.4). In this case, c,(k,d) is the wave group speed, whereas c,(k,d) is the wave phase speed. In
contrast to the dimensional quantities «@(k,d), c,(k,d), and c,(k,d), the corresponding
dimensionless quantities 2(5), s,(d), and s,(5) are called “the reduced wave cyclic frequency”,

“the reduced wave group speed”, and “the reduced wave phase speed”, respectively, — in the sense

that these are independent either of “ g * or of “*d °.

2) By (7.38), the pertinent straightforward calculations implied in (9.10) yield
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- _a2k,d) J.gktanhkd 1 J(ktanhkd
0 )20, (k,0)= ) _Aokannd _1 g olkarnio)
X 17,4 2 \ ktanhkd X
1 g (tanh o + kol jzi [ gd (smh 2kd2+ 2kd) 9.10)
2 \ ktanhkd cosh* kd 4 \ kdtanhkd cosh* kd

—¢c sinh26 + 26 __CS(5)
® 4/anhs cosh? s 079

subject to (9.12).e
Corollary 9.2 (and at the same time a definition of ‘K’). Given d (0,+w), for each
@ € (0,+x), there is exactly one

K(0)= K(,d) = %2{ %wJ (9.14)

such that for each k € [0,+o):
k=K(w,d) ifand only if Q2(x,d)=w. (9.15)
Proof: The corollary follows from Lemma 9.2 by (9.1) and (9.2), with the understanding that

o= \/Ea) and conversely o = \/ga. (9.16)e
g

9.2. Along-wave range
Corollary 9.3. For each § €[0,7/2):

5(5)= [ :5{1_5_2&_54%(54)] ©.17)
3 15
. 6 195° 4
2(5)_5[1 e +ols )] (9.18)
s,(0)=1- 2+ 2997 o(5) (9.19)
72
_3(G)_, & 198 .,
5,(0)= =2 =1- T4 +o(5*), (9.20)
26° 145° s
m,(26)="2--= 2 +0(5*). (9.21)

The Maclaurin series for *m,(29)’ is determined by (9.7) subject to (9.21).
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Proof: 1) The known Maclaurin series for ‘tanhd’ (see, e.g., Gradshteyn and Ryzhik [1980,
p. 35, art. 1.411, item 6]) can be written for each § e (- 7/2,7/2) as

tanh = 5f1— z,(52)], 9.22)
where
L5 25
L (9.23)

Equation (9.17) immediately follows from (9.1) by (9.23).
2) In order to prove (9.18), notice that tanh0=0 and tanhoo=1, whereas

dtanhs _ (cosh &) (1,0) for each & e (0,00). Hence,

0<tanh§ < & for each & e (0,). (9.24)
By (9.24), it follows from (9.22) that
7,(6%) €[01) foreach s e(-7/2,7/2). (9.25)

By (9.1), (9.22), and (9.25), the following Maclaurin series with respect to * y,(5°) * converges for
each 5 €[0,7/2):

¥ = \1- %(¢?) =1‘%zo(52)—%z§(52)—0(15(52))- (9.26)

By (9.23), equation (9.26) yields (9.18). Equation (9.19) immediately follows from (9.3) by (9.18).
Lastly, (9.21) immediately follows from (9.5) with the help of the instance of the known Laurent
series (see, e.g., Gradshteyn and Ryzhik [1980, p. 35, art. 1.412, item 12])

2

B | P
cschy = (sinhy)™ = 1—€+%+0(y4) for each |y| € (0,7), (9.27)

with y =26 = 2kd . The corollary is established.e
Corollary 9.4. Given d € (0,c), for each kd € (0,7/2):

2 2 k.d 2
0<1-2kd) _; GHD (ki) (9.28)

cok C 3

k,d 2
0<1-2kd) Gk (ki) (9.29)

Cok C, 6

c. (k,d kd)?

0<1- o )<( d) , (9.30)

Co 2
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the understanding being that
mep(k,d):meg(k,d):co. (9.31)
Proof: The corollary follows from Corollary 9.3 by (9.2) and (9.9)—(9.12).e
Definition 9.2. Given d e (0,x), a progressive wave of a wave number k < (0,c0) is said to
be long in regard to a liquid layer of depth d , — or, alternatively, given k € (O,oo), a liquid layer of a

depth d € (0,oo) is said to be shallow, or thin, in regard to a progressive wave of a wave number k, —
if and only if
kd < /0.6 = 0.775, (9.32)

1 1
which corresponds to g(kd)2 SE in (9.29).e

Comment 9.4. 1) Criterion (9.32) can be rewritten as

AL27 g1 (9.32)
d”Jos |

where 4 =27z /k is the wavelength.
2) There is an empiric fact that a progressive quasi-plane quasi-monochromatic gravity water
wave of local amplitude a and of local wave number k is disintegrated (breaks) when it approaches

some region, in which

£=ka<+06. (9.32a)
and which often is also qualified as a shallow water one. However, criterion (9.32a) is independent
of criterion (9.32). Therefore, a water wave region that satisfies criterion (9.32a) should more
correctly be qualified as a high-amplitude one. It is noteworthy that the effect of gravity wave break
in a high-amplitude region due to bottom effects cannot be associated with the velocity potential

@, (t,x) of second order with respect to ka, because the latter potential turns out to be bounded

throughout, as shown in the next section. For avoidance of the wave disintegration, the assumption
that the wave amplitude a is small as compare to the depth d should be made.e

Definition 9.3. In analogy with (8.30), it is convenient for our purpose at hand to modify
definition (7.32) thus:

coshk(z+d) - 0(2

0.(2)=0,(2.k)= 0., (z. k d)=—=""— "

k,d)=6(z,k)=6(2) (9.33)
and to supplement it with the definition:
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(zk,d) _sinhk(z+d)
0z coshkd

el(z)zal(z,k)zel(z,k,d)z%ae1 (9.34)

Thus, the functional variables ‘6 ,” and ‘6’ are synonyms, any one of which determines the
dependence on ‘z’ of each one of the functional forms ¢(,)(t,5) and v(m(t,g) for each | € @, and each
i e{L,2}, whereas the functional variable “6,” determines the dependence on ‘z’ of the functional

form v,,(t, x) for each | € e, .0

Corollary 9.5. Given d € (0,), for each kd [0,7/2), for each z & (0, +):

H_l(z,k,d)=1+%kzz(z + 2d)—2—14k4z(z +2d)4d? - 2dz - 2%)+ olk*(z+d)'),  (9.35)

0,(z.k,d)=k(z + d)—%ks(z +d)4d? -6z -322)+ olk?(z +d ). (9.36)

Proof: In accordance with (9.33) and (9.33), multiplication of each one of the known series
(see, e.g., Gradshteyn and Ryzhik [1980, p. 35, art. 1.411, items 4 and 2]):

0 2n 2n+1

X . 2 X
cosh x = , sinh x= , for each X e (—o0,+x0), 9.37
Z(2n)! Z(2n+1)! € (-ontr) (9:37)

n=0 n=0

with x =k(z +d) by the known series (ibid., p. 35, art. 1.411, item 10):

2 4
sechs = (cosh 8) :1—§+%+ o(6*) for each 5 e (- /2,712), (9.38)
subject to (9.2), yields (9.35) and (9.36) respectively. In this case, once (9.35) is deduced, equation
(9.36) can, alternatively, be obtained by differentiating (9.35) with respect “z’, in accordance with
(9.34). QED.e

Comment 9.5. Under Convention 8.1, given u e {1,-1},

q)(l)(t’l): —,uaky(k)@_l(Z, k,d)rﬂ(_Q(k)t - kz 'Zz)i (9-39)
by (8.29)—(8.31) and (9.33). At the same time, by (9.1), (9.2), and (9.12), equation (8.10) becomes
k)= 3 :1\/ J :1\/ W ___% .o (9.40)
ke2(k) k \Vktanhkd k \ stanho  kX(0)
If kd €(0,7/2) then it follows from (9.40) by (9.18) that
C C 5t 5
kK)=—2—="211+———+o0l5*)|. 9.41
=6 k5[+6 a0+l )} (41)
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In accordance with (9.35) and (9.40), the functional form CD(l)(t, x) as defined by (9.39) becomes

unbounded as k — 0, unless of course a special additional assumption that a— 0 as k — 0 is
made. Still, all measurable characteristics of the pertinent fluid flow, which are expressed in terms of
partial derivatives of @ (t, x) with respect to “t” or * x,’, — such characteristics, e.g., as as V,y,(t, x)
at i € {12}, Vo, (t,X), Py(t.X), Eypy(t,X), etc, — remain regular as k — 0. All these characteristics

can immediately be written in the first non-vanishing approximation with respect to kd with the

help of the series obtained above in this subsection.e

9.3. A short-wave range
Corollary 9.6. For each q €(0,):

2%(5)= 5{1+ 22(—1)%-2”(’} . (9.42)

2(6)=Vs {1— e 4 %e“‘" +ole™* )} , (9.43)

5,(6)= %[1+ (45 -1)e % - %(85 ~1)e 4 o(e“)} , (9.44)
1 25, 1 a5 -48

sp(ﬁ):ﬁ{l—e e +o(e )} (9.45)

m,,(25) = % N 25e25§e4”5 (9.46)

Proof: By the conventional definition,

5 _gd ~ 1_g?2

- € -
tanho = 5— =T — 5 =1- 1,(20) foreach o e (0,0), (9.47)
the understanding being that
- 2e—y S n,—N
Z"’(y)zl = =2 (-1)"e™ for each y e (0,) (9.48)
+ n=1

(see, e.g., Gradshteyn and Ryzhik [1980, p. 23, art. 1.232, item 1]). Equation (9.42) immediately
follows from (9.1), by (9.47) and by (9.48) with y =25 It then follows from the first expression for

“7.(y) in (9.48) that
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-y
dz.(y) I <0 foreach y €(0,). (9.49)
dy (1+ e‘y)z

Thus, the values of * y_(y) > monotonically decrease from y_(0)=1 to y, () =0 as y increases
from O to oo. Therefore,

7..(y)€(0,1) for each y e (0,0) (9.50)
(cf. (9.26). Hence, by (9.47) and by (9.50) with y =25, it follows from (9.1) that the following

Maclaurin series with respect to * ¥, (20)’ converges for each 6 e (O,oo):

5723(5)=+tanhs =1- x,(26) =1~ % 7.(26)- % 72(26)- o(;(i (25)) (9.51)

(cf. (9.26)). By the last expression for  y_(y)’ in (9.48) with y =265, equation (9.51) reduces to
(9.43), whereas. equations (9.44) and (9.45) immediately follow from (9.3) by (9.43). Lastly, (9.46)
immediately follows from (9.5) with the help of this self-evident equation

. .
cschy = (shy)™ =— 2 — = 2¢ =27 e, ye(0,) (9.52)
e-e? 1-e -t

(see, e.g., Gradshteyn and Ryzhik [1980, p. 23, art. 1.232, item 2]) at y=25. The corollary is
established.e

Comment 9.6. It follow from (9.1)—(9.5) and (9.9)-(9.12) by (9.43)—(9.46) that, given
k €(0,):

Q(k,0) = lim 2(k,d) = ok, (9.53)
cp(k,oo)zmcp(k,dp@:\/% (9.54)

) = i _dekeo) 119 _1. 4
cy (ko) = lime, (o) = = 0 _2\[( 55 (k.). (9.53)
M.y () = limm,, (2kd) = (9.56)

By (9.11), (9.53), and (9.54), it follows from (9.42) and (9.43) that given d (0,%), for each
k €(0,00):

_ (k) c;(k,d) < -2k

0<1 5 = 5
0°(k,) ¢, (k, )

, (9.57)
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_ ‘Q(kld) _l_ Cp(k'd) < e—de .

0<1 =
0(k,) C, (k, )

(9.59)e

Definition 9.4. Given d €(0,), a progressive mode of a wave number k (0,) is said

either to be intermediate or to be short inregard to a liquid layer of depth d, — or, alternatively,

given k €(0,): a liquid layer of a depth d €(0,) is said either to be transitional or to be deep (or

thick), in regard to a progressive of wave number k, — depending on whether

/0.6 <kd <05In10 (9.59)
or whether
kd >05In10 = 1151, (9.60)

respectively. In this case, the criterion kd = 05In10 is equivalent to e =01 (cf. (9.58)).e
A 2z

Fike 706 =811, (9.32)
Comment 9.7. Criteria (9.59) and (9.60), can be rewritten as
Ar A _2m (9.59")
In10 ~ d ~ /06
and as °
g < I:—fo ~ 546 (9.60)

respectively, where 4 =27z /K. In the case of a liquid layer with a mildly varying depth d =h(x,),
condition (3.46) does not suffice for the refraction of a wave of a local wave number k(x,) to cease.

Therefore, the term “deep layer’, or ‘thick layer’, must be redefined if one wants it to connote a

certain criterion of the absence of wave refraction.e

Corollary 9.7. Given d < (0,), given k e (0,%), for each z <[0,~d]:
0,,(2kd) =[e% £ e ]y (~1)'e (9.61)
n-0
Hence, given k € (0,%): given z €[0,—):
0.(2.k,®) = lim 6, (z,k,d) =e” = e, (9.62)
Proof: In accordance with (9.35) and (9.36), multiplication of the instance at x = k(z +d) of

each one of the evident equations
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cosh x :%ex(l+ e %), sinh x —%e (L+e™?, (9.63)

which are valid for all x e (—o0,+), by the evident equation

sechs = (cosh 5)-1=e5 fe 1ie —2e‘52( 1)"e*", & e (0,+) (9.64)

(cf. Gradshteyn and Ryzhik [1980, p. 23, art. 1.232, item 3]), subject to (9.2), yields (9.61).e
Comment 9.8. 1) By (9.2), (9.43) and by (9.52) with y =25 =2kd, equation (8.41) can be

developed thus

y(k)= G =£{1—e‘25+;e +o( )}>O (9.65)

kX(5) k¥?
Consequently, under Convention 8.1, given ye{l,—l}, QD(l)(t,g) is defined by (9.39) subject to
(9.61) and (9,65), so that @, (t,g) is proportional to k2. That is, just as in the case of a shallow
liquid layer (see Comment 9.5), @, (t,g) of the pertinent fluid flow in the case of an intermediate or

deep liquid layer becomes unbounded as k — O Still, as before, all measurable characteristics of the
fluid flow, which are expressed in terms of partial derivatives of (D(l)(t, 5) with respect to “t’ or
“x,”, turns out to be bounded as k — 0.

2) Although all series which have been deduced above this subsection converge for each

0 =kd €[0,), the sum of several first terms (in particular, the first term alone) of a series can be
used as an approximation to the corresponding prototype functional form only in the case of
intermediate and short waves or, equivalently, in the case of transitional and deep (thick) liquid
layers. If particularly & =kd €[1151/2,) then the given plane monochromatic wave is short, or
equivalently, the given liquid layer is deep, — in accordance with Definition 9.4. If k becomes large

enough then surface tension must be taken into account.e
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10. The second-order asymptotic approximations to the velocity
potentials of progressive and standing plane monochromatic gravity
water waves

10.1. The inhomogeneous terms in the boundary conditions at z=0 in the presence

of a progressive wave

Lemma 10.1. Under Convention 8.1, given ue{l-1}, given k,€E,-(0,0), for each
<t,52>e RxE,:

1
2k sinh 2kd

Ayt X,) = ,/ hkd sin2(Q(k)t—k, - x,), (10.2)
tanh kd
ap(t. X, h2kd |2 sin2(Q2(K)t -k, -x,)

3u(k) .
= 27 gin2(k)t =k, - x, ).
ksinh2kd ( ()t -k, x,)

Proof: | proceed from equations (6.35) and (6.38) in their before-last forms and also from

Uyt X,)=— [1+ 1(2 — cosh 2kd )cos 2(2(k)t —k, - X, )], (10.1)

equation (6.51) at 1=2, namely

1 AO.(t, x
Ay(2) (tylz) o0 {68)2) (t 52)+ X %gﬂ) (tylz ):I ’ (10.1o)
0
%t X,) ZV [V(l). (£, X, )y (8, X )] (10.2¢)
0oty T, X
0‘(2)(t’52)E M— ak(z)(t,lz)- (10.3¢)

1) The first summand in the square brackets on the right-hand side of equation (10.1p) is
given by (8.45"), whereas the second one is determined by (8.35b") and (8.36) as follows:

A (t, x [gtanhkd o7, (2(K)t -k, -
(1)3( 2)4/(1)( )__ﬁ J " #( ()ét = _Z)T_#(Q(k)t—Kz'Xz)

tanhkd
_ _%Tﬂf(g(k)t —k,

where use of the pertinent instance of (8.40) has been made. By (8.45") and (10.1,), equation (10.1o)

(10.1y)
[L+ ucos2(Q(k)t -k, - x,)]

gtanhkd
_2) Zk

can be developed thus:
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__ 1 Ps9 e

_ pyYtanhkd

2k

[L+ ucos2(Q(k)t -k, 'Xz)]} (10.1,)

—— 1 [cosh2kd - tanh kd sinh 2kd
2k sinh 2kd

+ (1 - tanh kd sinh 2kd )cos 2(2(k)t -k, - x, )]
By the pertinent instances of (8.42,b,c), it follows that

2sinh?kd cosh kd
cosh kd (10.15)

cosh 2kd — tanhkd sinh 2kd = cosh?kd + sinh? kd —
= cosh?kd —sinh?kd =1,

2sinh?kd cosh kd
coshkd (10.14)
=cosh?kd —3sinh?kd =1- 2sinh?kd =1—2sinh?kd = 2 — cosh 2kd,

By (10.13) and (10.14), equation (10.1,) immediately turns into (10.1).

1— tanhkd sinh 2kd = cosh?kd —sinh?kd —

2) By (8.35a") and (8.36), and also by the pertinent instance of (8.40), equation (10.2,) can be
developed thus:

1
k ktanhkd

Ay (2) (tilz)

Zk, 7, (QM0t-K, - x,)

1
=—— kV 1 cos2(2(k)t—k, - x
2K? ktanhkd le + ucos2Q(k) )
, (10.2y)
A
- k.k S|n2_th—k - X
2 thanhkd (,2_1: ! 'j (k) )
g .
=— 2(Q2(K)t—K, - x,),
y2 ktanhkd sin ( (kt—k, Xz)
which proves (10.2).
3) Differentiation of both sides of equation (10.1) with respect to ‘t” yields
0 t, - .
“d(gf %) _p2 (kk)(? Soeh 2)in 22kt —k, -x,)
sin (10.3,)

gtanhkd (2—cosh2kd) .
= sin2(2(k)t—k, - x, ).
Tk sinh 2kd (209t -k - x.)

where use of (7.38) has been made in developing the final expression. Substitution of (10.3;) and
(10.2) into (10.3p) yields
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/ tanh kd [ 2 — cosh 2kd 1
a(Z)(tfﬁz):/U J K ( +

: jsin 2Q(K)t-k, - X,)
sinh 2kd tanh kd (10.3,)
3u gtanhkd .
= 202Kt -k, - X, ),
anaa\ kSnAemt-k, x,)
because

2 —cosh 2kd
sinh 2kd

1 2-cosh2kd + 2cosh?kd

Ttanhkd ~ 2sinhkd coshkd
_ 2-cosh2kd +(cosh2kd +1) 3

sinh 2kd

(10.33)
~ sinh2kd’
where use of the instance of (8.43b) with a=kd has been made. The train of equations (10.3,) proves
(10.3). The lemma is established.e

10.2. The second-order approximation of the velocity potential in the presence of a

progressive wave
In accordance with (7.10) at 1=2 subject to (7.32),

D2y (t’ 5) = ‘9(2)‘/’(2) (talz)

. coshk(z+d)

= t,X,), 104
coshkd l/’(z)( _2) ( )

while for each {t,x,)e Rx E,, the functional form y, (t,x, ), defined by (7.48) at I=2 as:

V) (t1ﬁz) = ‘//(z)*(tvﬁz ’0) = %IQ(Z) (t’vﬁz )Sin[-Q(k)(t - t')] dt’,

(10.5)
is the only pertinent full solution of equation (7.34), — the solution that automatically satisfies its
identifying conditions (7.49) at 1=2:

V2(0.x,)=0 (a) and {%@&)} 0 (b),
so that, by (7.48) at 1=2,

(10.6)

V(2 (tvﬁz)z CoW (t’lz)"‘ W(z)*(t’&vo) subject to Cpp) = 0.
Substitution of (10.3) into (10.5) yields

(10.7)
o () =—29 1 (tx,), (10.8)
@227 ksinh2kd PPN =
where
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Ly (t,X,)= jsin 2[@)t =k, - x, kin[@2(k )(t—t)]dt’; (10.9)

the subscript ‘p’ is the first letter of ‘progresive’.
It follows from (7.66,b) that

sin asinﬂ:%[cos(a—ﬂ)—cos (a+p)]. (10.10)

Hence, the integrand of (10.9) can be developed as the following instance of (10.10):
sin[(k )t — t)Jsin 2[2(K)t' -k, - X, ]

) (10.9,)
It

|><

= %{cos[ﬂ(k)(t —3t')+ 2k, - X, |- cos[(K)(t +t') - 2k, -

= é{cos[ﬂ(k)(st' —t)—2k, - X, |- cos[(K)(t' +t) - 2k,

| <

Consequently, he integral (10.9) subject to (10.9) is calculated thus:

t
Lo (t.2,)= = [ eos[ (k)3 1)~ 2k, - x, ] cos[2()(t' +1)- 2k, - x, ]t
0

I\)

1 1 ) , t'=t
- 505 {—sm[ﬂ(k)(St 1) 2K, -x, |- sin[ M)t +1)- 2K, .&]}H (105,

1 2
—Zg(k){——smz[g(k)t K, - X, |+ —S|n[.(2(k)t+2k X, |+ sin[Q(K)t - 2k, - x]}

Thus, ¥, (t.X,) is given by (10.8) subject to (10.92), while ¢, (t,x) is expressed in terms of
W (t.X,) by (10.4). Hence finally, by (5.14),
CI)(Z)(t,Z) =0, (t;g,g) = 52¢(2) (t,x)= (ak)2¢(2) (t,x)

_ (ak)"coshk(z +d) (t. x ):3yazgkcosh k(z+d) (t.x,)
coshkd @ coshkdsinh2kd ~ P®"'=? (10.11)

2
__ 20 k(2 +a)
2sinh kd sinh 2kd

A= 2sin2[Q(K)t — Kk, - X, ]+ sin[2(K)t + 2k, - x, ]+ 3sin[Q(k)t - 2k, - x, ]}
because
gk 0Q°(k) _02°(k)
coshkd tanhkdcoshkd sinhkd '

(10.11,)
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10.3. The inhomogeneous terms in the boundary conditions at z=0 in the presence
of a standing wave

Lemma 10.2. Under Convention 8.2, given ue{l-1}, given ve{l,-1}, given
k, € E,-(0,0), for each (t,x,) e RxE,:

1
%ol %)= g iz

+ p[2cosh 2kd —1+ v(2 — cosh 2kd )cos 2(k, - x, )|cos 22(k)t},

{— [1 + v cosh 2kd cos Z(Kz X, )] (10.12)

1% .
o t.%;) =~ [ sin202(tcos2(k; -x,), (10.13)

o »(t, X
0‘(2)('[42)E %‘ ak(z)(talz)

=Y ta';h kd (2cosh 2kd ~1) - vcos2(k, - x, )Jsin 2€2(k)t (10.14)

2sinh 2kd

~ u(2cosh2kd —1)Q(K) . e
osnokd LY eos2(k; - x;)Jsin20(K)t

Proof: Just as in the case of a progressive wave, | proceed from the general equations
(10.10)—(10.3y).

1) The first summand in the square brackets on the right-hand side of equation (10.1o) is

given by (8.62"), whereas he second one is determined by (8.57b) and (8.58) as follows:

(0)
d/‘m(t’&)g(l)(t,gz): u /gtar;(hkd &”(“Q(k)t)T_H(Q(k)t)TVZ(Kz X,)

a K a

2
_ _MHZ(Q(@W}(& %,) (10.12,)

K
_ _%[1+ pcos20(K)tfi-vcos2(k, - x,)),

where use of the pertinent instances of (8.60) and (8.61) has been made. By (8.62") and (10.12;),

equation (10.1) becomes:

Uy (L X,) L {— ! [cosh 2kd +vcos2(k, - x, )1 - zcos22(k)t]

4k | sinh 2kd (10.12,)
+ tanhkd[L— v cos2(k, - X, )J1 + zcos22(k)t])
This can conveniently be written as
1
Ay(2) (t’ X, ) = H-[Co (52 ) + HC, (Kz )COS ZQ(k)t] ' (10.12;)
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where

1

S 2k [cosh 2kd +vcos2(k, - x, )]+ tanhkd[1 - v cos 2(k, - x, )]
B cosh 2kd

_ + tanhkd —v( 1 tanh kd}cosz(g2 -X,)
sinh 2kd sinh 2kd
1
=~ Sinh2kd [1+vcosh2kd cos2(k, - x, )],

I

Co(X;)

(10.124)

G (%)= =~

S 2k [cosh 2kd +vcos2(k, - x, )]+ tanhkd[L v cos2(k, - X, )]
_ cosh 2kd

= +tanhkd +v| — L tanhkd cos2(k, - X,)
sinh 2kd sinh 2kd

(10.125)

- [2cosh 2kd —1+ /(2 - cosh 2kd )cos 2(k,, - X, )],
because

B cosh 2kd
sinh 2kd

—cosh 2kd sinh kd
+tanhkd = — +

2sinh kd coshkd coshkd

_ —cosh2kd +2sinh*kd _ —cosh 2kd +cosh2kd —1

2sinh kd cosh kd sinh 2kd

“ (10.125)
~ sinh2kd’

- 2
| tanhkd = L+ 2sinh"kd _cosh2kd _ o
sinh 2kd sinh 2kd

cosh 2kd sinhkd  cosh 2kd + 2sinh? kd
+ tanh kd =

B 2sinh kd cosh kd " coshkd  2sinhkd coshkd
_ cosh2kd +cosh2kd —1  2cosh2kd -1

sinh 2kd

sinh 2kd

cosh 2kd
sinh 2kd

(10.127)

(10.12)

sinh 2kd
1

H 2
1 ianhkd =1z2sinhTkd _ 2-cosh2kd
sinh 2kd

- =— : (10.12)
sinh 2kd sinh 2kd
By the final expression in (10.124) and (10.12s), equation (10.123) turns into (10.12).

2) By (8.57a") and (8.58), equation (10.2) can be developed thus’
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AN
ak(z)(talz) kz ktanhkd ﬂ(_()(k)t)r (Q(k)t)

Zk [z, (ky - %, ), (ky - %,)]

(10.13,)

w9 ngQ(k)tZZ:k.V.sinZ(k -X,)
~ 4k? \ ktanhkd o =

V -
_% m sin22(k)tcos2(k, - X, ),

2
Zkv sin2(k, - x,) =2c0s2(k, - x,)> kk; = 2k? cos2(k, - X, ). (10.13,)

i=1

because

The train of equations (10.13;) proves (10.13).
3) Differentiation of both sides of equation (10.12) with respect to ‘t’ yields

aad(z)(tvlz)
ot

#Q(K) _
=——————|2cosh 2kd —1+v(2 - cosh 2kd )cos 2(k, - X, )|sin 22(k)t 10.14
2k sinh 2kd[ o Jeos2(k, - x, )lsin 262(k) (10.14,)

1~/ g tanh kd _
— NI [2c0sh 2kd —1+ v(2 — cosh 2kd )cos 2(k, - 20(K)t,
2.k sinh 2kd[ cos +v(2—cosh 2kd )cos 2(k, - X, )Jsin 242(k)

where use of (7.38) has been made in developing the final expression. Substitution of (10.14,) and
(10.13) into (10.3,) yields

Oty (. X,) 114/ g tanh kd
ot X E— a o (t, X, )= ——=————|2cosh 2kd —1
(2)( 2) k(2)( ) 2\/Esinh 2kd [
( _ cosh 2kd — SN 2kd j cos2(k, - x,) [sin2Q(k)t (10.14,)
tanh kd
tanh kd 2COSh 2kd l l— cos 2(k X )]Sin ZQ(k)t,
V 2sinh 2kd
because
; ; 2
5 cosh 2kd — sinh 2kd 2 cosh2kd — 2sinh I_<d cosh“ kd
tanh kd sinhkd (10.145)

=2 cosh 2kd —(cosh 2kd +1)=1-2cosh 2kd,
where use of the instance of (8.43b) with a=kd has been made. The train of equations (10.14,)

proves (10.14). The lemma is established.e
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10.4. The second-order approximation of the velocity potential in the presence of a
standing wave
In the case of a standing wave, equations (10.4)—(10.7) retain. In this case, substitution of
(10.14) into (10.5) yields

):_,ug(2cosh2kd —1)[

V/(Z)(t’& ok sinh 2kd 1_VC052(K2 'XZ)]IS(Z)(LXZ)’ (10.15)

where
oo (£, X;) jsng(k)tsm[ (k)t —t")]dt’; (10.16)

the subscript ‘s’ is the first letter of ‘standing’. The integrand of (10.6) can be developed as the

following instance of (10.10):

sin[(k )t —t")]sin 2Q2(k)t' = %{cos[ﬂ(k)(t —3t")]-cos[(k)(t +t')]}

(10.16,)
= %{cos[_()(k)(St’ —t)] - cos[(k)(t' + )]}
Consequently, the integral (10.16) subject to (10.16,) is calculated thus:
1oy (%) %j {cos[2(k)(3t' )]~ cos[@(k)(t' + t)]dt’
1 (1. _ , o
ZQ(k){ in[22(k)(3t' —t)]-sin[«Q(k)(t +t)]}t,_0 (10.16,)

1(k) [2sin 2(k)t —sin 2Q(k)t]

Thus, y,(t.x,) is given by (10.15) subject to (10.16;), while @, (t,x) is expressed in terms

2 4
2.(2(k) {— —sin2Q2(k)t + Esm Q(k)t}

of v, (t,gz) by (10.4). Hence finally, by (5.14) and (10.11,),
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D, (t,ﬁ) = q)(z)(t;lvg) = 52¢(2) (t,x)= (ak)2¢(2) (t,x)
_ (ak ) coshk(z +d)
- coshkd
2
T ﬂaz cgoks(hzlfc(i) z?nik;kd ! coshk(z+d)[1-veos2(k, - x; )l (t.x )
_pa’(2cosh2kd -1) | gk (10.17)
6cosh kd sinh 2kd 'V tanh kd
-coshk(z +d)[L—-vcos2(k, - X, )]2sin 2(k)t —sin 2Q(k)t}
@’ Q(k)(2cosh 2kd -1)
~ 6sinhkdsinh 2kd
-coshk(z + d)[L—vcos2(k, - x, )[2sin 2(k)t —sin 22(k)t]

40 (t1Z2)

because

gk  gktanhkd  @°(k)
coshkd coshkdtanhkd sinhkd

(10.17,)

10.5. Main general and concrete results and their implications

10.5.1. Preliminary remarks

In accordance with (5.14) (see also (7.72) and (7.73)), given an initial wave number k>0,

given an initial amplitude a>0, the scaled partial velocity potential cD(,)(t;g,g) of the Ith asymptotic
approximation, subject to | € @,, with respect to the dimensionless parameter ‘¢’, such as ¢ =ka, to
the given scaled partial velocity potential CD(l)(t;g,g) of a priming (primary) progressive, or

standing, plane monochromatic gravity water wave (briefly PPPMGWW or PSPMGWW
respectively) on a uniform water layer of a depth -d from the equilibrium free surface z=0, — the

wave, which serves as the first non-vanishing approximation, — is defined as:

D, (t,x)= @ (t; X, €)= £'d, (1, ) = (ka) ¢, (t, ) for each | e @, (10.18)
where ¢, (t,x) is the respective Ith secondary non-scaled partial velocity potential; t is a time point,
while X =X, = (X, X,.X;) =(xy,z), in accordance with item 4 of subsection 1.2. Given | € &, the
functional form @, (t,x) allows in principle calculating all characteristics of the pertinent wave-

related fluid flow in the liquid layer in the Ith asymptotic approximation with respect to “ ¢, — such
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characteristics particularly as the liquid velocity components Vi(,)(t,g) for each i € w, 5, the dynamic
pressure P, (t,x), and the vertical displacement Z(t,x,) of the disturbed free surface from the
equilibrium plane z=0, — and it also allows immediately (not mediately via @,,,,,(t,x)) calculating

strictly some, i.e. some but not all, characteristics of the ed fluid flow in the (I+1)th asymptotic
approximation with respect to “¢&’, — such characteristics particularly as the volumetric kinetic

energy density Ek(,)(t,x) and the energy flux density vector (the Poynting vector) components
Qi(l)(t,g) for each i€ w, ;. The former characteristics will be called characteristics of first kind and

the latter characteristics of second kind, with respect to @, (t,x) .

In what follows, | shall summarize various sets of the following interrelated concrete scaled
functional forms in the case of a PPPMGWW or PSPMGWW as the first non-vanishing

approximation; a properly specified @ (t,x), the related @, (t,x), the displacements of the free
surface points from the equilibrium plane z=0 in the respective approximations, Z(l)(t,gz) and
Z(t,x,), and also temporal partial derivatives of the latter, 6Z,(t,x,)/dt and 8Z,(t,x,)/at. All

formulas displayed below are subject to definitions (7.38), (8.2)-(8.4), and (8.30), i.e. subject to

Q(K) = Q(k,d) = \/gktanhkd >0, (10.19)
Ko = (kko) = (koky ) Ko 2ky" 2k 4k =K, %, 2 (,%) =(x,y),  (10.20)
7, =sin, 7, =C0S, (10.21)

respectively.

10.5.2. The case of a progressive wave
Given p e {1,-1}:

Dy (t.x)= Dy (t, X, ka) = D, (t;x, k. a)

22)
. g coshk(z+d) (10

= _ya QK)t-k,-X,),

@ anhkd coshka 20K )

— in accordance with (8.34);

2
k
@, (t,x)= D, (t,x ka)= +a |9 hk(z +d
@(tX)= (b xka) 2coshkdsinh 2kd \ tanhkd > (z+d) (10.23)
{=2sin2[Q(k)t -k, - x, |+ sin[Q(K)t + 2k, - X, |+ 3sin[2(k)t - 2k, - x, |}
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— in accordance with (10.11);

1 A (L, 1[ab,(t, x
Z(l)(tlﬁz)ZAd(l)(t,xz) M:__{M}
z=0

g a g a (10.24)
=ar_,(Q(K)t-k, x,)
A () LABER) 1A (LX)
(2)( X ) d(2)( X5 )_a At d(2)( ) 2)__ T o
a’k
=11 —(2+cosh2kd)cos2(L2(k)t-k, -x 10.25

€08 (2(K)t + 2K, - X,) +3c0s (2(K)t - 2k, -X,)1},
— in accordance with (5.7), (6.34), (6.52), (6.55), (10.1), (10.22), and (10.23), because particularly

Ag(t.X,)= m[n (2 —cosh 2kd )cos 2(2(K)t -k, - x, )], (10.25;)

by (6.34) and (10.1), and also because

1 O’q)(z)(tlﬁ) _ pa’k
g ot 0 2sinh 2kd (10.25,)

[~4c052(2(K)t K, - X, )+ Cos (2(K)t+ 2k, - X, ) + 3c0s (2(K)t - 2k, - X, )],
by (10.23);

Ly, (t,x,)
oz

g sinhkd
=+ anhikd coshkd n20t-k; x;) (10.26)

= — g Jgktanhkdr, (Q(K)t =K, - X, )= —,ua.Q(k)rﬂ(.Q(k)t —Kk, - %,),

Al 00 ,)- [a@—()}

M = Ay [t X,)+ DG (t.X,) = Ay (t. X,) + {M}

a © 0z
La’k ok
- v 2(1-+ 2cosh?kd Jsin 2(2(K)t — k,
4cosh?kd | tanhkd |- 21+ 2c0sh” kd Jsin 2(2(k) )
+5sin(2(K)t + 2K, - X, )+ 3sin(2(K)t — 2K, - X, )] (10.27)
_ 1a’ka(K)

_ 2 - . )
25 2kd [ 2(1+ 2cosh? kd )sm 2(Q(K)t—k, -x,)
+sin(Q(K)t+2K, - X, )+ 3sin(2()t - 2k, - X, )],

— in accordance with (5.7), (6.37), (6.53), (6.55), (10.2), (10.22), and (10.23), because particularly
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K.
A (%)= — a2k, |—2 2Kt =K, - X,). 10.27
k(2)( 52) ma tanhkd sin ( (k)t-k, 52) ( 1)

by (6.37) and (10.2), and also because

Pyp(tx)] k[ gk
oz |, 4cosh’kd Vtanhkd (10.27,)

[ 2sin2(()t -k, - x,)+ sin(@(K)t + 2k, - x, )+ 3sin(2(k)t - 2k, - x, )]
by (10.23), whereas

1 gk gk tanhkd __02(k) (10.275)
2cosh?kd \ tanhkd ~ 2cosh®kdtanhkd  sinh2kd ’ '
1+ 2cosh?kd =2 + cosh 2kd , (10.274)

by (7.38), (8.42a), and (8.43b).
In order to be doubly sure in self-consistency of the above results, here follow
straightforward calculations of 0Z,(t,x,)/dt and 0Z,(t,x,)/dt by differentiating both sides of
(10.24) and both sides of (10.25) with respect to ‘t’:
G‘Z(l)(t,gz):aér_y(!)(k)t K, X,)

- (k)7 (2(K)t K, 10.26a
ot p —1a2(K)r, (QK)t-k,-X,),  (10.26a)
aZ(2) (t’lz) _ aAd(z) (t,ﬁz) _l 0”2(1)(2) (t,l)
8t at g 0")1:2 o
%[ ~2(2+cosh 2kd )sin 2(2(K)t =K, - X, ) (10.27a)

+sin (Q2(K)t + 2k, - x, ) +3sin (2(k)t - 2k, - x,)],
which coincide with (10.26) and (10.27) respectively, as expected.

Under the general definition

T/2

M) = I|m— If(t)dt (10.28)
_ /2
it follows from (10.24)—(10.27) that
Zy(%,)=Z(t.x,) =2z (Q2(K)t -k, -x,) =0, (10.29)
= - t a’k
Z(z)(lz) = Z(z)(t,lz ) = ~osinh2kd (10.30)

0Zy (t’lz)l 52(2)( )
ot ot
126

=0. (10.31)



Consequently, given a e (0,), given k e (0,), it follows from (10.30) that
limZ (@t x,) _lim_ 2K _ . (10.314)
dos DN d-= 2sinh 2kd

Also, equation (10.30) coincides with equation (4.12) in Longuet-Higgins and Stewart [1962], which

was deduced there from intuitive considerations.

10.5.3. The case of a standing wave
Given u e {,-1}, given v e {1, -1}:
(D(l)(t!Z)E (D(l)(t,g,ka)i q)yv(t;X,sza)

g coshk(z+d) (10.32)
= — a Q k t k 'X y
) annkd coshikd 200 K x2)
— in accordance with (8.56);
?(2cosh2kd 1) | gk
D, (tx)= D, (txka _
@(L.X)= @ (t.x ka) 6cosh kd sinh 2kd '\ tanh kd (10.33)

-coshk(z +d)[L—vcos2(k, - x,)[2sin 2(k)t —sin 22(k)t]
— in accordance with (10.17);
@DE%) (taﬁz) _ _1 étD(l)(t’X)
i gl a |,
Q 2
@ or,( (k)t)Tv (k)= ~ aQ(k)

1
Ly (t’lz ) = Aqq) (tilz)_ a

" Jokannkd a4 Tgannig QWU x) (1030
=ar, (200t (k x,)
and
0
Z(2>(t’52) - Ad(Z)(t’Xz)—é%t’&) = Ad(z)(t,gz)_ %{%LO
= i{— [L+ v cosh 2kd cos2(k, - , )] (10.35)
4sinh 2kd 35,

+ p[2cosh 2kd —1+ v(2 — cosh 2kd )cos 2(k, - x, )|cos 22(k)t}

p@’k(2cosh2kd —1);, _ ~
35 2k [L1-vcos2(k, - x, )[cos 2(k)t — cos 22(k)t]

(to be reduced below), — in accordance with (5.7), (6.34), (6.52), (6.55), (10.12), (10.32), and
(10.33), because particularly
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a’k
Auolt2)= GG

+ p[2cosh 2kd —1+ v(2 — cosh 2kd )cos 2(k, - X, )]cos 22(k)t},
by (6.34) and (10.12), and also because
1 a’tl)(z)(t,gz) 3 ,ua2(2cosh 2kd —1)(k)
g a o 3gsinh 2kd tanh kd
[L-vcos2(k, - x, )[sin 2(k)t —sin 22(k)t] (10.35,)

_ pa’k(2cosh2kd —1);, : L
= 35t 2k [L-vcos2(k, - x, )[sin 2(k)t —sin 22(k)t],

{~[1+vcosh 2kd cos2(k, - x, )] (10.35,)

by (10.33);

__ o, (t,X)
T = A tx)+ ot x,) = {(g—z 0

= —pay/gktanhkd 7, (Q(K)t )z, (K, - X,) = —122(K)7 (2Kt )7, (K, - X,)

(10.36)

and

O’Z(z)(t _2)
a

—Ak(z)(t X )4‘61)(2)(t Xz):Ak(z)(taﬁz) { 82

_ pva’k(cosh 2kd +1).Q(k)
2sinh 2kd
_ wva’k(cosh 2kd +1)2(k)
2sinh 2kd
_ pa’k(2cosh 2kd —1)2(k) i
6sinh 2kd

sin22(k)tcos2(k, - x,),

sin22(k)tcos2(k, - x,) (10.37,)

vecos2(k, - x, )[2sin 2(k)t —sin 2Q(k)t]

_ma 2k (k) L _ .
=~ s okd {2(2cosh 2kd — 1)L - vcos2(k, - x, )]sin 2(k)t
+[3v(cosh 2kd +1)— (2cosh 2kd — 1)1 — v cos 2(k, - X, )]Jsin 22(k)t }
(to be reduced further below),— in accordance with (5.7), (6.37), (6.53), (6.55), (10.13), (10.32), and

(10.33), because particularly
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1va’k gk
Aatixe)=~ 2 \tanhkd

2
__ma’keoshkd(k) . 20Q(k)tcos2(k, - x,)

2sinh kd (1037,)
2 2
__wak §osh kd€2(k) sin 22(k)tcos 2(k, - X, )
sinh 2kd
2
_ uva k(COSh 2kd +1)Q(k) sin ZQ(k)t Ccos 2(&2 X, )!
2sinh 2kd

by (6.37) and (10.13), and also because
{&D(z,(t,x)} _ua’ksinhkd(2cosh 2kd ~1) [ gk
0z o 6cosh kd sinh 2kd tanhkd
[L-vcos2(k, - x,)[2sin 2(k)t —sin 22(k)t] (10.37,)
_ pa’k(2cosh 2kd —1)2(k) i
6sinh 2kd

by (10.33) and (10.273). Equations (10.35p) and (10.37,) are reduced in what follows.

Equations (10.35¢) can conveniently be written in the form

sin202(k)tcos2(k, - x,)

vcos2(k, - x, )J2sin 2(k)t —sin 22(k)t],

Zo(tx,)= m[co(xzﬁcl(&)cos QK)t+C,(x,)cos22(k)t],  (10.355)
where
C,(x,)=—3[L+vcosh 2kd cos 2(k, - x, )], (10.35,)
C,(x,)= 4u(2cosh 2kd —1)1—vcos2(k, - x, )], (10.355)
C,(x,)= u{3[2cosh 2kd —1+ v(2 — cosh 2kd )cos 2(k, - X, )]

—4(2cosh2kd —1)[1-vcos2(k, - x, )]}
= —u(2cosh 2kd —1)+ uv[3(2 — cosh 2kd ) + 4(2cosh 2kd —1)]cos 2(k, - x,)
= —u(2cosh 2kd —1) + uv(5cosh 2kd + 2)cos 2(k,, - X, )

(10.356)

Thus, equation (10.353) subject to (10.35,4)—(10.35¢) can be written as the following single whole
reduced equation:

a’k
Z.o(tx,)=—""
@t.x,) 12sinh 2kd

+4u(2cosh 2kd — 1)1 -vcos2(k, - x, )|cos 2(k)t (10.35)
+ ufL—2cosh 2kd + v(5cosh 2kd + 2)cos 2(k,, - X, )|cos 22(K)t.

{~3[L+vcosh 2kd cos 2(k, - X, )]

In analogy with (10.353) subject to (10.35,)—(10.35), equation (10.37,) can conveniently be

written in the form
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AL X a’k2(k _ _
(2)0'(t 2) _ gsinh 2E<d) [D,(x,)sin 2(k)t+ D,(x, )sin22(k)t], (10.373)

where
D,(x,) = 2(2cosh 2kd — 1)1 v cos2(k, - X, )], (10.37)

D, (x,) = 3v(cosh 2kd +1)—(2cosh 2kd — 1)1 —vcos2(k, - X, )]
= —(2cosh 2kd —1)+ v[3(cosh 2kd +1)+ 2cosh 2kd —1]cos 2(k, - x,) (10.375)
=1-2cosh 2kd +v(5cosh 2kd + 2)cos 2(k, - X, ).

Thus, equation (10.373) subject to (10.37,) and (10.35s) can be written as the following single whole
reduced equation:

(24 t,X aZkQ k -
(2); ) _ gsinh 2(kd) {2(2cosh 2kd —1)1-vcos2(k, - x, )]sin 2(K)t

+[L—2cosh 2kd +v(5cosh 2kd + 2)cos 2(k, - X, )|sin2.2(K)t}.

(10.37)

Just as in the case of (10.26a) and (10.27a), in order to be doubly” sure in self-consistency of
the above results, here follow straightforward calculations of oZ,(t,x,)/ét and 8Z,(t.x,)/at by

differentiating both sides of (10.34) and both sides of (10.35) with respect to ‘t’:
az(l)(t,lz) ot (Q(k)t)

o ma (kX ) = @07, (e (k x,), (10369)
82(2)(t,52) _ aAd(z)(tvlz) _1 é’ZCD(Z)(t,Zz)
ot ot g a? .
a’k o
- mE[Co(XZFCl(gZ)COS Q(K)t+C,(x, )cos22(k)t]
2
= —%Mzz )sin 2(K)t + 2C,(x, )sin22(k)t] (10.37a)

127k 2(K)
somh o (2(2c0sh2kd —1f1-vcos2(k, -, )Jcos 2(k)t

+[1—2cosh 2kd + v(5cosh 2kd + 2)cos 2(k, - x, )]cos 22(k)t},

which coincide with (10.36) and (10.37) respectively, as expected.
Under the general definition (10.28), it follows from (10.34)—(10.37) that

Zy (%)= Zy(tx,) =az (@ )1z, (k,-x,)=0, (10.38)
2
Zi) (%)= Z (t.X,) = —mhr vcosh 2kd cos2(k, - X, )], (10.39)
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az(l)(t’lz)L _ 52(2)@42)[
ot ot
Equation (10.39) comes now instead of (10.30). By definitions (8.2)—(8.4), it follows that

=0. (10.40)

cos2(k, - X, )= cos2(k,x, + k,x,) = cos 47{% + %J , (10.41)

2
so that “ cos 2(k, - X, )’ is a doubly periodic functional form of the spatial variables “ x,” and  x,” with
periods 4,/2=x/k, and 4,/2=z/k, respectively, — a form that takes on values in the interval [-
1,1]. At the same time, given d>0, given v e {1,—1}, the functional form “1+vcosh2kd * takes on

values in the interval (— 2sinh? kd,2cosh®kd ) by (8.43,a.b). Therefore, values of the functional form

Z(z)it,g2 )t , defined by (10.39), satisfy the relation:

Zy (t, X3 )t

2

e — 2K __(Lcosh?kd,sinh?kd). (10.39y)
2sinh 2kd

Under the general definition

X - -
F(x,)* = lim lim
X

10 Xy >0

X1/2 Xy/2
I F(x, )dx,dx, , (10.42)

1782 X, /2-X,/2

it follows from (10.39) that

— 2
Zolx,) =-——2K (10.43)

~ 4sinh 2kd
(cf. (10.30)). Consequently, given a e (0,), given k (0,), it follows from (10.43) that
imZ(tx)  =—lim— 2K _ g (10.31,)
doe @A) T Asinh 2kd .

(cf. (10.30y)).

10.5.4. Concluding remarks
1) Equation (8.29) subject to (8.34) and equation (8.52) subject to (8.56) are particular cases
of (10.18) at 1=1, while equations (10.11) and (10.17) are particular cases of (10.18) at 1=2.
Accordingly, unless stated otherwise, by “®, (t,x) ’, | shall henceforth mean either the functional
form defined by (8.29) subject to (8.34) or that defined by (8.52) subject to (8.56); and likewise, by
‘@, (t,x) ", I shall henceforth mean either the functional form defined by (10.11) or that defined by
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(10.17). The theory of gravity water waves will be called a linear one if it is based on @, (t,x), and
a bilinear one if it is based on @, (t,X) + @, (t, x) . Both (k) (defined by (7.38)) and sinh 2kd are
of the order of k as k — 0. Therefore, it follows from (10.11) or (10.17) that <D(2)(t,5)—>0 as
k — 0 and it also follows that, in either case, values of the functional form @ ,, (t,x) along with
values of all its partial derivatives of any order are periodic in t and are bounded as t — +w.

2) In accordance with (5.8), the entire asymptotic expansion of the scaled velocity potential
d)(t,g) of a fluid flow in the water layer of a uniform depth d in powers of ka subject to a priming

progressive, or standing, plane monochromatic gravity water wave (briefly PPPMGWW or

PSPMGWW respectively) of a wave number k and of a surface amplitude a is written as
D(t,x) = d(t;x, &) ~ Dyt x,6) =D (ka) ¢, (t, ), (10.44)
1=1

subject to a well-established an algorithm for successively calculating the non-scaled velocity

potentials ¢, (t,x) for all | € w,. At the same time, there are known in mathematics several different

kinds of convergence of infinite functional sequences in general and of infinite series and improper
integrals in particular, — such kinds of convergence as absolute, conditional, uniform, and mean
square ones (see, e.g., Apostol [1963, pp. 353, 359, 360, 390-396, 407,408] and Budak and Fomin
[1978, pp. 319-331, 366-374]). Uniform convergence is a quite universal kind of convergence, for
which there exist convenient tests as Caushy’s, Weierstass’, and Abel’s ones (see, e.g., Apostol
[1963, pp. 395-396] and Budak and Fomin [1978, pp. 328-331]). In this case, uniform convergence
implies convergence in the mean square, but not vice versa (Budak and Fomin [1978, pp. 272-274]).
It is understood that in order to prove or disprove that a given functional series (as an asymptotic
one) converges in a certain sense, one should employ only well-established tests for convergence of
the given kind, and not to rely on the intuition. Unfortunately, none of the existing convergence
criteria is applicable to an asymptotic series (10.44) for the following reason, because in contrast to

db(z)(t x)* calculations of ‘(I)(s)(t,g)’ turn out to be intolerably prolix. Therefore, the question

whether or not the asymptotic series (10.44) converges remains unanswered.

3) One may, of course, assumed by analogy that CD(,)(t,g) at any | € w, and, particularly,
(D(s)(t,g), and also all its partial derivatives of any order have similar properties of temporo-spatial
periodicity and hence the same properties of boundedness at t — +oo as those of CD(Z)( ) and of all
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its partial derivatives. Alternatively, one can make any other assumption regarding @m(t, 5) at some
| € w,. In this case, however, one should remember that if it happens that for some (strictly some or
all) 1eao, ¢(,)(t,5) is unbounded as t— +w or t— —oo then the asymptotic power series
D, g (t;g,g) of @(t,g), defined by (10.44), should not necessarily be divergent. In other words, there
is no direct connection between the property of some or all coefficients ¢(l)(t, 5) of the asymptotic
power series Q[wvl](t;g,g) to be unbounded at t — +00 or t — —o on the one hand and the property

of that series either to diverge or to converge on the other hand. Here follows an example that
illustrates this property.

4) It is known that for each X & (—o0,+0) and each p € w, :

d?P cos X d 2P cos X )

gxze - (CDIeosX, Tpar = () sin X, (10.45)
d 2P sin X . d?"*sin X

dx 2" =(-1PsinX, W = (-1 P cos X . (10.46)

Therefore, given x, (- o,+), the Taylor series for cos(x, + x) and with respect to x, defined as

X=X =X, e(— oo,+oo), (10.47)
about the point x, can be written as
[e¢} 0 _ p i
cos(x, + X) Zi d’cos X X" = z( ) COS X, + XSINX, |y zp (10.48)
“~=nl X" o 0= (2p)! 2p+1
0 nar © (_1\P
sin(x, + X :Z d7sin X X" :z( L) sinx, + 2% |yzp (10.49)
i dx" Xx, = (2p)! 2p+1

where conventionally 0! = 1. It is known that both series (10.48) and (10.49) absolutely converge for
each x satisfying (10.47). If, particularly, x, =0 so that X = x, then (10.48) and (10.49) turn into

the known Maclaurin series for “cosx’ and ‘sinx ’ with an infinite radius of absolute convergence,

namely,
[°) (_1)pX2p ] ( 1)p 2p+l
cosXx= ) ———, sinx= ) —— foreach x e(—o0,+m0). 10.50
2 o 2 (2p+ 1) o). (1050)
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Let x, = wt and x = ¢t, so that X = (@ + &)t, where ‘@’ and “t’ are constants, i.e. @ and

t are given numbers, while “ ¢ is a variable that is introduced instead of “ x ’. In this case, equations
(10.48) and (10.49) become

cos(w+ ekt = il(d cosxj () = > (_1)p[coswt+i8inwt)(et)2p, (10.51)

~nll dX"

sin(w+ &)t = iﬁ[d”ds)i(nnXJ () = igl);[sina)w%](a)“. (10.52)

Thus, in spite of the fact that both series (10.51) and (10.52) absolutely converge for each

& e(—oo,40), each individual term of either series, except for the very first term ‘coswt’ or

‘sinwt ’ corresponding to n=0, is unbounded as t — +oo. In this case, the domain of values both of

“cos X ” and of “sin X ’ is the interval [-11], whereas the domain of values of any unbounded term
of any one of the series (10.48)—(10.52) is either the entire set of real numbers, (—,+0) or one of its
semi-infinite subsets [0,+c0) and [0,—) . Therefore, it is impossible to establish from those series

that the functional forms “cos X ” and “sin X ’* are periodic.

5) It would be incorrect to conclude that a certain oscillatory motion of a physical system is
unstable only on the base of the fact that, in a higher-order asymptotic approximation, the only
coordinate, or one of the coordinates, of that motion increases indefinitely with unlimited increase of
t (except, perhaps, for the case when the coordinate increases exponentially with t). The
unboundedness of the higher-order approximation may just mean that the relevant asymptotic
expansion is not a suitable iterative algorithm for constructing a consistent perturbation theory of the
phenomenon.

6) The water wave problem under discussion is a non-linearW. Consequently, the infinite
asymptotic series solving the problem does not satisfy a superposition principle in the sense that the
term-by-term sum of two asymptotic series corresponding to two different priming progressive, or

standing waves, is not an asymptotic series generated by the sum of the two priming waves.
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