
A recursive asymptotic theory of nonlinear gravity surface waves on a 
water layer with an even or infinitely deep bottom 

Yakov A. Iosilevskii1 

Abstract 

It is shown with complete logical and mathematical rigor that under the appropriate 

hypotheses of analytical extension and of asymptotic matching, which are stated in the article, the 

nonlinear problem of irrotational and incompressible gravity waves on an infinite water layer of a 

constant depth d reduces to an infinite recursive sequence of linear two-plane boundary value 

problems for a harmonic velocity potential with respect to powers of a dimensionless real-valued 

scaling parameter ‘ka’, where k>0 is the wave number and a>0 the amplitude of a priming (seeding) 

progressive, or standing, plane monochromatic gravity water wave (briefly PPPMGWW or 

PSPMGWW respectively). The method, by which the given nonlinear water wave problem is treated 

in the exposition from scratch, can be regarded as a peculiar instance of the general perturbation 

method, which is known as the Liouville-Green (LG) method in mathematics and as the Wentzel-

Kramers-Brillouin (WKB) method in physics. In the framework of the recursive theory developed, 

the velocity potential and any bulk or surface measurable characteristic of the wave motion is 

represented by an infinite asymptotic power series with respect to ‘ka’, whose all coefficients are 

expressed in quadratures in accordance with a well-established an algorithm for their successive 

calculation. The theory developed applies particularly in the case where the depth d is taken to 

infinity. Besides the priming velocity potential of the first, linear asymptotic approximation in ka, the 

partial velocity potential and all relevant characteristics of wave motion of the second order with 

respect to ka are calculated in terms of elementary functions both in the case of a PPPMGWW and in 

the case of a PSPMGWW. Accordingly, the recursive theory incorporates the conventional Airy 

(linear) theory of water waves linear as its first non-vanishing approximation with the following 

proviso. In the Airy theory, the boundary condition at the perturbed free (upper) surface of a water 

layer is paradoxically stated at the equilibrium plane z=0, in spite of the fact that at any instant of 
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time some part of the plane is necessarily located in air or in vacuum, and not in water. This and also 

a similar paradox arising in computing the time averages of bulk characteristics at spatial points 

close to the perturbed free surface are solved in the article. 

MSC numbers: 76A02, 76B15, 42B05, 76M35, 46F10, 42B05, 35Q30, 35Q35, 34E05, 34E10, 

34E18.  
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1. Basic nomenclature 

To start with, I shall specify the main general nomenclature (logographic notation and wordy 

terminology) as introduced in the articles Iosilevskii [2015 and 2016a–2016c] to the cases to be dealt 

with in this article. 

1.1. General nomenclature 
1) A set is a class, but a class is not necessarily a set. I call a class “a regular class” if it is a 

set and “an irregular class” if it is not a set. In the contemporary literature on logic and mathematics, 

an irregular class is called a proper class, whereas a regular class, i.e. a set, is sometimes called a 

small class (see, e.g., Fraenkel et al [1973, p. 128, DEFINITION VII] for the former term or the 

article class in Wikipedia for both terms). The difference between an irregular class and a set 

(regular class) is discussed in detail in Iosilevskii [2016a, subsection I.9.3.2]). For instance, taxons 

(taxa, taxonomic classes) of any biological taxonomy of bionts (BTB) are irregular, or proper, 

classes, i.e. classes that are not sets. Particularly, the species (specific class) of men, that is formally 

called ‘Homo sapiens’ and informally “man”, exists as an irregular class but the set of all men does 

not exist in the sense that the expression “the set of all men” has no denotatum. By contrasts, in 

mathematics, a well-defined class of numbers as the class of natural (natural integer) numbers, the 

class of rational numbers, the class of real numbers, or the class of complex numbers is a regular 

class, i.e. a set. The memberless class is a set that is denoted [logographically] by ‘∅’ and is called 

[phonographically, i.e. wordily] “the empty set”; i.e. semantically ∅ is the empty set. The class of a 

single object x is a set that is denoted by ‘{x}’ and is called “the singleton of x”; i.e. semantically {x} 

is the singleton of x. 

2) = , = , and =  are equality signs by definition, a rightward one, a leftward one, and a two-

sided one respectively, which are rigorously defined in Iosilevskii [2015, 2016a, and 2016b].  

3) A symbol of the form ‘{x|P(x)}’, called a class-builder (or particularly set-builder), which 

is designed to convert a given relation (condition) P(x) into a certain constant or variable class-
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valued (or correspondingly) term (‘P’ and ‘x’ are atomic placeholders having the appropriate 

ranges).  

4) ‘ 0ω ’ denotes, i.e. 0ω  is, the set of all natural numbers from 0 to infinity. Given 0ω∈n , nω  

is the set of natural numbers from n to infinity; i.e.  

{ }niiin ≥∈=  and 0ωω d . 

Given 0ω∈m , given mn ω∈ , nm,ω  is the set of natural numbers from the given number m to another 

given number n subject to n≥m, i.e.  

{ }miniinm ≥≥∈=  and 0, ωω d . 

It is understood that ∅=nm,ω  if m>n and also that }{, mmm =ω  and mm ωω =∞, . 

5) ‘ ∞∞− ,I ’ denotes, i.e. ∞∞− ,I  is, the set of all natural integers (natural integral numbers) – 

strictly positive, strictly negative, and null. Given n I∈ −∞ ∞, , 

{ }niIiiII nn ≥∈== ∞∞−∞∞  and ,,,
d , 

{ }niIiiII nn ≤∈== ∞∞−−∞∞−  and ,,,
d , 

i.e. ∞,nI  or nI ,∞  is the set of all natural integers greater than or equal to n, and nI ,∞−  or −∞,nI  is the set 

of all natural integers less than or equal to n.  Given m I∈ −∞ ∞, , given n Im∈ ∞, , 

{ }minIiiI nm ≥≥∈= ∞∞−  and ,,
d , 

i.e. `,nmI  is the set of all natural integers that are greater than or equal to m and are less than or equal 

to n. 

6) The previous two items are explicative definitions. A theory of natural integers in particular, 

and a theory of any numbers (as rational, real, or complex ones) in general can consistently be 

deduced from the five Peano axioms, which are, in turn, theorems of an axiomatic set theory (see, 

e.g., Halmos [1960, pp. 46–53], Burrill [1967], Feferman [1964]). 

7) The unordered pair of two different (distinct) objects x and y is the set { }yx,  of those 

objects, such that 

{ } { }yzxzzyx === or  ,  . 

subject to yx ≠  (cf. Halmos [1960, p. 10]). If yx =  then the set { }x  such that { } { }xxx ,= , having x 

as its only member, is called the singleton of x or less explicitly (more generally) a singleton.  

5 

 



6) The ordered pair ( )yx,  of two objects x and y, different or not, – particularly that of two 

different or same elements x and y of two different or same sets (or in general classes) X and Y 

respectively. – is conventionally defined as:  

( ) { } { }{ }yxxyx ,,, =  

(see, e.g., Halmos [1960, pp. 22–25]). Therefore, by Axiom of extension (ibid. p. 2), for any four 

objects x, y, x', and y', 

( ) ( )yxyx ′′= ,,  if and only if x=x' and y=y'. 

The set X×Y, defined as: 

( ){ }YyXxyxzzYX ∈∈==×  somefor  and  somefor  ,d , 

is called the Cartesian, or direct, product of X and Y (ibid. p. 24). Here and throughout this 

exposition, =  is the rightward sign of equality by definition, which, along with =  and = , is 

rigorously defined, e.g., in Iosilevskii [2015, 2016a, and 2016b]. 

7) Given 2ω∈n , an ordered n-tuple of objects nn xxxx ,,...,, 121 −  is defined as a repeated, (n–

1)-fold ordered pair thus:  

( ) ( )


)),),...,),,((..((,,,...,, 1321
1

1121, nn
n

nnnnn xxxxxxxxxxxx −

−

−− ===  . 

More specifically, an ordered n-tuple that is defined by the above formula is called the left-

associated repeated (or reiterative) (n–1)-fold (or (n–1)-ary) ordered pair of 1x , 2x , …, nx  in that 

order. Accordingly, for any 2n objects 1x , 2x ,…, nx , 1x′ , 2x′ , …, nx′ , 

( ) ( )nn xxxxxx ′′′= ,...,,,...,, 2121  if and only if 11 xx ′= , 22 xx ′= , ..., nn xx ′= .  

8) An ordered n-tuple with any 2ω∈n  is indiscriminately called an ordered multiple. It is 

worthy of recalling that, in contrast to an ordered multiple, an ordered set is a set that serves as a 

domain of definition of the liner order relation (predicate) ≤. An ordered irregular class does not 

exist. 

9) If an ordered n-tuple is an n-fold ordered pair that is not systematically associated to the 

left then the association must be indicated either explicitly or by the appropriate notation. For 

instance, 

( ) ( ) ( ))),),...,),,((..((,,;,,...,,; 13210,10,1210, nnnnnn xxxxxxxxxxxxxx −−− ==  . 
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10) An one-component univalent holor is a conceptual object, which is denoted by ‘ 1x ’ or 

‘ ( )1x ’ and which can therefore be also called an ordered one-tuple, or ordered single, the 

understanding being that such an object is distinct from a scalar (nilvalent holor) and that it can have 

a scalar as its only component. Therefore, without loss of generality, 1x  or ( )1x  can be identified 

with the singleton { }1x  – the set having 1x  as its only member (element), so that 

( ) { }111 xxx ==  . 

At the same time, a set of n elements with 2ω∈n  can alternatively be called an unordered n-tuple. 

Therefore, ( )1x  as defined above can be regarded as an ordered one-tuple and as an unordered one-

tuple simultaneously. Thus, for any ,...}2,1{1 =∈ ωn , an ordered n-tuple, i.e. an n-component 

univalent holor, is a nonempty set and is not a nonempty individual. A definition of the term “holor” 

can be found, e.g., in Moon and Spencer [1965, pp. 1, 14]), and also Iosilevskii [2016b, sub-

subsection 2.3.1]. 

11) If X and Y are two classes (or particularly sets) then YX - , called the difference of X and 

Y, is the set of all those elements of X which are not elements of Y. 

12) Whenever confusion can result, the end of an article as a comment, preliminary remark, 

proof, etc will be marked by a heavy dot ‘•’, – just as in I. 

 

1.2. Specific interpretation of some logographic symbols by default 
1) R is the set of real numbers and equivocally the field of real numbers. 

2) Each of the letters ‘x’, ‘y’, and ‘z’, alone or together with some labels on it (alphanumeric 

or not) is a real-valued variable, i.e. a variable whose range is a set (or field) R of real numbers. In 

the statements below, each of the bold-faced letters ‘x’, ‘y’, and ‘z’ is, for the sake of brevity, a 

placeholder for any one of the light-faced letters ‘x’, ‘y’, and ‘z’. 

3) nx , i.e. ( )nn xxxx ,,...,, 121 −  or nn xxxx ,,...,, 121 − , is an ordered n-tuple of real numbers.  

4) 3x  will as a rule be abbreviated as x , i.e, 3213 ,, xxxxx ==  . For instance, 

3213 ,x,xxxx ==  , 3213
,y,yyyy ==  , and 3213 ,z,zzzz ==  . 

5) En is a real n-dimensional arithmetical vector space, i.e. an n-dimensional arithmetical 

vector space over the field R. Equivocally, En is the underlying set of vectors (elements) of that 

space, i.e. the set of ordered n-tuples of real numbers. Hence, given 1ω∈n ,  
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∈∈∈∈=
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i.e. En is the left-associated repeated (or reiterative) (n–1)-fold (or (n–1)-ary) direct (or Cartesian) 

product of R by itself,  called the left-associated nth direct (or Cartesian) power of R, the 

understanding being that 

( ){ } { }{ } RRxxRxxRE ≠∈=∈== ×
1111

1
1

 .  

6) ‘t’ is a real-valued time variable, whose every value t∈R is interpreted as an instant of time 

assotiated with .the reading of a certain clock. In the actual fact, an instant of time is the singleton of 

t, i.e. { } Tttt ∈== 

1 , that is regarded as an arithmetical vector of the space 1E , which is in turn 

interpreted as the time continuum. However, for the sake of simplicity, I shall employ ‘t’ as stated 

above, and not ‘{t}’. 

7) In accordance with the item 9 of the previous sub-section, 

( ) ( )( ) ( )xtzyxtzyxt ,,,,,,; ==  , ( ) ( )( ) ( )( )εεε ,,,,,,,; zyxtxtxt ==  . 

 
1.3. Special quotations versus ordinary quotations 

In this article, besides ordinary quotations that may be used but occasionally, I widely use 

various so-called special, or attitudinal, quotations (SQ’s), which indicate the kind of a value, and 

hence the value itself, of the interior of a quotation, which is put forward as its accidental 

(circumstantial) denotatum (denotation value, pl. “denotata”). The entire system of SQ’s was 

developed in Iosilevskii [2016a, Preface, subsection 3.4], while in this article, I employ only some 

kinds of SQ’s, which are briefly described below for the reader’s convenience.  

In order to state an ordinary quotation (as a repetition of the exact passage of another work or 

of the title of a book), I employ French double angle quotation marks, « », instead of ordinary 

English single or double quotations marks (as defined, e.g., under the vocabulary entry quotation 

mark in A Merriam-Webster [1981], whereas the latter are freed of their ordinary functions and 

are used only as special quotation marks (SQ marks). In this case, the light-faced or bold-faced 

single or double, straight and curly or slant, English quotation marks are used differently. The pair of 

quotation marks that is used for making an ordinary or special quotation will be called the exterior of 
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the quotation, whereas the graphonym (graphic expression) quoted will be called the interior of the 

quotation.  

I do not follow Frege [1893–1903, vol. 1, p. 4] and his followers either in admitting only a 

single kind of SQ’s, each of which is the name of its interior, and which I call Fregean, or Frege’s, 

quotations (FQ’s), or in obstinately attempting to indicate autonymy with the help of the appropriate 

SQ marks in all cases simply because such an attempt is impracticable. For forming FQ’s, which I 

also call proper, or strict, autonymous quotations or kyrioautonymous quotations (KAQ’s) and which 

I shall use quite rarely if at all, I shall employ slant light-faced single quotation marks, ‘ ’. Most 

often, I shall employ, – I have already started to, – curly (decisive) or straight (indecisive) light-faced 

quotation marks, single ones, ‘ ’ or '  ' , which I shall call homoloautographic, or photoautographic, 

quotation marks (HAQ marks), and double ones, “ ” or "  " , which I shall call iconoautographic, or 

pictoautographic, quotation marks (IAQ marks). Accordingly, an SQ will be called a 

homoloautographic, or photoautographic, quotation (HAQ) if it is formed by enclosing a graphonym 

between HAQ marks; an iconoautographic, or pictoautographic, quotation (IAQ) if it is formed by 

enclosing a graphonym between IAQ marks. HAQ’s and IAQ’s are indiscriminately called common, 

or lax, autographic quotations and also cenautographic quotations (CAQ’s). KAQ’s and CAQ’s are 

indiscriminately called special autographic quotations (SAQ’s), whereas all quotation marks that are 

used for forming SAQ’s are called SAQ marks. 

I employ the exterior of an HAQ or IAQ for indicating my ad hoc (epistemologically 

relativistic) mental attitude, according to which its interior denotes the class of distinct recurrent 

recognizably same graphonyms, which occur in the article and which are called isotokens of the 

interior. Accordingly, the interior of an HAQ or IAQ is alternatively called its percept-class. In this 

case, an HAQ denotes the class of homolographic (photographic), i.e. proportional or particularly 

congruent, isotokens of its interior, whereas an IAQ denotes the class of iconographic 

(pictographic), i.e. of both homolographic and analographic (stylized), isotokens of its interior.  

The interior of an IAQ may contain some constituent logographs (logographonyms) or 

iconographs (iconographonyms), indiscriminateiy called pasigraphs (pasigraphonyms), which are 

known from a previous definition or definitions to be homolographs, i.e. a graphonyms that have 

only homolographic isotokens. In this case, the isotoken-class of the interior of the IAQ is supposed 

to preserve this property. By contrast, the phonic (vocal) sounds that are produced when the interior 

of an IAQ is read orally, provided that the interior does not contain any pasigraph, is called a 
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paratoken of the interior and also most generally a phononym. An isotoken or paratoken (if exists) of 

the interior of an IAQ is indiscriminately called a token of the interior. Accordingly, if the interior of 

an IAQ is a phonograph then the IAQ may, depending on the mental attitude of its interpreter, denote 

either the isotoken-class or a paratoken-class of its interior or else the union of the two classes that is 

called the token-class of the interior.  

The interior of an HAQ is either a pasigraph, i.e. a graphonym that is intelligible to a sapient 

subject independent of the phonemic language or languages, in which he has command, or a 

phonographic (wordy) name, which is conventionally set in a certain font, – such a name, e.g., as the 

Linnaean binomial (binomen) of a species in a biological taxonomy of bionts, which is 

conventionally set in italic (‘Homo sapiens’ for instance). The latter case is irrelevant to this 

exposition, so that the interior of any HAQ occurring in the exposition is a pasigraph or, more 

specifically, a logograph, i.e. a graphonym that has no phonic paratokens. Consequently, an isotoken 

of the interior of such an HAQ is alternatively called a token of the interior. 

Incidentally, the sense (sense value) of, or expressed by, a complex (combined) linguistic 

graphonym, – provided that the latter has the sense thus defined, – is a biune mental process 

(psychical entity, brain symbol) of the maker or interpreter of the graphonym (as me), which 

includes (i) a sense operation of coordination of the classes that are designated by the relevant 

simple constituent parts of the graphonyms and that are called the object classes of the sense, and 

which also includes (ii) the class that is resulted by the sense operation and that is designated by the 

graphonym. The latter class is called the designatum (pl. “designata”) of the graphonym and 

alternatively the subject class of the sense of the graphonym. It is understood that if a graphonym is 

regarded as a simple one or is an idiom then its sense coincides with its desigsnatum. Consequently, 

one of two given senses (sense values) of a glossonym (linguistic onym, or nym) is said to be broader, 

or narrower, than the other one if the subject class of the former is broader, or correspondingly 

narrower, then the latter. In Iosilevskii [2016a], in order to refer to the sense of a graphonyn, I 

enclose the latter in light-faced virgule-like quotation marks, \ /, which I shall call enneoxenographic, 

or semantic, or sense, quotation marks (EXQ marks). No enneoxenographic (semantic, sense) 

quotations (EXQ’s) thus formed are used in this exposition. 

The bold-faced quotation marks ‘ ’, ‘ ’ or ' ' , and “ ” or " " , /, and quotations that they 

form will be qualified as quasi-kyrioautographic (QKA), quasi-homoloautographic (QHA), and 

quasi-iconoautographic (QIA) quotation marks (Q marks) and quotations (Q’s), respectively. The 
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interior of a QKAQ, QHAQ, QIAQ, or QPAQ is either entirely a placeholder (place-holding 

variable) or it contains some placeholders, upon replacing all of which with appropriate concrete 

graphonyms the bold-faced quotation marks should be replaced with the corresponding light-faced 

ones. That is to say, QKAQ’s, QHAQ’s, and QIAQ’s are placeholders for KAQ’s, HAQ’s, and 

IAQ’s respectively, whereas the latter are constants. QHAQ’s and QIAQ’s are indiscriminately 

called common, or lax, quasi-autographic quotations and also quasi-cenautographic quotations 

(QCAQ’s). QKAQ’s and QCAQ’s are indiscriminately called special, or attitudinal, quasi-

autographic quotations (SQAQ’s), whereas all quotation marks that are used for forming SQAQ’s 

are called SQAQ marks.  

Uses of the HAQ marks ‘ ’ and of the QHAQ’s ‘ ’, e.g., can be illustrated as follows. Any one 

of the concrete logographs (a) ‘ xsin ’, ‘ xsinh ’, and ‘ xe ’, and also any one of these (b) ‘ yx + ’ 

‘ yx ⋅ ’, ‘ ( )yx +sin ’, ‘ ( )yx ⋅sinh ’, etc are by  definition functional forms, whereas ‘sin’, e.g., 

is the associated function of ‘ xsin ’ and ‘+’, e.g., is the associated function of ‘ yx + ’. At the same 

time, the abstract logographs ‘ ( )xf1 ’, ‘ ( )yxf ,2 ’, etc are placeholders for functional forms 

containing the respective independent variables. Any pair of SAQ marks can be replaced with the 

appropriate prepositive added words. For instance, instead of ‘ ( )xf1 ’, I may use the phrase “the 

functional form placeholder ( )xf1 ”, but I may not use the phrase “the functional form ( )xf1 ”, 

because ‘ ( )xf1 ’ is any isotoken of the placeholder therein depicted between light-faced single 

quotation marks, and not a functional form. In this case, I may say that ‘ ( )xf1 ’ is a singulary 

functional form, the understanding being that, once the interior of the above QHAQ is replaced with 

a concrete singulary functional form such as ‘ xsin ’, ‘ xsinh ’, and ‘ xe ’, the bold-faced single 

quotation marks should be replaced with light-faced one. 

The procedure of using SQ’s (special quotations), which has been described above, is called 

the Special Quotation Method (SQM) or Special Quotation Device (SQD).  

Thus, the reader should remember that quotations marks of the different forms and shapes, 

which he encounters in the treatise, are not selected spontaneously and that therefore they are not 

interchangeable. At the same time, as I have already pointed out previously, no attempt will made to 

indicate autonymy with the help of SAQ’s (special autographic quotations) in all cases because such 

an attempt is doomed to failure. I resort to the SQD only where confusion between autonymous and 

xenonymous uses of xenographs might otherwise be harmful. In some cases, such confusion is 
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harmless, while in many other cases, where a graphonym is used polysemantically, it is productive 

and indispensable. For instance, in stating verbal definitions, I shall often use the defining predicate 

“is called”, which should in principle be followed by the IAQ of the pertinent xenographic 

definiendum. In many cases, however, it is, not only harmless, but useful to employ unquoted 

xenographic definienda after that predicate. 

 

2. Mathematical physics (applied mathematics) versus pure mathematics 

2.1. Molecular hypothesis versus continuum hypothesis in mathematical physics  
One of the most fundamental epistemological axioms of modern natural philosophy is the 

molecular hypothesis – the presently common concept, according to which every substance consists 

of molecules. Therefore, merely the fact of applying the qualifier “continuum”, or “continuous”, to a 

physical theory (as in the titles of books Landau et al [1991] and Truesdell [1991]) signifies that, in 

constructing the theory, an implicit assumption is made that, under certain restrictions, the substance 

can be treated as continuum. The words “hypothesis” and “assumption” are English synonyms. 

Hence, the above mentioned implicit assumption is a hypothesis that is often called “the continuum 

hypothesis”.  

From the standpoint of differential and integral calculus, the treatment of the same substance 

as one consisting of molecules on the one hand, and as continuous medium on the other, is a paradox 

(contradiction). This paradox is solved physically and not mathematically, i.e. qualitatively and not 

quantitatively, by separating the underlying continuum mathematical theory and its physical 

interpretations by real-valued functions. In this case, the word “interpretation” can be understood in 

the sense of the technical term as defined in a theory of logistic systems and formalized languages 

(cf. Church [1956, §07 and footnote 199] or Fraenkel et al [1973, chapter V, §3ff]). For instance, the 

conventional wave equation can be interpreted as describing any given kind of waves such as 

electromagnetic or acoustic ones or such as water waves. 

To be specific, the appropriate physical analysis based on the molecular hypothesis shows 

that all macroscopic (continuum) physical characteristics of the substance (as its mass density, elastic 

and viscosity coefficients, dielectric permeability, etc.) are physically meaningful only within a 

domain whose minimal linear size is much larger either than the maximal intermolecular distance, if 

the substance is condensed matter (liquid or solid), or is much larger than the mean-free path of the 

substance molecules, if the substance is a gas. Likewise, the minimal linear size of a macroscopic 
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field source (such as an electric charge, an electric current, a dislocation, a vortex, etc.), and also the 

minimal thickness of a transition region in condensed matter which is treated mathematically as an 

infinitesimally thin interface between two continuous media or, in particular, as the infinitesimally 

thin boundary surface of a continuous condensed medium (the interface between condensed mater 

and vacuum), must satisfy the above mentioned conditions. Incidentally, in condensed matter, the 

mean intermolecular distance can be, and will be, treated as the mean-free path of the substance 

molecules. 

Particularly, according to the continuum hypothesis, a fluid (liquid or gas) is treated 

mathematically as continuous medium. From the standpoint of mathematical analysis, this means 

that all macroscopic physical characteristics of the fluid, as its mass density or as components of its 

momentum flux density vector, are described by differentiable, and hence, continuous functions of 

appropriate independent variables. The functions are treated with the help of all available tools of 

mathematics including differential and integral calculus, and also including partial differential 

equations. Still, from the standpoint of physical analysis, a fluid consists of individual molecules. 

Therefore, a volume element dV  which is mathematically regarded as infinitesimal should 

physically be interpreted as being small macroscopically, but not microscopically. In other words, an 

infinitesimal volume element dV  of fluid mechanics is one that contains a very large number of 

molecules whereas ( )dV 1 3 0/ >  is small as compared to some macroscopic linear characteristics of 

the fluid motion (as the characteristic wavelength λ  if appropriate). The presently common terms of 

fluid mechanics such as “a fluid particle”, “a material particle”, “a point of the fluid”, and “a point in 

the fluid” are just connotative synonyms (class-synonyms) both of the verbal term “a 

macroscopically small volume element of the fluid” and of the logographic term ‘ dV ’ (cf. Landau 

and Lifshitz [1987, p. 1]). Likewise, all mathematical points, curves, and surfaces of discontinuity of 

the field should be interpreted physically as three-dimensional manifolds, whose thickness (minimal 

linear size) is much larger than the mean-free path of the molecules constituting the medium in 

question. 

In addition to the above-said, the continuum hypothesis has the following two important 

implications. 

First, any macroscopic (phenomenological) theory of a specified physical system should be 

deducible from the relevant microscopic (molecular) theory of that same system. For instance, 

classical thermodynamics follows from statistical physics, macroscopic electrodynamics follows 
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from microscopic electrodynamics (classical or quantum), the theory of elasticity and plasticity 

follows from the microscopic theory of crystal lattices, gas dynamics follows from the Boltzmann 

kinetic equation, etc. Macroscopic theories, as fluid mechanics, are as a rule well-established ones, 

whereas some of the corresponding microscopic theories, as any one of the existing microscopic 

theories of classical liquids, are not. Still, this fact does not cancel the restrictions which are imposed 

on any macroscopic theory by the molecular hypothesis through the continuum hypothesis. Thus, as 

contrasted to mathematical foundations of continuum mechanics (as various integral principles), a 

microscopic theory (either an actual one or a would-be one) can be regarded as the physical 

foundation of the corresponding macroscopic (continuum) theory. 

The second implication of the continuum hypothesis is that every macroscopic differential 

equation of mathematical physics either is or can be regarded as a result of the appropriate averaging 

of a certain microscopic equation. As a consequence, all equations of mathematical physics in 

general, and those of continuum mechanics in particular, are interpreted in theoretical physics as 

conventional partial differential equations, all unknowns of which are conventional (non-

generalized) functions having all necessary conventional (non-generalized) derivatives. Two other 

irrefutable arguments in favor of the requirement that all fields of continuum fluid mechanics must 

be differentiable real-valued functions follow from the classical measurability and determinacy 

principles. 

Thus, when regarded as a part of theoretical physics, and not as a part of pure mathematics, 

continuum fluid mechanics is a classical phenomenological macroscopic physical theory, which is 

based on the continuum hypothesis (see, e.g., Batchelor [1967, pp. 4-6], Lamb [1932, p. 1], and 

Landau an Lifshitz [1987, p. 1]). In addition, being a classical theory, and not a quantum-mechanical 

one, continuum fluid mechanics is also based on two other fundamental principles of classical 

physics, which can be called the classical measurability principle and the classical determinacy 

principle, as contrasted to the quantum-mechanical indeterminacy, or uncertainty, principle. The 

principles themselves and also their implications in classical macroscopic (continuous) theories are 

discussed below.  

 
2.2. The classical measurability principle 

According to the classical principle of measurability, or briefly the classical measurability 

principle, any simple (one-component) classical (non-quantum) characteristic of a discrete or 
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continuous physical system is physically measurable in the sense that there exists an imaginary 

experiment that allows to assign a certain real number to that characteristic. This means that there 

exists an imaginary physical instrument that allows performing the above measurements. Some, but 

not all, imaginary experiments or imaginary instruments are abstractions of the corresponding real 

ones. Any measuring instrument, imaginary or real, has the following two fundamental imaginary 

(conceptual) or real properties, respectively: 

(i) The instrument is a macroscopic classical physical system. 

(ii) The instrument is small enough in order not to disturb the measured characteristic 

noticeably. 

Typical examples of applications of the classical principle of measurability can be found both in the 

theory of a classical electromagnetic field in vacuum (special theory of relativity) and in the theory 

of a classical gravitational field (general theory of relativity). In these theories, abstract mathematical 

computations and proofs are often supported by the pertinent discourses of imaginary measurements 

of time and length intervals with the help of imaginary clocks and imaginary rulers (see, e.g., Landau 

an Lifshitz [1989, §§ 1-4, 97]). Some other imaginary measurement procedures as described in 

classical electrodynamics are based on the notion of an imaginary test body, although this notion is 

not, always, made explicit. Such a body either in the form of a small charged particle or in the form 

of a small conducting contour is used in classical electrodynamics for defining the electric or 

magnetic field intensity, respectively (cf. Landau an Lifshitz [1989, §17)]). In fluid mechanics, a test 

body in the form of an imaginary neutral classical material particle or in the form of an imaginary 

small manometer (cf. an imaginary ruler or an imaginary clock in either theory of relativity) can be 

used in the obvious way for conceptually measuring the momentary local fluid velocity or pressure, 

respectively.The classical principle of measurability is the foundation for various physical 

interpretations of an underlying mathematical theory by real-valued functions.  

By specification, it immediately follows from the classical measurability principle that any 

simple physically measurable field characteristic of fluid, as the momentary local fluid pressure or as 

any given component of the momentary local fluid velocity, or acceleration, is necessarily real-

valued (not complex-valued and, in general, not abstract-valued). It also follows from that principle 

that the fluid velocity (e.g.) must be a continuously differentiable real-valued function of Eulerian 

variables. Otherwise, the fluid particle that has a given location at a given instant of time would have 
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no physically measurable acceleration, and therefore it could not be an object of the Newtonian 

(classical, non-quantum) mechanics. 

 

2.3. The classical determinacy principle versus the quantum-mechanical 
indeterminacy principle 

The state of a classical mechanical system at any given instant of time can be defined as the 

ordered set of the positions and momenta (or velocities). which the particles (as molecules or, in 

general, as any point material bodies) constituting the system have at that instant. In this case, 

according to the Newtonian equation of motion, the state of the system at any given instant of time is 

uniquely determined by the state of the system at any other given instant of time. The above 

statement is the classical principle of determinacy or briefly the classical determinacy principle. This 

principle is also equivalent to the statement that every classical particle moves along its continuous 

trajectory. As a consequence, a physical system that consists of n classical molecules (n can be as 

large as one pleases) moves along its n-dimensional trajectory in the 3n-dimensional phase 

(Liouville) space which is, by definition, the space of geometrical coordinates and momenta 

components of all particles (see, e.g., Landau and Lifshitz [1988, pp. 146, 147]). As contrasted to the 

classical (Newtonian) mechanics, as based either on the Galileo principle or on the Einstein principle 

of relativity, any quantum theory leads to the indeterminacy, or uncertainty, principle. According to 

this principle, a microscopic particle (as an electron or a photon) cannot, at the same time, be at a 

specified point and move with a specified velocity. As a consequence, a quantum (non-classical) 

particle does not move along any trajectory. Likewise, a many-body quantum system does not move 

along any multi-dimensional trajectory in any phase space. 

The most essential difference between a classical and a quantum theory is that a state of a 

classical system is described by real-valued functions, while a state of a quantum system is described 

by complex-valued functions. As a result, a classical system is deterministic, whereas a quantum 

system is not. At the outlet of creation of the quantum mechanics, there were heated arguments 

among the creators of the theory, until the agreement about the presently common probabilistic 

interpretation of the results of measurements of the conventional classical attributes of a particle (as 

its coordinates and its momentum, or velocity, components) has been reached as the best. 

Incidentally, Einstein who received his Nobel Prize, not for his two theories of relativity as many 
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people think, but for his quantum theory of the photo-electric effect, never accepted the probabilistic 

interpretation of measurements on quantum systems. 

Thus, the passage from classical states of physical systems, which are described by 

differentiable real-valued functions, to quantum states, – or, in particular, to quantum-mechanical 

states, – which are described by still differentiable but complex-valued functions, has resulted in the 

passage from the deterministic interpretation of the results of a physical experiment to the 

indeterministic (probabilistic) interpretation. This has caused the entire revolution in the 

Weltenshauung of physicists. It is therefore clear that if one passes from the conventional states of 

classical mechanics, which are described by differentiable real-valued functions to some abstract 

states described by some non-differentiable and even non-continuous abstract-valued functions, then 

merely the fact of asserting that the weak theory so obtained is a part of physics and not of pure 

mathematics would have meant a radical revolution in the entire natural philosophy. Indeed, no 

classical physical system that has the above abstract states can move along any continuous path 

(trajectory) in any phase space. Moreover, in this case, the very notion of phase space cannot be 

introduced at all. 

 

2.4. Postscript on mathematical physics (applied mathematics) and pure 
mathematics 

The whole of the above discussion in this section can be summarized as follows. The term 

“mathematical physics” is actually a synonym of the term “applied mathematics”. In this case, 

applied mathematics is not just non-rigorous (sloppy) mathematics, but rather it is a certain part of 

pure (rigorous) mathematics, which is provided with the appropriate physical interpretation. In this 

connection, the following general remarks about formal mathematical approach to physical problems 

can be made.  

From the standpoint of logical analysis, it is desirable that an underlying mathematical theory 

should be as weak as possible, because the weaker is a theory, the less is the danger that the theory 

will, after all, turn out to be contradictory (paradoxical). However, from the standpoint of a physical 

analysis, any weak mathematical theory which treats the unknowns of classical physics equations as 

generalized (abstract-valued) functions belongs, by definition, to pure mathematics, and not to 

physics. As a consequence, such a theory does not belong to natural philosophy either. In this case, it 

does not matter whether the equations in their weak form are obtained from an integral principle (as 
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the principle of least action or the principle of virtual work) or whether they are obtained 

straightforwardly by the corresponding generalization of some conventional differential equations of 

mathematical physics. On the other hand, if all corollaries that follow from a certain integral 

principle are properly interpreted on the base of the fundamental principles of classical physics then 

the formal theory so obtained must either be equivalent to or must exactly coincide with the pertinent 

naive theory, which is obtained from the corresponding intuitive considerations. For instance, both 

the Lagrangian mechanics and the Hamilton-Jacobi mechanics are equivalent to the original naive 

Newtonian mechanics (cf. Landau and Lifshitz [1988, chapters I, VII ff]). 

In formulating or solving some problems of classical physics in general, and of continuum 

fluid mechanics in particular, one may of course use various abstract mathematical objects as 

complex numbers, matrices, generalized (abstract-valued) functions, etc. However, all simple (one-

component) physical characteristics of any physical system must, after all, be interpreted as 

physically measurable. This particularly means that any simple classical field must be the field of 

values of a certain real-valued function, which has all necessary real-valued partial derivatives. In 

this case, all mathematical points, curves, and surfaces of discontinuity of the field should be 

interpreted physically as three-dimensional manifolds, whose thickness (minimal linear size) is much 

larger than the mean-free path of the molecules constituting the medium in question. Otherwise, the 

field would have been inconsistent with the basic principles of classical physics, which comprises the 

Newtonian mechanics and the Maxwell electrodynamics. In particular, in the absence of the above 

physical interpretation, a fluid particle has neither physically measurable velocity nor physically 

measurable acceleration, and it is not an object of the Newtonian mechanics. It is not, obviously, an 

object of quantum mechanics either. Hence, it is not an object of physics at all. 

Thus, in every discipline of natural philosophy, physical principles must dominate 

mathematical ones. In particular, any weak mathematical theory, which is not provided with the 

physical interpretation on the base of the continuum hypothesis and on the base of the classical 

principles of measurability and determinacy, cannot be regarded as a conceptual model of any 

physical system. Such a theory is a branch of pure mathematics, rather than to be a branch of natural 

philosophy, until it is provided with the appropriate physical interpretation. Here follows two 

examples that illustrate this point. 

i) Any given quantum-mechanical state (Shrödinger’s psi-function) is an abstract 

mathematical object, namely, a vector in a certain Hilbert space. This vector becomes an object of 
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physics, only if it is provided with the appropriate quantum-mechanical, i.e. physical, interpretation. 

Accordingly, non-relativistic quantum mechanics is a part of physics, and hence, a part of natural 

philosophy, whereas a theory of Hilbert spaces is a part of pure mathematics. 

ii) A theory of automorphisms (as a theory of automorphisms of Euclidean or pseudo-

Euclidean vector spaces) is a branch of pure mathematics. However, a theory of automorphisms of 

the Minkowski space (the four-dimensional pseudo-Euclidean space of index 1), which is provided 

with the appropriate physical interpretation, is Einstein’s special theory of relativity. The later is a 

part of physics. 

In connection with the above, it should be recalled that besides solutions, which have all 

necessary continuous partial derivatives and which are said to be strong (or strict or classical), a 

partial differential equation of mathematical physics in 3×1 space-time continuum (e.g.) can have so-

called weak (or lax or generalized) solutions (see, e.g. Garabedian [1965, pp. 284, 299, 445-447, 

506] or Zauderer [1983, pp. 288-294]). Every strong solution is, by definition, a weak one, but not 

vice versa. In the general case, a weak solution is not required to be continuously differentiable, but 

rather it should be just integrable, and therefore it can be discontinuous at some surfaces. A shock 

wave with infinitesimally thin front is a solution of equations of gas dynamics of this kind (see. e.g., 

Landau and Lifshitz [1987, pp. 146, 147]). Still, from the standpoint of a physical analysis based on 

the molecular hypothesis, any singular mathematical surface (singular two-dimensional manifold) of 

a macroscopic field should be interpreted as a three-dimensional region whose thickness is mach 

larger than the mean-free path of the molecules constituting the medium. This is in accordance with 

the relevant general remarks as made at the beginning of the Introduction. At the same time, on both 

sides of the singular surface, the given macroscopic field is classical, i.e. it has all necessary 

continuous partial derivatives. 

 

3. A general mathematical model of a perturbed liquid layer 

3.1. The geometrical form of the model 
Given a liquid layer with non-uniform bed in a vertical uniform field of gravity, suppose that 

the coordinate XY-plane (z=0) of a right-handed rectangular rectilinear laboratory coordinate system 

coincides with the free (flexible, elastic, resilient) upper boundary surface of the layer, whereas the 

positive Z-axis is opposite to the direction of gravity. Relative to that coordinate system, the 
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acceleration due to gravity is characterized by the ordered triple gg −= ,0,0  subject to g > 0 ; the 

equation 

0)()( 2b =+= zxhxs  ,                                                       (3.1) 

where ‘ )( 2xh ’ is a known functional form, describes the rigid (firm, inflexible, solid) bottom 

boundary surface Sb of the layer, and the equation 

0),(),( 2t =−Ζ= zxtxts  ,                                                     (3.2) 

where ‘ ),( 2xtΖ ’ is an unknown functional form, which describes its upper boundary surface St of the 

disturbed layer. It is assumed that h  and Ζ  are real-valued functions, which, along with their all 

first-order partial derivatives, are defined, continuous, and bounded on 2E  and on 2ER× , 

respectively. In this case, the equation ( ) 0,)( 2 == yxhxh   implicitly defines a closed contour Γ0 in 

the plane z=0 that serves the boundary perimeter of the unperturbed liquid layer. 

Hypothesis 3.1: A hypothesis of an infinite liquid layer. 1) In the sequel, I shall assume that 

the liquid layer is infinite in all longitudinal directions and that Sb and St do not intersect. 

Accordingly, I shall assume that for each Rt∈  and each 22 Ex ∈ : 

0 2< ≤ ≤ < +∞h h x hm M( ) ,                                                   (3.3) 

− ∞ < − < ≤ ≤ ≤ ≤ ≤ < ∞h x t x x hm m m M M mΖ Ζ Ζζ ζ( ) ( , ) ( )2 2 2 ,                      (3.4) 

Ζ Ζ Ζm m M M≤ ≤ ≤ ≤z t t x z t( ) ( , ) ( )2 ,                                            (3.5) 

ζ ζm M( ) ( )x x2 20≤ ≤ , z t z tm M( ) ( )≤ ≤0 ,                                        (3.6) 

where hm  and hM  are the infimum and supremum of all values of ‘ h x( )2 ’, Ζ m  and ΖM  are those of 

all values of ‘Ζ( , )t x2 ’, ζm ( )x2  and ζM ( )x2  are the infimum and supremum of the values of 

‘Ζ( , )t x2 ’ at x2  held constant, z tm ( )  and z tM ( )  are those at t  held constant. The inequality 

hM < +∞  expresses the assumption that h  is bounded. This inequality, along with hm < +∞ , which 

follows from it, has been included in (3.4) for more clarity. After a given problem is solved, one 

may, when desired, pass either to the limit hM → +∞  or to the limit hm → +∞  (which implies that 

hM → +∞  as well) in all relevant final formulae.• 

Comment 3.1. In accordance with the choice of the coordinate plane z = 0 , the equation 

Ζ Ζ Ζ( , ) ( ) ( )t x z t z t2 0= = = = =m M m M  
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holds for each Rt∈  and each x E2 2∈ only in the absence of perturbations. At the same time, the 

equation 

Ζ( , ) ( ) ( )t x x x2 2 2 0= = =ζ ζm M                                                  (3.7) 

may hold for each for each Rt∈  and some 22 Ex ∈  not only in the absence of perturbations. If the 

function Ζ  describes a standing wave then equation (3.7) determines the nodes of the wave. 

2) At the same time, in accordance with Hypothesis 3.1, it is hereafter assumed that 

Ζ( , )t x 2 0≠  for some 22, ERxt ×∈ ,                                          (3.8) 

i.e. 0C≠Ζ , where 0C  is a constant function, every value of each equals 0. Hence, 

ζ ζm M( ) ( )x x2 20< <  for some 22 Ex ∈ .                                        (3.9) 

A liquid layer, for which (3.8), or (3.9), holds is called “perturbed”.• 

Definition 3.1. The subscript ‘f’, or ‘n’, in a functional constant (or variable) signifies that 

that constant (or that variable) stands for a function of a function, or for a function of a real number, 

respectively. In particular, with ‘ D ’ being an ellipsis, Df  is a function of a function, whereas Dn  is 

a function of a real number. Similarly, Dff  is a function of two arguments, both of which are 

functions; Dfn  is a function of two arguments, of which the first is a function, and the second is a 

real number; Dnf  is a function of two arguments, of which the first is a real number, and the second 

is a function; Dnn  is a function of two real numbers.• 

Definition 3.2. 

( ){ }),(),( and ,)) ,(,( 22222
oo
ff xtxhzExzxthD Ζ−∈∈=Ζ− d  for each Rt∈ ,            (3.10) 

[ ]




Rtt

thDth
∈′

′Ζ−×′=Ζ− )) ,(,(}{) ,( oo
ff

oo
ffD ,                                        (3.11) 

and similarly with each one of the following three pairs of strings: 〈‘oc’, ‘ z ∈( ,  ] ’〉, 〈‘co’, 

‘ z ∈[ ,  ) ’〉, and 〈‘cc’, ‘ z ∈[ ,  ] ’ 〉 in place of 〈‘oo’, ‘ z ∈( ,  ) ’〉 respectively. A double-letter 

superscript ‘oo’, ‘oc’, ‘co’, or ‘cc’ to ‘ D ’ is descriptive of the fact that the entire variable bearing 

that superscript stands, respectively, for the open-open (open), open-closed, closed-open, or closed-

closed (closed) liquid layer, which is enclosed between the surfaces described by the equations 

z h x= − ( )2  and z Z t x= ( , )2 . Thus, particularly, ),( 9
oo
ff ChD −  or )0,(oo

fn hD −  is the liquid layer in 

equilibrium, the understanding being that 9C  is, as before, the constant function, every value of each 
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equals 0. The set D ff
oo  ( , )−h Ζ  as defined by (3.11) is said to be folded with respect to all values of 

the variable ‘ t ’ or, briefly, time-folded, and similarly with ‘oc’, ‘co’, or ‘cc’ in place of ‘oo’. Either 

of the above two synonymous terms, and also the sets, which they denote, are suggestions of my 

own, – they are not in common usage. • 

 
3.2. Eulerian variables of a fluid flow versus Lagrangian ones 

3.2.1. Eulerian variables 

No matter how a mass of fluid is geometrically configured, under the continuum hypothesis, 

two different ways of specification (description) of a fluid flow are possible. These are known as the 

Eulerian specification and the Lagrangian specification, although both are in reality due to Euler 

(see, e.g., Lamb [1932, pp. 2–15], Batchelor [1967, pp. 71–73], Landau. and Lifshitz [1987, pp. 1–

5]). 

In the framework of the Eulerian specification, all characteristics of a fluid flow are described 

by functional forms (extensional functional variables), which depend on two independent variables, 

namely, a time variable, as ‘ t ’, and a spatial vector variable, as ‘ x ’ subject to 

zyxxxxx ,,,, 321 == . Thus for instance, ),( xtV , defined as 

),(),,(),,(),( 321 xtVxtVxtVxtV = , 

is the fluid velocity, while ρ( , )t x  and ),( xtP  are the fluid mass density and fluid pressure, 

respectively – all at a temporo-spatial point xt, , which is given relative to a certain clock and also 

relative to a certain rectangular rectilinear right-handed coordinate system. The real-valued variables 

‘ x ’, ‘ y ’, ‘ z ’ and the corresponding vector-valued variable ‘ x ’ are said to be Eulerian independent 

variables, whereas a functional form depending of ‘ t ’ and ‘ x ’ is said to be an Eulerian functional 

form.  

Definition 3.3. 1) Unless stated otherwise. ‘ ),( xtF ’ is hereafter a placeholder for any 

Eulerian functional form (as ‘ ),( xtV ’, ‘ ),( xtVi ’, ‘ ρ( , )t x ’, or ‘ ),( xtP ’).  

2) In this case, both the definiendum and the definiens of the definition: 

),(),(),(),( 3

1
xtFxtV

t
xtF

Dt
xtDF

i
ii 







∇+= ∑

=∂
∂
                                      (3.12) 
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subject to 

i
i x∂

∂
=∇   for each ( )3,2,1∈i ,                                                (3.13) 

is called the convectional, or path, derivative of the function F at the temporo-spatial point xt, . 

Accordingly, the operator ‘
Dt
D ’, defined as: 

∑
=

∇+=∇⋅+=
3

1
),(),(

k
kk xtV

t
xtV

tDt
D

∂
∂

∂
∂

 ,                                       (3.14) 

is called the convectional, or path, differential operator at the above point.• 

Definition 3.4. 1) Given t∈R, if a functional form ‘ ),( xtF ’ is defined for each 

)) ,(,(oo
ff thDx Ζ−∈  then the set )) ,(,(oo

ff thD Ζ−  is said to be the spatial domain of definition of that 

form and also the spatial domain of definition of  the momentary associated function F t( , )  of the 

form ‘ ),( xtF ’. If ‘ ),( xtF ’ is defined for each t∈R and each )) ,(,(oo
ff thDx Ζ−∈ , i.e. for each 

( ) ) ,(, oo
ff Ζ−∈ hxt D , then the set D ff

oo  ( , )−h Ζ  is said to be the total (temporo-spatial) domain of 

definition of that form and also that of the total (complete) associated function F of the functional 

form ‘ ),( xtF ’, whereas D ff
oo  ( , )−h Ζ  is the domain of definition of the function F . The domains 

D h tff
oo  ( , ( , ))− Ζ  and D ff

oo  ( , )−h Ζ  can be extended to D h tff
cc  ( , ( , ))− Ζ  and to D ff

cc  ( , )−h Ζ  

respectively with the help of the definitions:  

,)],([lim)],([,)],([lim)],([ ),(0),()(0)( 2222 εεεε −Ζ=+→Ζ=+−=+→−= == xtzxtzxhzxhz xtFxtFxtFxtF          (3.15) 

provided of course that the limits are supposed to exist. In accordance with (3.15), it will hereafter be 

assumed that F t( , )  is defined on D h tff
cc  ( , ( , ))− Ζ  and that hence F  is defined on D ff

cc  ( , )−h Ζ .  

2) As contrasted to the local bulk characteristics of the fluid flow, which are denoted by 

‘ F t  x( , ) ’, the characteristics as defined by (3.15), and also h x( )2  and Ζ( , )t x 2  themselves, will be 

called “local surface characteristics of the fluid flow”. Accordingly, local bulk and local surface 

characteristics of the fluid flow will collectively be called “local characteristics”.• 

Comment 3.2. The fact that D h tff
oo  ( , ( , ))− Ζ  or D h tff

cc  ( , ( , ))− Ζ  depends on t  is the very 

reason why all functional forms (extensional functional variables) occurring in this exposition are, in 

contrast to the common practice, formed in such a way that the time variable ‘ t ’ is always 

mentioned (listed) before the spatial vector variable as ‘ x ’ or ‘ x2 ’, – just as in theory of relativity.• 
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Definition 3.5. Given a real or complex number a , Ca  is the constant function, with any 

given domain of definition, whose every value equals a . Particularly, C0  is the null-valued function, 

i.e. the constant function whose every value equals null. For avoidance of notation conflicts, the null-

valued function C0  defined on a concrete domain may in the sequel be denoted differently.• 

Convention 3.1. 1) In accordance with the common practice, in making statements about 

local characteristics of a fluid flow and particularly in stating equations for a fluid flow, I shall, for 

the sake of brevity, omit the strings ‘ ( , )t x2 ’, ‘ ( )x 2 ’, ‘ ( , )t x ’, and ‘ ( )x ’ from some (strictly some or 

all) pertinent functional forms every time when this seems to be safe so as not to lead to the 

confusion between a function and its value at given arguments, and also be safe so as not to mislead 

with regard to which independent variables are actually involved in the abbreviated functional form. 

Accordingly, it is assumed that every abbreviated bulk relation is preceded either by the appropriate 

quantifiers such as ‘for each ( ) 22, ERxt ×∈  and each z h x t x∈ −[ ( ), ( , )]:2 2Ζ ’ in that order or 

equivalentlyby these: ‘for each t∈R and each :) ,(,(cc
ff thDx Ζ−∈ ’ in that order, or else by this single 

quantifier: ‘for each ( ) :) ,(, cc
ff Ζ−∈ hxt D ’, – unless of course the quantifiers are written down or 

unless  it is stated otherwise. 

2) In order to indicate explicitly that an intensional functional variable as ‘F’ is used 

equivocally both as a name of the associated function F of a functional form as ),( xtF  and as an 

abbreviation of that form, I shall often make a definition either of the form ‘ ),( xtFF = ’ or of the 

form ‘ FxtF =),( ’. If ‘F’ is contextually regarded as an abbreviation of ),( xtF  then the equation 

‘ 0),( =xtF ’ will briefly be written as ‘ 0),( =xtF ’. If, however, ‘F’ is contextually regarded as a 

name of the associated function F of ‘ ),( xtF ’ then the equation ‘ 0),( =xtF ’ will briefly be written 

as ‘ 0CF = ’. 

3) Unless stated otherwise, the subscript variable ‘i’ which occurs in a statement as an 

apparent free variable is assumed to be bound by the quantifier ‘for each :3,1ω∈i ’; and similarly. 

with any other equivalent variable from  ‘j’ to ‘n’ in place of ‘i’.• 

 

3.2.2. Lagrangian variables 

N In the framework of the Lagrangian specification, the ordered triple x  of coordinates of a 

given fluid particle at any given instant of time t  is determined by the ordered triple 
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cbaaaaa ,,,, 321 ==  of coordinates of that particle at some initial instant t0 , which are called 

Lagrangian variables. Thus, values of ‘ x ’ are actually values of a functional form ‘ ),( atx ’, which 

depends on the independent variables ‘ t ’ and ‘ a ’, so that aatx =),( 0 . Accordingly, the fluid 

velocity ),( atv , mass density ),( atρ , and pressure ),( atP  of the fluid particle a  at the instant t  are 

values of the corresponding functional forms depending on ‘ ),( atx ’:  

t
atxatv

∂
∂ ),(),(




 = , ( )),(~),( atxat 



 ρρ = , )),((~),( atxPatP = . 

In this case, the condition of conservation of mass during the motion of a fluid element (the equation 

of continuity) is accordingly written as: 

( ) ( ) ( )a
cba

atzatyatxatx ρ
∂

∂ρ ~
),,(

),(),,(),,(),(~ =


 , 

where ( )aρ~  is the initial mass density at the temporo-spatial point at ,0 : ( ) ( )aatx ρρ ~),(~
0 = . If the 

fluid is incompressible fluid then ( ) ( ) 00
~),(~ ρρρ == aatx , where ‘ ρ0 ’ is a constant. Consequently, 

( ) 1
),,(

),(),,(),,(
=

cba
atzatyatx

∂
∂ 

. 

A functional form depending of ‘ t ’ and ‘ a ’ is said to be a Lagrangian functional form. A 

Lagrangian functional form describes the whole dynamical history of the associated physical 

characteristic of each fluid particle and is therefore more fundamental than the corresponding 

Eulerian functional form. At the same time, the Lagrangian specification of a fluid flow leads, as a 

rule, to a very cumbersome analysis, largely because it does not allow determining directly any 

spatial partial derivatives of physical characteristics of the fluid flow as its velocity, mass density, or 

pressure (cf. Batchelor [1967, p. 71]). Therefore the Eulerian specification of fluid flows is taken for 

granted practically in all studies on fluid mechanics and particularly in this exposition. 

Still, in all boundary value problems of fluid mechanics, in which boundary conditions are 

given at varying surfaces, especially in the cases where the surfaces are not known, the Eulerian 

formalism leads to some grave paradoxes (contradictions), which make questionable, not only the 

validity of solutions of some problems of this kind, but also the validity of the formulations of the 

problems as such. In this connection, it is to be remarked that all problems of fluid mechanics in 

general, and boundary value problems in particular, are nonlinear ones, which cannot be solved 

analytically. Therefore, various approximations (as the linear one), and also various analytical 
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methods (as an asymptotic one or as the method of averaging an equation and its unknowns with 

respect to the time argument or with respect to some spatial arguments), are often used to allow 

solving the problem. The paradoxes, which arise in the result of the approximations, made or in the 

result of the analytical methods used, sometimes remain unnoticed by the writers or they are tacitly 

ignored by the writers as some freak properties of the approximations or methods, which should 

disappear once the problem is rigorously solved by somebody else. Still, as a rule, rigorous solutions 

of the problems are not and will not ever be available. Therefore, once a paradox is detected in an 

axiomatic theory, such as the water wave dynamics based on the Eulerian specification of fluid 

flows, it is important to show that this paradox can, not only be eliminated, but be eliminated in such 

a way that its elimination creates no other paradoxes. It is clear that any given paradox can be 

eliminated without eliminating the analytical methods, which engender it, only by explicitly 

formulating and granting certain additional implicit hypotheses (assumptions) underlying the 

methods. In this case, the additional hypotheses can result in some other (secondary) paradoxes 

(contradictions). If this happens then the entire strong theory, which includes both its basic principles 

(axioms) and the additional hypotheses, is contradictory. In order to get a consistent theory, some or 

all additional hypotheses, along with the corresponding analytical methods, should be rejected. In 

this connection, it should be recalled that according to the most general rule of constructing 

axiomatic theories, if an axiomatic theory turns out to be contradictory then the number of its axioms 

must be decreased. 

4. Basic equations for a fluid flow 

4.1. The continuity equation of the fluid mass density 
The differential equation of conservation of mass during a fluid flow is called the mass 

continuity equation or simply the continuity equation whenever there is no danger of 

misunderstanding. In accordance, e.g., with Landau and Lifshitz [1987, pp. 1–2], the continuity 

equation for the fluid mass density flow relative to a given rectangular rectilinear laboratory 

coordinate system, can, in the given version of Eulerian specification, be written as: 

( ) 0=⋅∇+
∂
∂ V

t
ρρ ,                                                           (4.1) 

where ρ is the mass density and 321 ,, VVVV =  is the fluid velocity, at a temporo-spatial point 

zyxtxxxtxt ,,,,,,, 321 == . The vector 
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VJ ρ=                                                                                 (4.2) 

is called the mass flux density, 

Hypothesis 4.1.  It is hereafter assumed that the liquid is incompressible in the sense that its 

mass density ( )xt,ρ  is constant throughout the layer; i.e. ( ) 0, ρρ =xt , while ‘ 0ρ ,’ is a constant. The 

continuity equation (4.1) of the liquid flow in the layer has the form 

0 div
3

1
=∇=⋅∇= ∑

=j
jjVVV dd ,                                                   (4.3) 

because 

0=∇⋅+= ρ
∂
∂ρρ V

tDt
D

 .                                                    (4.4)• 

 
4.2. The continuity equation of the fluid momentum flux density 

In accordance, e.g., with Landau and Lifshitz [1987, pp. 44–45], the continuity equation for 

the fluid momentum flux density can be written as: 

( ) ∑
=

=
∂
∂

+
∂

∂ 3

1
0

j j

iji

xt
V Πρ  for each 3,1ω∈i ,                                           (4.5) 

where ijΠ  is the momentum flux density tensor. The latter is defined thus: 

jiijijjiijij VVVVP ρστρδP +−=−+= δδ ,                                           (4.6) 

subject to: 

ijijij P τδσ +−=δ ,                                                            (4.7) 

( ) .
3
2

3
2

3

1

3

1

3

1

∑

∑∑

=

==

∇





 −+∇+∇=

∂
∂

+










∂
∂

−
∂
∂

+
∂
∂

=

k
kkijjiij

k k

k
ij

k k

k
ij

l

j

j

i
ij

VVV

x
V

x
V

x
V

x
V

δηζη

ζδδητ δ

                                     (4.8) 

with coefficients η and ζ independent of the velocity. The tensor ijσ  is called the total stress tensor, 

ijPδ−  is called the inviscid stress tensor, and ijτ  is called the viscous stress tensor. The above form 

of the invicid stress tensor, in which the scalar coefficient P is pressure, is predetermined by the fact 

that that liquid as such (in the absence of the field of gravity, e.g.) is isotropic. The coefficients η and 

ζ are strictly positive (η>0 and ζ>0) and they are called the coefficients of viscosity; the first one and 

the second one respectively. In the general case, η and ζ depend on pressure P and temperature T, the 
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latter and hence the former not being constant throughout the fluid. Therefore, upon substitution 

‘ ijΠ ’, subject to (4.6)–(4.8), into (4.5), ‘η’ and ‘ζ’ cannot be taken outside the differential operator 

‘
jx∂

∂ ’. 

In most cases of liquid flows, however, ‘η’ and ‘ζ’ can be regarded as constant, so that 

equation (4.5) subject to (4.1) and (4.6)–(4.8) becomes: 

∑∑
==

∇∇++∆+−∇=



















∇+

∂
∂ 3

1

3

1
)

3
1(

k
kkiiii

j
jj

i VVPVV
t

V ηζηρ ,                         (4.9) 

where ‘Δ’ is the Laplacian operator, defined as:  

∑∑
== ∂

∂
=∇=∇⋅∇=∆

3

1
2

23

1

2

k kk
k x

 .                                                         (4.10) 

In developing (4.9) from (4.5), the expression on the left-hand side of equation (4.5) can be 

developed with the help of (4.1) thus: 

( ) ( )

.
3

1

3

1

3

1

∑∑

∑

==

=

∇−∇−
∂
∂

=

∇−
∂
∂

=
∂
∂

+
∂
∂

=
∂

∂

j
jji

j
jji

i

j
j

ji
i

i
ii

VVVV
t

V

VV
t

V
t

V
t

V
t
V

ρρρ

ρρρρρ

                                  (4.91) 

At the same time, the item ‘ jiVVρ ’ of (4.6) contributes into the expression on the right-hand side of 

equation (4.5) the following expression: 

∑∑∑∑
====

∇−∇−







∇−=

∂
∂

−
3

1

3

1

3

1

3

1 j
jji

j
jjii

j
jj

j j

ji VVVVVV
x

VV
ρρρ

ρ
.                        (4.92) 

The first two terms on the final expression of (4.91) are congruent tokens of the last two terms in 

(4.92), so that all these are cancelled in the final expression for (4.5). 

The equation (4.9) is a conventional equation of motion of compressible viscous fluid, which 

called the Navier-Stokes equation. The scalar mass continuity equation (4.1) and the 3-vector 

momentum flux density continuity equation (4.9) form the set of four homogeneous partial 

differential equations for four unknown functional variables 1V , 2V , 3V , and P, the understanding 

being that these equations should be supplemented by the appropriated boundary conditions at the 

upper (free) and bottom (rigid) boundary surfaces. 
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Equation (4.9) becomes considerably simpler if the fluid may be regarded as incompressible, 

so that equation (4.3) holds, and the last term on the right-hand side of (4.9) vanishes. In discussing 

viscous fluids, the latter are almost always regarded as incompressible, so that equation (4.9) takes 

the form: 

iii
j

jj
i VPVV

t
V

∆+∇−=







∇+

∂
∂ ∑

=

ν
ρ
13

1
,                                          (4.11) 

where the coefficient ‘ν’, defined as: 

ρην = .                                                                (4.12) 

is called the kinematic viscosity, while the coefficient ‘η’ itself is called the dynamic viscosity. 

Consequently, the stress tensor in an incompressible fluid becomes: 












∂
∂

+
∂
∂

+−=
l

j

j

i
ijij x

V
x
VP ηδσ δ .                                                 (4.13) 

If processes of dissipation of energy are unimportant in motion of a fluid then one may set  

0== ζη                                                                (4.14) 

and call this fluid inviscid or ideal. In this case, equation (4.9) turns into: 

PVV
t

V
ii

j
jj

i ∇−=







∇+

∂
∂ ∑

= ρ
13

1
                                                (4.15) 

which is called the Euler equation. 

In the motion of an ideal fluid, there is no heat exchange among different parts of the fluid 

and also between the fluid and the bodies adjoining it. This means that that motion must be adiabatic 

or isentropic, Denoting the entropy per unit fluid mass at a temporo-spatial point ( )xt,  by ‘ ( )xts , ’, 

the condition for its adiabatic motion:  

( ) 0, sxts = ,                                                               (4.16) 

where ‘ 0s ’ is a constant, implies that 

0=∇⋅+= sV
t
s

Dt
Ds

∂
∂
                                                        (4.17) 

(cf. (4.4)). Owing to (4.16), the familiar thermodynamic equation: 

vdPTdsdw += ,                                                          (4.18) 
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where w is the enthalpy (heat function) per unit mass of fluid, ρ1=v  is the specific volume, and T 

is the temperature, turns into 

ρdPvdPdw == .                                                        (4.19) 

Hence, (4.15) can be rewritten as 

wVV
t

V
ii

j
jj

i −∇=







∇+

∂
∂ ∑

=

3

1
.                                                 (4.20) 

If the ideal fluid in question is incompressible, so that for every pertinent temporo-spatial 

point ( )xt, , ( ) 0, ρρρ == xt , where ‘ 0ρ ,’ is a constant, then either equation (4.15) or (4.20) can be 

rewritten as:  









−∇=








∇+

∂
∂ ∑

= 0

3

1 ρ
PVV

t
V

ii
j

jj
i .                                              (4.21) 

In this case, either equation (4.15) or (4.21) implies that a necessary condition for the fluid in 

question to be at rest (in mechanical equilibrium) that corresponds to ( ) constant, =xtV  is that 

( ) ( )tPxtP 0, = , where 0P  is a function of t only. Nether equation (4.15) nor (4.21) has a solution that 

describes the hydrostatic equilibrium of the liquid layer in a homogeneous field of gravity. 

If a fluid is in a homogeneous gravitational field then an additional mass force ρg, where 

gg −= ,0,0  subject to g > 0  is the acceleration due to gravity, acts on any unit volume. Therefore, 

the ith component of this force, igρ  subject to  

3ii gg δ−=  for each 3,1ω∈i  ( g > 0 ),                                           (4.22) 

 must be added to the ith component of pressure force, Pi∇− , on the right-hand side of equation 

(4.21). Hence, in the presence of the above homogeneous field of gravity, equation (4.21) is replaced 

with 

iii
j

jj
i gPVV

t
V

+∇−=







∇+

∂
∂ ∑

= ρ
13

1
                                                (4.23) 

subject to (4.22). If the fluid is incompressible one of a constant mass density 0ρ  then equation 

(4.23) can be written as: 
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iii
j

jj
i gPVV

t
V
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
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


∇−=








∇+
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= 0

3

1 ρ
,                                           (4.24) 

which comes instead of (4.21). 

Comment 4.1. If ( ) ( )0,0,0,, 321 == VVVV , which means that the liquid layer is in equilibrium 

(at rest), and if P is denoted in this case by ‘ eP ’ then equation (4.24), subject to (4.22), reduces to the 

following set of three partial differential equations  

0e =
∂
∂

x
P   (a), 0e =

∂
∂

y
P   (b), g

z
P

0
e ρ−=

∂
∂   (c).                                    (4.25) 

In accordance with equations (4.25,a) and (4.25,b), the function ‘ eP ’ is independent of ‘x’ and ‘y’, so 

that it can depend only on ‘t’ and ‘z’, i.e. ( )ztPP ,ee =
 , while integration of both sides of equation 

(4.25,c) between 0 and a given real number z yields 

( ) ( ) gzzdgtPztP
z

0
0

0ee 0,, ρρ −=′−=− ∫ ,                                          (4.26) 

which is valid for 

each Rt∈ , each ( ) 2, Eyx ∈ , and each ( )[ ]0,, yxhz −∈ ,                          (4.27) 

i.e for 

each ( ) ) ,(, cc
ff Ζ−∈ hxt D .                                                  (4.27') 

In this case, the boundary functional form ‘ ( )0,e tP ’ and hence equation (4.26) can be specified in the 

following two ways. 

i) If the part of space above the upper boundary surface z=0 of the liquid layer is vacuous 

then ( ) 00,e =tP  and hence equation (4.26) becomes 

( ) ( ) gzzPztP 0hse , ρ−==  ,                                                    (4.28) 

so that ( )zPhs  thus defined is the net hydrostatic pressure at the depth –z>0. 

ii) If the above part of space is occupied with air then ( ) ( )tPtP ae 0, = , where ( )tPa  is a given 

atmospheric pressure at z=0, and hence equation (4.26) becomes 

( ) ( ) ( ) ( ) ( ) gztPzPtPztPztP 0ahsetee ,, ρ−=+==  ,                                   (4.29) 

so that ( )ztP ,te  thus defined is the total equilibrium pressure  at a depth –z>0.• 
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4.3. A potential, or irrotational, fluid flow 
The cross product of any two arithmetical vectors a and b in E3 can be written as: 

( ) ∑∑
= =

=∧
3

1

3

1j
kj

k
ijki baba ε  for each 3,1ω∈i ,                                       (4.30) 

where ‘ εijk ’ is the completely antisymmetrical unit pseudo-tensor of Levi-Civita. Equation (4.30) 

with ‘∇’ as ‘a’ and ‘V’ as ‘b’ becomes 

( ) ( ) ∑∑
= =

∇=∧∇=
3

1

3

1
 curl

j
kj

k
ijkii VVV ε  for each 3,1ω∈i ,                             (4.31) 

A fluid flow is said to be a potential, or irrotational, one if curl V = 0 throughout the flow and a 

rotational one if curl V ≠ 0 in some part of the flow; 0 defined as ( )0,0,00 =  is the arithmetical null 

3-vector. The velocity V in potential flow can be expressed as the gradient of some scalar, which is 

called the velocity potential and which will be denoted by ‘Φ’, so that 

Φ=  graddV , i.e. Φ∇= iiV  for each 3,1ω∈i .                                    (4.32) 

In this case, (4.31) becomes 

( ) ( ) 0 curl
3

1

3

1
=Φ








∇∇=Φ∇∧∇=Φ∇ ∑∑

= =j
kj

k
ijkii ε  for each 3,1ω∈i .                   (4.33) 

By (4.32), equation (4.3) becomes 

0=∆Φ                                                                  (4.34) 

subject to (4.10). Applying the operator i∇  to both sides of (4.34) and making use of (4.32) once 

again yield 

0=∆ iV  for each 3,1ω∈i .                                                   (4.35) 

Hence, equation (4.11) turns into (4.15). 

 
4.4. An unsteady Bernoulli equation: the first integral of the Euler equation 

With ‘V’ as ‘a’ and ‘ V curl ’ as ‘b’, equation (4.30) can be written as:  
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                        (4.36) 

where use of the equation 
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                                                   (4.37) 

has been made. By (4.32) and (4.36), for each ( ) ) ,(, cc
ff Ζ−∈ hxt D Euler’s equation (4.24) becomes 

0),( =Ψ∇ xti  for each 3,1ω∈i                                                (4.38) 

subject to 
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              (4.39) 

where 

[ ] [ ]20
2

0k ),(
2
1),(

2
1),( xtVxtxtE ρρ =Φ∇= ,                                      (4.40) 

( ) ( ) gzzPzE 0hsp ρ=−= ,                                                     (4.41) 

( )zExtExtE pk ),(),( += ,                                                             (4.42) 

by (4.28) and (4.32). In this case, the former domain of definition of the functional form ‘ ( )zPhs ’, 

which is defined by the relation  

( )[ ]0,, yxhz −∈ ,                                                           (4.43) 

occurring in (4.27), is supposed to be automatically extended so as to satisfy the relation 

( ) ( )[ ]yxtyxhz ,,,, Ζ−∈ .                                                     (4.44) 

It is understood that ),(k xtE , ( )zEp , and ),( xtE , defined by (4.40)–(4.42), are respectively the 

volumetric kinetic, potential, and total energy densities of the liquid at the temporo-spatial point 

),( xt .  

Given Rt∈ , let zyxx ′′′=′ ,,  and zyxx ′′′′′′=′′ ,,  be two arbitrary different points located in 

the fluid at the instant t . Let, also, L x x( , )′ ′′  be an arbitrary Jordan arc (see, e.g., Apostol [1963, p. 

170]) joining ′x  and ′′x  and lying entirely in the fluid at that instant, i.e. )) ,(,(),( cc
ff thDxxL Ζ−⊂′′′ . 

Taking the line integrals of both sides of equation (4.38) along L x x( , )′ ′′  from ′x  to ′′x , one gets  

),(),( xtxt ′′Ψ=′Ψ                                                          (4.45) 

independent of the path of integration. Since the points ′x  and ′′x  are different, therefore equation 

(4.45) holds if and only if 
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)(),( 0 tPxt =Ψ  for each Rt∈  and each ) ,(,(cc
ff thDx Ζ−∈ ,                        (4.46) 

where ‘ )(0 tP ’ is an arbitrary real-valued functional form independent of ‘x’ and hence possibly 

depending only on ‘t’. Thus, equation (4.46) subject to (4.39) is the first integral of equation (4.38), 

i.e. the first integral of Euler’s equation (4.24), – the one, which will be called the unsteady 

Bernoulli equation for an ideal incompressible fluid flow in an infinite layer.  

Without loss of generality, ‘ )(0 tP ’ can be specified thus: 

[ ] ( )2,0 ),()( xtzxtPtP Ζ== ,                                                     (4.47) 

the understanding being that (a) if the part of space above the upper boundary surface ( )2, xtz Ζ=  of 

the liquid layer is vacuous then 

[ ] 0),( ),( 2
=Ζ=


xtzxtP                                                         (4.48) 

and that (b) if the above part of space is occupied with air then 

[ ] ( )tPxtP xtz a),( 2
),( =Ζ=

 ,                                                     (4.49) 

where ( )tPa  is a given atmospheric pressure at ( )2, xtz Ζ= . In the latter case, I have tacitly assumed 

that ( )tPa  is the same at least for z ∈[ , ]Ζ Ζm M  and also I have neglected the surface tension of the 

liquid. Consequently, in both above cases, the Bernoulli equation (4.46) subject to (4.39)–(4.42) can 

be written as: 

[ ]

( ) [ ] gzxt
t

xtzExtE
t

xt

xtE
t

xtxtPxtP xtz

0
2

00pk0

0),(

),(
2
1),(),(),(

),(),(),(),(
2

ρρ
∂

∂ρ
∂

∂ρ

∂
∂ρ

−Φ∇−
Φ

−=−−
Φ

−=

−
Φ

−=− Ζ=

              (4.50) 

and also as: 

[ ] ( )zPxtPxtPxtP xtz hsd),( ),(),(),(
2

+=− Ζ= ,                                      (4.51) 

where ),(d xtP , defined as: 

[ ]200k0d ),(
2
1),(),(),(),( xt

t
xtxtE

t
xtxtP Φ∇−

Φ
−=−

Φ
−= ρ

∂
∂ρ

∂
∂ρd ,                    (4.52) 

is the dynamic pressure at the temporo-spatial point ) ,(),( cc
ff Ζ−∈ hxt D  and ( )zPhs , defined by (4.41), 

is the hydrostatic pressure at each temporo-spatial point ) ,(),( cc
ff Ζ−∈ hxt D  of the horizontal plane 

with the applicate z. 

Comment 4.2. Equation (4.20) can be written as a variant of equation (4.38), namely 
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0),( =Ψ′∇ xti  for each 3,1ω∈i                                               (4.38') 

subject to  

),(),(
2
1),(),( 2 xtwxtV

t
xtxt ++

Φ
=Ψ′

∂
∂
 .                                       (4.39') 

Therefore, in analogy with (4.46), the first integral of (4.20) can be written as: 

)(),( 0 twxt =Ψ′ ,                                                          (4.46') 

where ‘ )(0 tw ’ is as before an arbitrary real-valued functional form depending only on ‘t’. Let in 

(4.32) 

)(),(),( 0 txtxt Φ−Φ′=Φ  subject to )(),(),( 0 txtxt Φ+Φ=Φ′  ,                     (4.321) 

where ‘ )(0 tΦ ’ is another arbitrary real-valued functional form depending only on ‘t’. Hence, 

),(),(),( xtxtxtV Φ′∇=Φ∇= .                                               (4.322) 

At the same time, given Rt ∈0 , one may particularly set 

∫ ′′−=Φ
t

t

tdtwt
0

 )()( 00
d ,                                                     (4.32') 

whence, by the Leibnitz rule of differentiation of an integral with variable limits, 

)()(
0

0 tw
t

t
−=

∂
Φ∂ .                                                        (4.32″) 

Consequently, by (4.321), (4.322), and (4.32″), equation (4.46') subject to (4.39') becomes 

0)(),(
2
1),( 2 =++

Φ′ twxtV
t

xt
∂

∂ .                                              (4.46″) 

Owing to (4.322)), ‘Φ'’ can be freed of its initial denotatum, defined by (4.321), and denote Φ, while 

(4.46″) means that one can, without loss of generality, put 0)(0 =tw  in (4.46').• 

 
4.5. The momentum flux density tensor 

When regarded as a pertinent instance of (4.5), equation (4.24) can be written as: 

0
3

1
0 =

∂
∂

+
∂
∂ ∑

=j j

iji

x
S

t
Vρ  for each 3,1ω∈i                                           (4.53) 

subject to the pertinent total momentum flux density tensor ijS , defined for each 3,1ω∈i  and 

each 3,1ω∈j  as 
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3300 jijiijij gzVVPS δδρρδ ++=δ .                                              (4.54) 

Accordingly, in the presence of the field of gravity, the liquid becomes as if anisotropic.  

Strictly speaking, however, the pertinent instance of (4.5) is the homogeneous equation: 

0
3

1
0 =

∂
∂

+
∂
∂ ∑

=

−

j j

iji

x
S

t
Vρ  for each 3,1ω∈i                                          (4.531) 

subject to the pertinent abridged momentum flux density tensor −
ijS , defined as 

jiijij VVPS 0ρδ +=− δ ,                                                        (4.541) 

whereas equation (4.24) subject to (4.22) can be written as the inhomogeneous equation: 

3

3

1
0 i

j j

iji g
x
S

t
V δρ −=

∂
∂

+
∂
∂ ∑

=

−

 for each 3,1ω∈i                                     (4.532) 

In this case, passage from the homogeneous equation (4.531) to the inhomogeneous equation (4.532) 

changes the meaning of the unknown functional variables involved, particularly of ‘P’. The 

following simplest example illustrates the above said. The homogeneous Newtonian equation 

( ) 02

2

=
dt

txd  implicitly defines a functional form ‘ ( )tx ’, descriptive of one-dimensional steady motion 

of a material particle with a constant velocity. At the same time, the inhomogeneous Newtonian 

equation ( ) ( )tf
dt

txd
=2

2

 implicitly defines the homographic functional form ‘ ( )tx ’, descriptive of 

one-dimensional unsteady (accelerated) motion of a material particle with a varying velocity. 

The unsteady Bernoulli equation (4.50) or (4.51) subject to (4.52) is the first integral of the 

Euler momentum flux density continuity equation (4.24), i.e. (4.53) subject to (4.54). Therefore, the 

latter equation subject to the former one is a tautology, which will be demonstrated before long in 

what follows. At the same time, the total momentum flux density tensor ijS itself subject to the 

unsteady Bernoulli equation, which is made explicit below, is a useful characteristic of wave motion. 

Substitution of P, defined by (4.50), into (4.54) yields 

( ) ( ) ( )ijijjiijijij EEgz
t

tPS δδδδρδ
∂
∂ρ k33000 −+−−



 Φ

−=δ ,                         (4.55) 

subject to (4.40) and (4.47)–(4.49) and also subject to  

( )( ) 










∂
Φ∂









∂
Φ∂

=Φ∇Φ∇==
ji

jijiij xx
VVE 000 ρρρ ,                                  (4.56) 
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by (4.32). The 3×3-tensor ijS , defined by (4.55), satisfies the equation: 

t
V

x
S

S i

j j

ij

j
ijj ∂

∂ρ0

3

1

3

1
=

∂
∂

=∇ ∑∑
==

 ,                                                  (4.57) 

because 

t
V

tt
ii

j
ijj ∂

∂
∂

∂δ
∂
∂

=
Φ∇

=





 Φ

∇∑
=

3

1

,                                               (4.571) 

( )[ ] ( ) 00

3

1
0 =∇=∇∑

=

tPtP i
j

ijj δ ,                                                (4.572) 

( )[ ] ( ) ( ) 01130330

3

1
330 =−=∇−∇=−∇∑

=
iii

j
jiijj gzzggz δρδρδδδρ ,                    (4.573) 

( ) 0k

3

1

3

1
k =∇−∇=−∇ ∑∑

==

EEEE i
j

ijj
j

ijijj δ .                                      (4.574) 

The first three of equations (4.571)–(4.574) are self-evident, whereas the last one follows from (4.56) 

by (4.3), (4.36), and (4.40) thus: 
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k
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ρρ
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                           (4.58) 

Equation (4.57), being formally the same as (4.53), is tautological as expected. 

 
4.6. The energy continuity equation 

Besides (4.38) subject to (4.39), equation (4.24) subject to (4.22),can be written as: 

( ) 00

3

1
00 =+∇+








∇+

∂
∂ ∑

=

gzPVV
t

V
ii

j
jj

i ρρρ .                                    (4.59) 

Multiplying both sides of equation (4.61) by Vi  and then summing up the result with respect to i  

from 1 through 3 yields 

0
3

1

k =∇+∑
=i

iiQt
E
∂
∂ ,                                                      (4.60) 

subject to (4.40) and also subject to the equation 

( ) ( ) ( )EPVEEPVgzEPVxtQQ iiiii +=++=++== pk0k),( ρ  for each 3,1ω∈i .        (4.61) 
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In this case, Φ∇= iiV  by (4.32), while Ek , pE , and E are defined by (4.40)–(4.42) respectively. In 

developing (4.60) from (4.59), use has been made of the self-evident equation: 

k
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1

2
3

1 2
1 EV

tt
VV

i
i

i

i
i =

∂
∂

=
∂
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==

                                                 (4.601) 

and also, by (4.3), of the equations: 
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( ) ( )[ ]∑∑
==

+∇=+∇
3

1
0

3

1
0

i
ii

i
ii gzPVgzPV ρρ .                                      (4.612) 

By (4.42), it follows that 

0
),( 0p ==

t
gz

t
xtE

∂
∂ρ

∂
∂

,                                                     (4.62) 

because ‘ 0ρ ’ and ‘g’ are constants, and also because the variables ‘ t ’ and ‘ z ’ are independent. At 

the same time, by (4.47)–(4.49), it follows from (4.50) that 
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t

xttP
t

xtxtPxtExtP xtz ∂
∂ρ

∂
∂ρ ),()(),(),(),(),( 000),( 2

Φ
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Φ
−=+ Ζ= .                  (4.63) 

In this case, by (4.3), it follows from (4.61) and (4.63) that 
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where 

t
VxtQQ iii ∂

Φ∂
−== ∗∗ 0),( ρ  for each 3,1ω∈i .                                       (4.65) 

At the same time, equation (4.61) subject to (4.63) and (4.65) reduces to 

( ) ( ) iiiii VtPxtQ
t

tPVxtQQ 000 ),(),( +′=





 Φ

−==
∂
∂ρ   for each 3,1ω∈i .               (4.61a) 

By (4.62) and (4.64), equation (4.60) is equivalent to this; 
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∂                                              (4.66) 
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subject to (4.40), (4.42), (4.61), and (4.65). The 3-vector ),( xtQ , whose components are defined by 

(4.61), is called the flux density vector across the unit area, or Poynting vector, of the liquid at the 

temporo-spatial point ( )xt, . The 3-vector ),( xtQ∗ , whose components are defined by (4.65), is 

called the effective flux density vector across the unit area, or effective Poynting vector, of the liquid 

at the temporo-spatial point ( )xt, . 

 
4.7. The dynamic boundary condition at the upper (free) surface of the liquid layer 

For each for each 22 ),( ERxt ×∈ , equation (4.50) or (4.51), subject to (4.52), at ),( 2xtz Ζ=  

can conveniently be rewritten thus: 

[ ] ),(d
0),(

k
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2 2

2

),(1),(1),(1),( xtz
xtz

xtP
g

xtE
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xt
g

xt Ζ=
Ζ=

=
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




+

Φ
−=Ζ

ρρ∂
∂ ,                  (4.67) 

which is the dynamic boundary condition at the upper (free) surface of the ideal incompressible 

irrotational liquid layer, no matter whether the space above that surface is vacuous) or whether it is 

air-filled. I regard equation (4.67) as an implicit definition of the function Ζ in terms of the function 

Φ, which will be justified in the sequel by asymptotically solving that equation with respect to Φ. 

 
4.8. Kinematic boundary conditions at the bottom and upper surfaces of the liquid 

layer 

Application of the operator 
D
Dt

, as defined by (3.14), to both sides of each one of equations 

(3.1) and (3.2) yields 
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,                           (4.68) 

whence 
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∂
∂ ,                             (4.70) 

subject to the general definitions (3.15). Equations (4.69) and (4.70) are the basic kinematic 

boundary conditions at the bottom (rigid) and upper (free) boundary surfaces of the liquid layer, 
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respectively. If the fluid flow is incompressible and irrotational then equations (4.69) and (4.70), 

subject to (4.32), become 

( )( ) ( )( ) ( )
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∂ ,                       (4.72) 

which are the pertinent kinematic boundary conditions at the bottom and upper boundary surfaces of 

the liquid layer respectively. If 

h Cd= , i.e. h x d( )2 =  for each 22 Ex ∈ ,                                       (4.73) 

where ‘ d ’ is a constant, then equation (4.71) reduces to 

( ) 0,
=



 Φ

−= dzz
xt

∂
∂ .                                                        (4.74) 

From the relevant theoretical considerations and practical experience, one can assume 

(postulate) that, in the absence of macroscopic currents, 

lim [ ( , )] ( )h i z h xt x
m→∞ =−∇ =Φ

2
0  for each 22 ),( ERxt ×∈  and each 3,1ω∈i .                (4.75) 

If (4.73) holds then (4.75) trivially becomes 

( ) 0,lim =
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 Φ

−=
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d z

xt
∂

∂  for each 22 ),( ERxt ×∈ .                                  (4.76) 

By (4.75), equation (4.71) turns into the tautology 0 0=  as hm → ∞  and thus becomes ineffective. 

By (4.76), the same applies to equation (4.74) as d → ∞ . Hence, the two cases are equivalent. 

Comment 4.3. In the case of a real, viscous fluid, there always exist short-range attractive 

forces between molecules in the surface of a solid body and molecules in the thin layer of the fluid 

immediately adjacent to the solid surface. These attractive forces result in adhesion of the adjacent 

fluid to the solid bottom surface, so that 

[ ]V t xi z h x
( , )

( )=−
=

2
0  for each ( ) 22, ERxt ×∈  and each 3,1ω∈i .                      (4.77) 

This relation is the dynamico-kinematic boundary condition at the bottom surface of a viscous fluid 

flow, which comes instead of either condition (4.69) or (4.71).• 

 
4.9. A dynamico-kinematic boundary condition at the free surface of the liquid layer 
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Theorem 4.1. For each ( ) 22, ERxt ×∈ : 
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Equation (4.72) subject to (4.78) is called dynamico-kinematic boundary condition at the free surface 

of the liquid layer. 

Proof: Equation (4.67) can be developed thus: 
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Therefore, 
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whence 
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which immediately reduces to (4.78).• 

Comment 4.4. The set (conjunction) of four equations: (4.34), (4.67), (4.71), and (4.72) will 

be denoted by ‘Q( , )Φ Ζ ’, and the set of four equations: (4.34), (4.67), (4.74), and (4.72) by 

‘QU ( , )Φ Ζ ’, where the subscript ‘U’ is a capitalized first letter of the word ‘uniform’. Likewise, the 

set of four equations: (4.34), (4.67), (4.75) or (4.76), and (4.72) will be denoted by ‘Q∞ ( , )Φ Ζ ’. 

Since, however, the function Ζ is an unknown, therefore the boundary condition (4.72) is ineffective. 

In order to make such a set of equations effective, it should be supplemented by one or more 

additional hypotheses (assumptions), which restrict the class of problems, to which that set applies. 

One of such hypotheses is stated and discussed in the next section.• 
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4.10. Paradoxes of the Eulerian formalism 
Let 

( ) { } ( ){ }22222XY , ExzxExxzP ∈=∈=  ,                                         (4.80) 

i.e. ( )zPXY  is the plane perpendicular to the applicate and crossing the latter at a given point z. In this 

case, however, in accordance with (3.5), a given spatial point  

( ) [ ]Mm22 ,, ΖΖ×∈= Ezxx                                                   (4.81) 

can belong to a fluid particle for some t∈R and it cannot belong to any fluid particles at some other 

t∈R. Consequently, by Definition 3.2, given t∈R, the part ( )ztP ,XY
+  of ( )zPXY , which is defined by 

the relation: 

( ) ( ) ∅≠Ζ−=+ )) ,(,(, cc
ffXYXY thDzPztP 

 ,                                        (4.82) 

passes through liquid, while the complementary part ( )ztP ,XY
−  of ( )zPXY , defined as 

( ) ( ) ( ) ∅== +− ztPzPztP ,, XYXYXY − ,                                              (4.83) 

is vacuous (immaterial), so that no liquid characteristics are defined for ( ) ( )ztPzx ,, XY2
−∈ . 

In the literature on the Airy (linear) theory of gravity waves on a liquid layer, the boundary 

condition (4.67) is replaced by the corresponding linear boundary condition, which is evaluated at 

the coordinate XY-plane ( )0XYP , defined by the equation z = 0 , and not at the exact but unknown 

free (upper) surface St of the liquid layer, defined by the equation ),( 2xtz Ζ=  (see, e.g., Lamb [1932, 

p. 364], Landau and Lifshitz [1987, p. 32], Mei [1989, p. 8], Dingemans [1997, pp. 39–41]). 

However, given t∈R, the velocity potential ( )0,; 2xtΦ  and all related liquid characteristics are 

defined only on ( )0,XY tP+  and are not defined on ( )0,XY tP− . Therefore, the tricky device of replacing 

the boundary condition at the exact but unknown disturbed free surface of the liquid layer by an as if 

approximate boundary condition at the liquid free surface in equilibrium is paradoxical that can be 

called the paradox of the boundary condition at a free liquid surface. 

A problem of fluid flow cannot, as a rule, be solved analytically. Therefore, it is often 

desirable to average either some governing equations or some fluid characteristics before solving the 

problem. In this case, the time average 
t

xtF ),(  of the fluid characteristic, taking on values of a 

certain functional form, is supposed to be defined by the universal formula: 
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dtxtF

T
xtF d                                                  (4.84) 

for any given spatial point x in the fluid (see, e.g., Mei [1989, Sec. 10.2, pp. 453–463] or Dingemans 

[1997, part 1, sec.2.9, pp. 184–215]). However, given x subject to (4.81), ),( xtF  is, in accordance 

with the above-said, defined only on a part of the entire interval in (4.84). Therefore, for any such 

spatial point, the time average F t x t( , )  as defined by (4.84) does not exist. I call this inconsistency of 

the formula (4.84) the paradox of time averages. 

Both the above paradoxes are results of describing a fluid flow by Eulerian variables. The 

first of them will explicitly be solved asymptotically in the next section. 

 
4.11. The analytical extension of Φ 

Both paradoxes that have been indicated in the previous subsection can be solved 

(eliminated) by subjecting the velocity potential Φ of a potential (irrotational) fluid flow in a liquid 

layer as specified in subsection 3.1 to the following hypothesis. 

Hypothesis 4.2: The hypothesis of analytical extension of Φ. In the case of a potential 

(irrotational) fluid flow in a liquid layer as specified in subsection 3.1, there exists a harmonic 

function Φ, which satisfies the Laplace equation (4.34) for in the whole time-space, i.e. for all 

3, ERxt ×∈ , and which also satisfies all pertinent equations of subsections 4.8 and 4.9, – 

particularly equations (4.52) or (4.54), (4.71), (4.72), (4.76) and (4.78).• 

Comment 4.5. To be more specific, Hypothesis 4.2 means that that for each 22, ERxt ×∈ : 

there is the analytical extension (continuation) of the function ( )) ,,( 2xtΦ  from the interval 

[ ( ), ( , )]−h x t x2 2Ζ  to the whole applicate axis ( )∞∞− , . In this case, the function Φ is denoted by the 

same letter ‘Φ’. Accordingly, the pertinent analytical extension of any bulk function (as Vi , dP , etc) 

will be denoted by the same symbol as that denoting the original function itself (as  ‘Vi ’, ‘ dP ’, etc, 

respectively). 

Hypothesis 4.2 makes explicit the assumption, which remains implicit when the temporal 

partial derivative or a time average of a bulk characteristic of the fluid flow is unrestrictedly 

computed at all points of the flow with the help of the corresponding conventional formula as if the 

characteristic were defined on the whole three-dimensional space at any instant of time; or when the 
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boundary conditions at the free surface of the liquid, i.e. at  =z t xΖ( , )2 , are replaced by appropriate 

approximate boundary conditions at z = 0  (see the next section). 

Incidentally, every approximate solution for Φ , which is obtained in the literature in the 

framework of the conventional linear wave theory, proves to be analytical on the whole infinite 

space. This fact agrees with Hypothesis 4.2, but it does not, however, prove that Hypothesis 4.2 is 

true, i.e. that it is a theorem of hydrodynamics. 

The analytical extension of Φ in question is analogous to the extension of the electrostatic 

potential, which is tacitly done in solving electrostatic problems by the method of images (see, e.g., 

Iosilevskii [1978]).• 

Convention 4.1. In accordance with Hypothesis 4.2 and Comment 4.5,  

1) any bulk function (as Φ, Vi , dP , etc) will be denoted by the same symbol as that denoting 

the original function itself (as  ‘Φ’, ‘Vi ’, ‘ dP ’, etc, respectively); 

2) each bulk relation, which is stated for the liquid layer as a true one, is assumed to be 

preceded either by the quantifier ‘for each 3, ERxt ×∈ :’.• 

 

4.12. Corollaries of Hypothesis 4.2: Modified boundary conditions at the free surface 

1) It follows from Hypothesis 4.2 that for each 3, ERxt ×∈ :  

∑
∞

=

Φ=Φ
0

2
)( ),(

!
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m

mm zxt
m

xt ,                                               (4.85) 

where 
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  for each 0ω∈m , [ ] 02
)0( ),(),( =Φ=Φ zxtxt  ,         (4.86) 

and where, as usual, 0! 1= .• 

2) By (4.32), (4.85), and (4.86), it follows that 
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3) It follows from (4.40) and (4.85)–(4.89) that 
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the understanding being that 
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Indeed, equation (4.40) can be developed by (4.85)–(4.89) thus:  
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Let nml +=  so that nlm −= . Then (4.901) reduces to 
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which can be rewritten as (4.90) subject to (4.91). 

4) By (4.87)–(4.89), expanding the expressions on the left-hand sides of equations (4.67) and 

(4.70) and (4.72) into the Maclaurin series with respect to powers of ‘Ζ ’ yields 
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where, in accordance with (4.86) and (4.90), 
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5) Since 
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therefore (4.93) can be rewritten as 
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Equation (4.96) subject to (4.97) and (4.98) is the pertinent modified dynamic boundary condition at 

 =z t xΖ( , )2 . 
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therefore (4.94) can be rewritten as 
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In this case, by (4.31), (4.32), and (4.86), equation (4.101) at m = 0  can be developed thus 
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Equation (4.99) subject to (4.100) and (4.101) is the pertinent modified kinematic boundary condition 

at  =z t xΖ( , )2 . 

7) Subtraction of equation (4.99) from the equation tha is obtained by differentiating both 

sides of equation (4.96) with respect to ‘ t ’ yields 
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where 

( ) ( ) ( )2K
2d

2 ,,, xt
t

xtxt Α−
Α

=Α
∂

∂
d .                                            (4.104) 

Equation (4.103) subject to (4.104), is the pertinent modified dynamico-kinematic boundary 

condition at  =z t xΖ( , )2 . 

Comment 4.6. In accordance with the definitions of Comment 4.4, the following notation 

will be used under Convention 4.1.  

a) Equation (4.34) subject to Convention 4.1 will be referred to as (4.34+).  

b) The set (conjunction) of four equations: (4.34+), (4.93) subject to (4.95), (4.71), and (4.99) 

subject to (4.100) and (4.101) will be denoted by ‘ ),( ΖΦ+Q ’, and the set of four equations: (4.34+), 

(4.93) subject to (4.95), (4.74), and (4.99) subject to (4.100) and (4.101) will be denoted by 

‘ ),(U ΖΦ+Q ’. Likewise, the set of four equations: (4.34+), (4.93) subject to (4.95), (4.75) or (4.76), 

and (4.99) subject to (4.100) and (4.101) will be denoted by ‘ ),( ΖΦ+∞Q ’.  

c) Analogously, the set (conjunction) of three equations (4.34+), (4.103) subject to (4.104), 

and (4.71) will be denoted by ‘ ),( ΖΦ+T ’, and the set of three equations: (4.34+), (4.103) subject to 

(4.104), and (4.74) will be denoted by ‘ ),(U ΖΦ+T ’. Likewise, the set of three equations: (4.34+), 

(4.103) subject to (4.104), and (4.75) or (4.76) will be denoted by ‘ ),( ΖΦ+∞T ’.  

Since the function Ζ is as before an unknown, therefore each one of the three boundary 

conditions: three equations (4.93) subject to (4.95), (4.99) subject to (4.100) and (4.101), and (4.103) 
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subject to (4.104), is ineffective. In order to make such a set of equations effective, it should be 

supplemented by one or more additional hypotheses (assumptions), which restrict the class of 

problems, to which that set applies. One of such hypotheses is stated and discussed in the next 

section.• 

 

5. A recursive asymptotic analysis of basic fields and equations of an 
irrotational incompressible fluid flow 

5.1. The hypothesis of recursive asymptotic representations of the free surface of a 
perturbed liquid layer and of the velocity potential of the pertinent fluid flow 

Hypothesis 5.1. There exists a real number [ )1,0∈ε  such that the following relations hold. 

1) For each 22, ERxt ×∈ : 
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n

n xtxtxtxt εζεεε  ,                               (5.1) 

where ‘~’ is the sign of [full] asymptotic correspondence (cf. Erdélyi [1956, pp. 11–14], Olver 

[1974, pp. 4–8], or Van Dyke [1975, pp. 26–28]), so that  
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It is understood that 
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( ) ( )εε ,;lim,; 2]1,1[2]1,[ xtxt mm −→∞∞ Ζ=Ζ  ,                                             (5.6) 

( ) ),(,; 2)(2)( xtxt n
n

n ζεε =Ζ   for each 1ω∈n .                                      (5.7) 

2) Analogously, for each 3, ERxt ×∈ : 
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It is understood that 
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( ) ( )εε ,;lim,; ]1,1[]1,[ xtxt mm −∞→∞ Φ=Φ  ,                                             (5.13) 

( ) ),(,; )()( xtxt n
n

n φεε =Φ   for each 1ω∈n .                                    (5.14)• 

Comment 5.1. In stating Hypothesis 5.1, I have is tacitly assumed that macroscopic currents 

transferring liquid masses in the layer are absent. In order to take into account such currents, one 

should have set the lower limit of summation in (5.2) to 0, and not to 1. Accordingly, I regard 

Hypothesis 5.1 as a sufficient condition that an allowable perturbation of the liquid layer can be 

interpreted as a single whole water wave. The real number ε introduced in Hypothesis 5.1 

characterizes the choppiness (dynamic roughness) of the disturbed water free surface, and therefore 

the variable ‘ε’ will be properly called the choppiness parameter. In theory of asymptotic series, such 

a parameter is commonly called a scaling parameter or similarity parameter. In the sequel, ‘ε’ will 

be defined as: ka=ε , where a is the surface amplitude of a wave associated with ( )ε,;)1( xtΦ  and k 

is the wave number of that wave. After a given problem is solved, one may, when desired, pass to the 

limit +∞→d  (or in general hm → +∞ ) in all relevant final formulae.• 

 

5.2. General recipes for the asymptotic power expansions of any pertinent bulk 
functional forms 
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Preliminary Remark 5.1. In this subsection, I shall formulate basic concepts of asymptotic 

expansions of functions into asymptotic power series in such a form which is most convenient for 

subsequent applications in the exposition. I shall also make explicit some properties of asymptotic 

power series, which are not discussed in the standard reference monographs on asymptotic 

expansions (as Erdélyi [1956], Olver [1974], and Van Dyke [1975]), but which will be most useful in 

the sequel both for proving theorems and for the adequate interpretation of the theory and its 

implications.• 

Definition 5.1. 1) ‘ ),( ετF ’ is a placeholder for, – or, semantically, ),( ετF  is, – a functional 

form, which is defined on a certain domain [ )1,0×Τ , i.e. for each Τ∈τ  and each [ )1,0∈ε , where ∗ε  

is a given strictly positive real number or ∞. It is assumed that there exists a natural number μ∈ω0 

such that for each Τ∈τ  and for each [ )1,0∈ε : 
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It is understood that 

∑
=

==
µ

µ
µµµ ετετετ

n
n FFF ),(),(),( )()(],[

 ,                                          (5.19) 

),(lim),( ],1[],[ ετετ mm −→∞∞ = mm
FF  ,                                                  (5.20) 

n
nn fF ετετ )(),( )()( =  for each µω∈n .                                          (5.21) 

Also, the conjunction of (5.16) and (5.17) subject to 1+∈ µωµ  is equivalent to (5.17) alone subject to 

µω∈µ , because  

0),(],1[ =−
ετµµF .                                                          (5.22) 
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2) Given τ ∈Τ , if the conjunction of (5.16) and (5.17) holds then the infinite sum 

‘ ),(],[ ετµ∞F ’ is said to be the [full] infinite asymptotic series for ‘ F( )τ ε, ’ in integer powers of ‘ε ’ 

in the set µω , or briefly the infinite asymptotic series for ‘ F( )τ ε, ’ with respect to ‘ε ’, about the 

point ε = 0. This point is said to be the distinguished point of the series. The sign ‘~’ is said to be the 

sign of asymptotic correspondence. The variable ‘ ε ’ is said to be the scaling (or similarity) 

parameter of each one of the following objects: (i) the asymptotic series ‘ F[ , ] ,∞ ν τ ε( ) ’, (ii) the 

functional form ‘ F( )τ ε, ’, (iii) either of the associated functions F(  )τ ,  and F of the functional 

form‘ F( )τ ε, ’. 

3) For each µω∈n , for each [ )1,0, ×Τ∈ετ : the functional form )()( τnf  is said to be the nth 

non-scaled partial asymptotic image of the functional form ),( ετF  with respect to ε , whereas the 

functional form ),()( ετnF  is said to be the nth scaled partial asymptotic image of the functional form 

),( ετF  with respect to ε . Consequently, the associated function )(nf  of the functional form )()( τnf  

and the associated function )(nF  of the functional form ),()( ετnF  are respectively said to be the nth 

non-scaled and nth scaled partial asymptotic images of the associated function F of the  functional 

form ),( ετF  with respect to ‘ε ’. 

4) For each µω∈µ , for each [ )1,0, ×Τ∈ετ : the functional form ),(],[ ετµµF  is said to be 

the mth cumulative asymptotic image of (or mth asymptotic approximation to) the functional form 

),( ετF  with respect to ε . In this case, instead of the prepositive quantifier “mth”, either postpositive 

quantifier “of mth order” or “of order m” can alternatively be used before the qualifier “with respect 

to ε ”. The above definition applies with “function ],[ µµF ” and “function F” instead of “functional 

form ),(],[ ετµµF ” and “functional form ),( ετF ” respectively. 

5) Given µω∈µ , the above item can by definition be formally restated in either of the 

following two ways. 

a) For each [ )1,0, ×Τ∈ετ : ),(),( ],[ ετετ µµFF ≈  or )(),(~),( 1
],[

++ m
m OFF εετετ m . 

b) ],[ µµFF ≈ . 

The sign ‘≈’, as defined above for each given µω∈µ , will be called the sign of a cut cumulative 

asymptotic correspondence. The symbol ‘ )( 1+mO ε ’ stands ad hoc for the cut reminder of the power 
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asymptotic series, i.e. ),()( ]1,[
1 ετε +∞
+ = m

m FO  . If the power series  ),(]0,[ ετ∞F  is a Maclaurin one 

then I shall write ‘ )( 1+mo ε ’ instead of ‘ )( 1+mO ε ’, the understanding being that )( 1+mo ε  is the 

remainder of the Maclaurin series, of the order of 1+mε  in Peano’s form. 

6) The above five items apply with ‘G’, ‘g’, and ‘ν’, and also with ‘H’, ‘h’, and ‘λ’, in place 

of ‘F’, ‘f’, and ‘μ’ respectively.• 

Comment 5.2. In the first sentence of Definition 5.1, the description “natural number μ∈ω0” 

can be replaced with this one: “natural integer ∞∞−∈ ,Iµ ”. In this case, the occurrences of ‘ 1+µω ’ and 

‘ µω ’ in the item 1 of Definition 5.1 should be replaced with occurrences of ‘ ∞+ ,1µI ’ and ‘ ∞,µI ’ 

respectively. However, one of the main purposes of this paper is to demarcate the difference between 

the asymptotic power series of a functional form, which is not the Taylor series of that function, and 

the asymptotic power series of a functional form, which is not its Taylor series. Also, no asymptotic 

power series relevant to water waves involve any negative powers of a scaling parameter. Therefore, 

Definition 5.1 is confined to the case, where μ, ν, and λ are natural numbers, and not natural 

integers.• 

Comment 5.3. In Definition 5.1(1), the function F( , )τ   has been assumed to be defined on 

[ )1,0  exclusively for the sake of definiteness. The case, where F( , )τ   is defined on [ )1,0 − , can be 

considered analogously. In particular, in this case, the limiting transition ‘ε → +0’ in (5.16) and 

(5.17), and also in all other relevant relations below in this section, should be replaced by ‘ ε → −0 ’. 

It is understood that if F( , )τ   is defined on )1,1(−  and is continuous in a neighborhood of the point 

ε = 0 then either one of the above two limiting transitions can be replaced by ‘ ε → 0 ’.• 

Comment 5.4. 1) In accordance with Definition 5.1, ‘ F ’, ‘ f ’, ‘μ’, ‘Τ’, and ‘τ’ (e.g.) are 

ellipses (place-holders), which can be replaced by various specific variables or constants. 

Particularly, ‘τ ’ is an ellipsis for any string of variables as ‘ t x, ’, ‘ t x, 2 ’, ‘ x ’, or ‘ x 2 ’. 

2) Equation (5.20) should, as usual, be understood syntactically, i.e. in the sense that 

‘ ),(],[ ετµ∞F ’ is the definiendum, which will be used instead of the definiens ‘∑∞

=µ
ετ

n nF ),()( ’. The 

problem of convergence of the infinite sum is unimportant in this case.• 

Comment 5.5. Definition 5.1(1) is in agreement with the conventional general definition of 

the infinite asymptotic series of a functional form in terms of an infinite sequence of given gauge 
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functional forms ‘δ εn ( ) ’ instead of ‘ε n ’ subject to 0ω∈n  (see, e.g. Erdélyi [1956, p. 12, equation 

(5)] or Van Dyke [1975, p. 27, equation (3.11)]). Definition 5.1(1) is also in agreement with the 

definition of the asymptotic series of a functional form relative to an infinite point as given, e.g., in 

Smirnov [1964, vol. III, part 1, art. 106, equations (127) and (128)]).• 

Comment 5.6. The sign ‘≈ ’, introduced by Definition 5.1(5), should not be confused with 

the conventional sign ‘ ≅ ’ of approximate equality. The latter can, for instance, be defined by the 

following definition. 

Given δ ∈( , . ]0 01 , for each x ∈ −∞ +∞( , )  and for each x0 ∈ −∞ +∞( , ) : 

x x≅ 0  if and only if x x x∈ − +[ , ]0 02 2δ δ . 

In this case, the relation ‘ x x≅ 0 ’ can also be written as ‘ x x O= +0 ( )δ ’.• 

Corollary 5.1. If ‘ F(  )τ ε, ’ has an infinite asymptotic power series about the point ε = 0 

then that series is unique. 

Proof: The corollary immediately follows from Definition 5.1.(1)• 

Corollary 5.2. It immediately follows from Definition 5.1(1,6) that, for instance, for each 

[ )1,0, ×Τ∈ετ : if ),(),(),( ετετετ GFH +=  then ),(),(),( ],[],[],[ ετετετ νµλ ∞∞∞ ±= GFF  subject to 

{ }νµλ ,µiν= . In this case,  

a) if μ>ν than )()( )()( ττ nn gh = for each 1, −∈ µνων ; 

b) if ν>μ than )()( )()( ττ nn fh = for each 1, −∈ νµων ; 

c) )()()( )()()( τττ nnn gfh += for each { }νµω ,µax∈ν .• 

Theorem 5.1. Given a set Τ, for each τ ∈Τ : if F( , )τ ε = 0  for each [ )1,0∈ε  then 

f m( ) ( )τ = 0  for each 0ω∈n . 

Proof: Under the hypothesis (antecedent) of the theorem, (5.16)–(5.22) become 

0)()0( =τf ,                                                             (5.160) 

),( lim)( ]0,1[+0)( ετετ
ε −

−

→
−= m

m
m Ff  for each 1ω∈m ,                               (5.170) 

∑∑
−

=

−

=
− ==

1

0
)(

1

0
)(]0,1[ )(),(),(

m

n

n
n

m

n
nm fFF ετετετ  ,                                     (5.180) 

∑
=

==
0

0
)0()(]0,0[ ),(),(),(

n
n FFF ετετετ  ,                                        (5.190) 
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),(lim),( ]0,1[]0,[ ετετ −→∞∞ = mm
FF  ,                                                  (5.200) 

n
nn fF ετετ )(),( )()( =  for each 0ω∈n ,                                          (5.210) 

0),(]0,1[ =−
ετF ,                                                           (5.220) 

respectively. By (5.160), it follows from (5.190) and from (5.210) at n =  0 that 0),(]0,0[ =ετF . Hence, 

(5.170) at m= 1 yields 0)()1( =τf , so that 0),(]0,1[ =ετF , by (5.180) at m= 2. Consequently, 

0)()2( =τf , by (5.170) at m= 2; and so on ad infinitum. The validity of the equation f m( ) ( )τ = 0  for 

each 1ω∈m  can be proved formally by induction on values of ‘ m ’ as follows. Given 1ω∈l , assume 

that 0)()( =τnf  for each ln ,0ω∈ . In this case, it follows from (5.180) at m= l+1 that 0),(]0,[ =ετlF  

for each [ )1,0 ∈ε . Hence, equation (5.170) at m l= +1  yields f l( ) ( )+ =1 0τ . QED.• 

Comment 5.7. The equation ‘ F( , )τ ε = 0 ’ can be algebraic, differential, integral, integro-

differential, differential-substitutional (as a boundary or initial condition), etc. Therefore, Theorem 

5.1 is a basis for constructing various perturbation theories.• 

Corollary 5.3. Given a set Τ, for each τ ∈Τ , for each [ )1,0∈ε : if F( , )τ ε = 0  then 

F( , ) ~τ ε 0 . 

Proof: It immediately follows from Theorem 5.1 that if F( , )τ ε = 0  then 

00),(~),(
0

]0,[ ==∑
∞

=
∞

n

nFF εετετ  .                                           (5.150) 

QED.• 

Comment 5.8. Substitution of ‘ 0 ' for ‘ F( , )τ ε ’ into (5.150) yields 0 0~ .• 

Definition 5.2. ‘ ),(O ετ+ ’, ‘ ),(O ετ− ’, ‘ ),(O ετ ’, and ‘ )(o τ ’ are called the null functional 

forms, while their associated functions +O , −O , O, and o are called the null functions, on [ )1,0×Τ , 

[ )1,0 −×Τ , ( )1,1−×Τ , and Τ respectively, provided that they are defined as follows.  

a) 0),(),(O ==+ ετετ F  for each [ )1,0, ×Τ∈ετ  subject to Theorem 5.1. 

b) 0),(),(O ==− ετετ F  for each [ )1,0, −×Τ∈ετ  subject to the variant of Theorem 5.1 

with ‘ [ )1,0 − ’ in place of ‘ [ )1,0 ’. 

c) 0),(),(O == ετετ F  for each )1,1(, −×Τ∈ετ  subject to the variant of Theorem 5.1 with 

‘ )1,1(− ’ in place of ‘ [ )1,0 ’. 
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d) 0)()(o )( == ττ nf  for each Τ∈τ  and for each 0ω∈n  subject to any one of the above three 

variants of Theorem 5.1. 

Thus, +O , −O , O, and o are the pertinent specifications (restrictions) of the universal null function 

0C .• 

Definition 5.3. 1) A functional form‘ ),( ετ+Θ ’, defined on ),0( ∞×Τ  so that ++ ≠Θ O , is 

said to have ‘ ),(O ετ+ ’ as its asymptote, and accordingly the function +Θ  is said to have +O  as its 

asymptote, if and only if for each [ )1,0, ×Τ∈ετ : 

00~),(
0

=Θ ∑
∞

=
+

n

nεετ ,                                                      (5.23) 

i.e. if and only if for each τ ∈Τ : 

0)()( =τθ n  for each 0ω∈n ,                                                  (5.24) 

where ‘ )()( τθ n  is defined by the variants of (5.160) and (5.170) subject io (5.180)–(5.220) with ‘θ ’ 

and ‘ +Θ ’ in place of ‘ f ’ and ‘ F ’ respectively. 

2) The item 1 applies (a) with ‘ −Θ ’ and ‘ [ )1,0 − ’ or (b) with ‘Θ’ and ‘ )1,1(− ’ in place of ‘ +Θ ’ 

and ‘ [ )1,0 ’ respectively.• 

Comment 5.9. There is an indefinite number of functional forms of each of the three classes 

defined in Definition 5.3. This is illustrated by the following example. 

Let ‘ a( )τ ’ and ‘b( )τ ’ be given real-valued functional forms defined and bounded for each 

τ ∈Τ , subject to 0)( >τa  for each τ ∈Τ . Then the functional form ‘ ),( ετ+Θ ’, defined by 
εττετ /)()(),( aεb −

+ =Θ   for each ( ) [ )1,0, ×Τ∈ετ ,                                 (5.25) 

has the properties indicated in Definition 5.3. Indeed, in this case it follows that for each 0ω∈m : 

,0lim)()]([!lim)(

 lim)(),( lim)(
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1-)(

+
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++0)(

==



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








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ξτ
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ξε

ττ
ξξ

ξτ

ξτετετθ

am
m

am

m

mm

amm
m

εbam
d
εd

d
db

εb

                    (5.26) 

In developing this train of equations for solving the pertinent indeterminate functional form of the 

type of ‘∞ ∞/ ’, after the substitution ξ ε= 1  subject to ( )1,0∈ε , use has repeatedly been made m 

times of the relevant versions of the l'Hospitale rule (see, e.g., Smirnov [1964, vol. I, art. 65, pp. 

153–155]). Given 0ω∈p , given 0ω∈q , the functional form ‘b ep a q

( ) ( )/τ e τ e− ’ has the like property.• 
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Corollary 5.4: The inverse of Corollary 5.1. Infinitely many mutually different functions 

may have one and the same asymptotic power series. Hence, a function is not uniquely determined 

by its asymptotic power series. 

Proof: Let a functional form ‘ F( , )τ ε ’ have an infinite asymptotic power series, for instance 

on [ )1,0×Τ , with respect to ‘ ε ’ about the point ε = 0. Then, by Definition 5.3 and Comment 5.9, the 

functional form ‘ ),(),( ετετ +Θ+F ’ has the same asymptotic series. QED.• 

Comment 5.10. The conjunctions of Corollaries 5.1 and 5.3 means that the mapping from the 

class of functional forms, having asymptotic power series, onto the class of the latter is strictly 

surjective, i.e. surjective but not bijective.• 

Theorem 5.2: The asymptotic power series of the direct product of two functions. The 

relevance of the above title to the following theorem is established by the fact that the associated 

function of the product of two functional forms ‘ F G( ) ( )τ ε τ ε, , ’ is often denoted by ‘ F G⊗ ’ and is 

called “the direct product of the functions F  and G ”.  

Given 0ωµ∈ , given 0ων ∈ , let for each [ )1,0, ×Τ∈ετ : 

),(~),( ),,(~),( ],[],[ ετετετετ νµ ∞∞ GGFF ,                                    (5.27) 

where, in accordance with the appropriate variants of (5.15), 

n

n
n

m

m
m gGfF ετετετετ

n
n

m
m ∑∑

∞

=
∞

∞

=
∞ == )(),( ,)(),( )(],[)(],[ .                              (5.28) 

Then for each [ )1,0, ×Τ∈ετ : 

),(~),(),(),( ],[ ετετετετ νµ+∞= HGFH  ,                                       (5.29) 

where 

∑
∞

+=
+∞ =

νµ
νµ ετετ

l

l
lhH )(),( )(],[

                                                 (5.30) 

subject to 

∑∑
−

=
−

−

=
− ==

µ

ν

ν

µ

τττττ
l

ν
ννl

l

µ
µlµl gfgfh )()()()()( )()()()()(  for each νµω +∈l .                   (5.31) 

Proof: By (5.28), it follows that 

∑∑
∞

=

∞

=

+
∞∞ =

µ ν
νµ εττετετετετ

µ ν

νµ
νµ gfGFGF )()(),(),(~),(),( )()(],[],[ .                  (5.291) 
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Let nml += , so that νµω +∈l . Consequently, the following two options are possible.  

a) If ‘l’ is employed as a new variable of summation instead of ‘n’, so that mln −= , then the 

domain of values of the variable ‘m’ is determined by the conjunction of two relations: (i) µω∈µ , 

i.e ∞<≤ mm , and (ii) given νµω +∈l , νω∈−= mlν , i.e. ∞<−≤ mlν  or equivalently ν−≤ lm . 

Hence, given νµω +∈l , ∞<≤ mm  and ν−≤ lm , so that νµ −≤≤ lµ , i.e. νµω −∈ lµ , . 

b) If ‘l’ is employed as a new variable of summation instead of ‘m’, so that nlm −= , then 

the domain of values of the variable ‘n’ is determined by the conjunction of two relations: (i) νω∈ν , 

i.e. ∞<≤ nn , and (ii) given νµω +∈l , µω∈−= nlµ , i.e. ∞<−≤ nlµ  or equivalently µ−≤ ln . 

Hence, given νµω +∈l , µν −≤≤ lν , i.e. µνω −∈ lν , . 

Therefore, the final expression in (5.291) can be developed as (5.30) subject to (5.31). QED.• 

Comment 5.11. 1) Theorem 5.2 is of fundamental importance in constructing the recursive 

asymptotic theory in question. However, this theorem will not, as a rule, be mentioned explicitly 

either in making relevant statements or in their proofs. 

2) In connection with Theorem 5.2, it is worthy of noticing that multiplication of asymptotic 

series other than power ones does not lead to an asymptotic series (see, e.g., Erdélyi [1956, pp. 17–

20]. At the same time, Theorem 5.2 can be generalized somewhat as done below.  

Let μ, M, ν, and N be natural integers such that µ ∈ −∞ ∞I , , M I∈ ∞µ , , ν ∈ −∞ ∞I , , and 

N I∈ ∞ν , . Let for each [ )1,0, ×Τ∈ετ  (e.g.): 

n
N

n
nN

m
M

m
mM gGfF ετετετετ

n
n

m
m ∑∑

==

== )(),( ,)(),( )(],[)(],[ .                              (5.32) 

In this case, the self-evident equality 

∑∑
= =

+=
M

m

N

n

nm
nmNM gfGF

m n
nm εττετετ )()(),(),( )()(],[],[                                  (5.33) 

can be developed in analogy with (5.291) by letting nml += , so that NMIl ++∈ ,νµ . 

a) If ‘l’ is employed as a new variable of summation instead of ‘n’ then the domain of values 

of the variable ‘m’ is determined by the conjunction of two relations: (i) MIm ,m∈ , i.e. Mm ≤≤m , 

and (ii) given NMIl ++∈ ,νµ , NImln ,n∈−= , i.e. Nml ≤−≤ν  or equivalently ν−≤≤− lmNl . 

Hence, given NMIl ++∈ ,νµ , Mm ≤≤m  and ν−≤≤− lmNl , so that  
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},min{},{ max nm −≤≤− lMmNl , i.e. },min{},,{ max nm −−∈ lMNlIm .                     (5.34) 

b) If ‘l’ is employed as a new variable of summation instead of ‘m’ then the domain of values 

of the variable ‘n’ is determined by the conjunction of two relations: (i) NIn ,n∈ , i.e. Nn ≤≤n , and 

(ii) given NMIl ++∈ ,νµ , MInlm ,m∈−= , i.e. Mnl ≤−≤µ  or equivalently µ−≤≤− lnMl . Hence, 

given NMIl ++∈ ,νµ , Nn ≤≤n  and µ−≤≤− lnMl , so that  

},min{},{ max mn −≤≤− lNnMl , i.e. },min{},,{ max mn −−∈ lNMlIm .                     (5.35) 

Therefore, the equality (5.33) can be developed thus; 

∑
+

+=

=
NM

l

l
lNM hGF

νµ
νµ ετετετ )(),(),( )(],[],[                                           (5.36) 

subject to 

∑∑
−

−=
−

−
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− ==

},min{
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)()(

},min{

},{ max
)()()( )()()()()(

m

n

n

m

τττττ
lN

Mln
nnl

lM

Nlm
mlml gfgfh  for each NMIl ++∈ ,νµ .          (5.37) 

As M→∞ and N→∞, the equalities (5.36) and (5.37) turn into the pertinent homographs of the 

equalities (5.30) and (5.31) respectively.• 

 
5.3. The Maclaurin series of an analytical function as its asymptotic power series 

Theorem 5.3. For each )1,1(, −×Τ∈ετ , let the functional form F( , )τ ε  have partial 

derivatives with respect to ‘ε’ of all orders and let 0)0,( ≠τF . Then 

n

n
nfFF ετετετ ∑

∞

=
∞ ==

0
)(]0,[ )(),(),( ,                                           (5.38) 

where  

0
)(

),(
!

1)(
=









=

ε∂ε
ετ∂τ n

n

n
F

n
f   for each 0ω∈n ,                                     (5.39) 

subject to  

0)0,(),(
!0

1)(
0

0

0

)0( ≠=







=

=

τ
∂ε

ετ∂τ
ε

FFf  , 1!0 = .                                  (5.40) 

That is to say, ),( ετF  has the Maclaurin series ),(],[ ετµ∞F  with respect to ‘ε’, which is, at the same 

time, the infinite asymptotic power series of ),( ετF  about the point ε=0. 
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Proof: The theorem is proved from (5.16)–(5.18) with μ=0 and with ‘ )1,1(− ’ in place of 

‘ [ )1,0 ’. Particularly, (5.16)) with μ=0 becomes 

)0,(),(lim)(
0)0( τεττ

ε
FFf ==

→
.                                               (5.40) 

At the same time, by (5.18), for each 1ω∈m , the functional form ),(]0,1[ ετ−mF  is a polynomial of the 

order m-1 with respect to ‘ε’. Therefore, for each 1ω∈m : 

0
),(],1[ =−

m
m

mF
∂ε

ετ∂ m                                                          (5.41) 

and hence (5.17) yields 
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m
F

d
dFf ,            (5.42) 

where use of the l'Hospitale rule has been made m times with respect to the variable ‘ ε ’ for solving 

the indeterminate functional form of the type of ‘ 0/0 ’; it goes without saying that 

d
d

m
m m

m

ε
ε

= ! .                                                          (5.421)• 

Comment 5.12. Given τ ∈Τ , if the functional form F( , )τ ε  has the Maclaurin series 

),(]0,[ ετ∞F  of a convergence radius 1 then, in accordance with (5.18) with μ=0, the asymptotic series 

(5.15) of the pertinent functional form ),( ετF  for each ( )1,1, −×Τ∈ετ  can be written as: 

),(),(),(~),( ]0,1[],[]0,[ ετετετετ +∞∞ += mm FFFF                                 (5.151) 

or as: 

)(),(),( 1
],[

+
∞ += m

m oFF εετετ ,                                              (5.152) 

for any given 0ω∈m . In this case, )( 1+mo ε  is the remainder of the Maclaurin series, of the order of 

1+mε  in Peano’s form.• 

 
5.4. Asymptotic power series of the pertinent basic bulk characteristics and bulk 

equations of a potential fluid flow 
Preliminary Remark 5.2. In accordance with Hypothesis 5.1, the functional form 

( ) ( )ε,;, 22 xtxt Ζ=Ζ   is supposed to be defined for each [ )[ ]1,0,; 22 ××∈ ERxt ε , i.e. for each 

22, ERxt ×∈  and each [ )1,0∈ε , and to be expandable into an asymptotic power series with respect 
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to ‘ε’ about the point ε=0. At the same time, in accordance with Definitions 3.2–3.4, all asymptotic 

power series of bulk characteristics and bulk equations of a fluid flow in a perturbed liquid layer, 

which occur below in this subsection, are or are supposed to be included under either one of the two 

equivalent conditions: 

“For each t∈R and each 3Ex∈ ” and “For each 3, ERxt ×∈ ”. 

However, ( )ε,; 2xtΖ  is an unknown. Therefore, all above-mentioned asymptotic power series should 

be regarded as conditional.• 

 

5.4.1. The mass continuity equation 

Substitution of (5.8) into (4.32) yields for each 3,1ω∈i : 

),(~),;(),(
1

)( xtvxtVxtV
n

in
n

ii ∑
∞

=

= εε                                             (5.43) 

subject to 

),(),( )()( xtxtv niin φ∇=  for each 1ω∈n .                                         (5.44) 

At the same time, substitution of (5.8) into (4.34) yields 

∑
∞

=

∇
1

)(
2 ),(~0

n
n

n xtφε  for each 1ω∈n .                                          (5.45) 

Hence, by Theorem 5.1, 

0),(),( )(
2

)( =∇=∆ xtxt nn φφ   for each 1ω∈n .                                    (5.46) 

By (5.43), equation (4.3) is equivalent to 

∑
=

=∇=⋅∇
3

1
)()( 0),(),(

i
inin xtvxtv  for each 1ω∈n .                                (5.47) 

At the same time, by (5.44), application of the operator i∇  to both sides of (5.46) yields 

0),()(
2 =∇ xtv in  for each 3,1ω∈i  and each 1ω∈n .                                (5.48) 

Equations (5.48) can also be deduced from (4.35) by (5.43). 

 

5.4.2. The unsteady Bernoulli equation. 

By the pertinent instance of Theorem 5.2, substitution of (5.8) into (4.40) yields 

60 

 



∑
∞

=

=
2

)k(kk ),(~),;(),(
l

l
l xtextExtE ee                                            (5.49) 

subject to 
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= =
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3

1
)()(9)k( ),(),(

2
1),(

l

m i
imliml xtvxtvxte ρ   for each 2ω∈l .                         (5.50) 

Consequently, substitution of (5.8) into (4.50) subject to (4.40)–(4.41) and (4.47)–(4.49) yields: 

( ) ∑
∞

=








+−−−=

2
)k(

)(
0

)1(
000 ),(

),(),(
~),;(),(

l
l

ll xte
t

xt
t

xt
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∂φ
eρρe ,       (5.51) 

which is the asymptotic expansion of the local pressure ( )ε,; xtP  at the liquid point ),( xt ; )(0 tP  is 

the pressure above the free surface of the liquid layer that either equals 0 or )(a tP . The relation 

(5.51) can be rewritten as: 

∑
∞

=0
)( ),(~),;(

l
l

l xtpxtP εε ,                                                 (5.511) 

where 
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           (5.512) 

In this case, by (4.52), 

∑
∞

=

=
1

)(dd ),(~),;(),(
l

l
n xtpxtPxtP εεd                                           (5.513) 

subject to the pertinent definitions of (5.512). 

 

5.4.3. The momentum flux density tensor and the momentum flux density continuity 

equation 

By the pertinent instance of Theorem 5.2 and in analogy with (5.49) and (5.50), substitution 

of (5.43) into (4.56) yields for each 3,1ω∈i  and each 3,1ω∈j : 

∑
∞

=

==
2

)(0 ),(~),;(),;(),;(),(
l

ijl
l

Jiijij xtextVxtVxtExtE eeeρe  ,                        (5.52) 

subject to 
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jmlimijl xtvxtvxte ρ  for each 2ω∈l .                          (5.53) 

Particularly, for 2=l  or 3=l , equation (5.53) becomes 

),(),(),( )1()1(0)2( xtvxtvxte jiij ρ= ,                                             (5.531) 

[ ]),(),(),(),(),( )1()2()2()1(0)3( xtvxtvxtvxtvxte jijiij += ρ .                            (5.532) 

Substitution of (5.511) subject to (5.512) and of (5.52) into equation (4.54) or, alternatively, 

the above substitution along with substitution of (5.8) into equation (4.55) yields 
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The successive non-scaled 3×3 tensors, defined by (5.55), satisfy the equations (cf. (4.57) subject to 

(4.571)–(4.574)): 
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                  (5.562) 

In developing the final result in equation (5.562), use has been made of the equation: 

0),(),( )k(

3

1
)( =∇−∇∑

=

xtexte li
j

ijlj  for each 2ω∈l ,                                 (5.57) 

which follows from (4.574) by (5.49) and (5.52). Alternatively, (5.57) can be proved 

straightforwardly as follows. 
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By (5.8), equations (4.3) and (4.33) yield 

∑
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3
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j
jnjn vv ,                                                    (5.58) 
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k
ijkin vv ε  for each 3,1ω∈i ,                               (5.59) 

for each 1ω∈n . Therefore, given 2ω∈n , given 1,1 −∈ np ω : the following tautology, analogous to 

(4.36), is established straightforwardly with the help of (4.37) and (5.58): 
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By (5.59) and (5.60), it follows from (5.53) that 
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Set mlm −=′  in (5.61) and then omit all occurrences of the prime on ‘m’ in the result. The half-sum 

of the variant of (5.61) so obtained and of (5.61) itself can be written as 

)(k
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1
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)( 2

1
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j
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ρ  for each 2ω∈l ,                       (5.62) 

where use of (5.50) has been made in writing the final result. Thus, (5.62) is a tautology, and it 

coincides with (5.57). QED. 

Thus, equations (5.561) and (5.562) are tautologies 

 0),(
),( 3

1
)(

)(
0 =∇+∑

=j
ijlj

il xts
t

xtv
∂

∂
ρ  for each 1ω∈l ,                               (5.63) 

which, along with equation (5.560), are non-scaled successive asymptotic approximations to the 

tautological equation (4.53) with respect to successive powers of ka. 

 

5.4.4. The energy continuity equation 

By the pertinent instance of Theorem 5.2 with μ= 1 and ν= 1, substitution of (5.8) and (5.43) 

into (4.65) yields for each 3,1ω∈i  

( ) ∑
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=
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2
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l
ii xtqxtQxtQ εε                                                  (5.64) 
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subject to 
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Particularly, for 2=l  or 3=l , equation (5.65) yields 
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Now, by (5.43) and (5.52), equation (4.61a) yields; 
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subjest to (5.44). and (5.53). Substituting (5.49), (5.52), and (5.54) into the pertinent terms of (4.66) 

and making use of (5.47) yields 
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6. A recursive asymptotic analysis of the boundary conditions 

6.1. Asymptotic expansions of ( )2
)( , xtmΞ , ( )2

)( , xtmΗ , and ( )2, xtmΖ  

1. By (5.8), equations (4.86) yield 
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the understanding being that 
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2. By (4.87) and (4.88), it follows from (5.43) and (5.44) that 
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the understanding being that 
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By (5.47) and (5.48), the functional forms ( )2
)(

)( , xtv m
in  with 2,1ω∈i  and ( )2
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3)( , xtv m

n , as defined by (6.4), 

are interrelated in the following ways: 
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3. By (4.91) and (4.92), it follows from (5.49) and (5.50) that 
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4. By Theorem 5.2 and in analogy with (5.49) and (5.50), substitution of (5.1), (6.1), and 

(6.5) into (4.98) yields 
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Particularly, equation (6.8) at m = 0  becomes 
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(cf. (6.40)). 

5. In the same way, substitution of (5.1) and (6.1) into (4.101) yields 
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subject to (6.4) and (6.40). Particularly, by (5.44), (5.47), and (6.2), equation (6.10) at m = 0  reduces 
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by the pertinent instances of definitions (6.4). 

6. In accordance with (5.1), given 2ω∈m : 
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the understanding being that 
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Let us introduce m  new variables of summation ‘ l1 ’, ..., ‘ lm ’ instead of ‘ n1’, ..., ‘ nm ’ with 

the help of the equations 
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so that 
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By (6.131), the train of equations (6.121) can be developed thus: 
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Hence, (6.12) reduces to 
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the understanding being that 
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Relation (6.14) subject (6.15) regarded as a result of applying Theorem 5.2 with 1==νµ  to 

(6.12) m −1 times.. Particularly, for each 3,1ω∈m , equation (6.15) becomes 
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respectively. In turn, equation (6.17) for each 4,22 ω∈l , e.g., yields 
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whereas equation (6.18) for each 5,33 ω∈l , e.g., yields 
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In general, given 1ω∈m , it follows from (6.15) that 
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6.2. Asymptotic expansions of dΑ , kΑ , and Α  
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which are variants of each other with 〈‘Η’,‘η’〉 and 〈‘Ξ’,‘ξ’〉 exchanged.  

The final expression in (6.22) or (6.23) can be developed further in analogy with item b of the 

proof of Theorem 5.2 as follows. Let nll m += , so that 2+∈ ml ω , because 2+= ml  when mlm =  

and 2=n  If ‘l’ is employed as a new variable of summation instead of ‘lm’, so that nllm −= , then 

the domain of values of the variable ‘n’ is determined by the conjunction of two relations: (i) 2ω∈n , 

i.e. ∞<≤ n2 , and (ii) mln −=  at mlm = . Hence, mln −≤≤2 , i.e. mln −∈ ,2ω . Therefore, (6.22) 

and (6.23) become 
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for each 1ω∈m . 

By (6.7)–(6.100), (6.24), and (6.25), it follows from (4.97) and (4.100) that 
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and that 
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In (6.27) and (6.30), the variable of summation ‘ l ’ has been employed instead of ‘ n ’ that is 

employed in (6.80) and (6.100). 

Let ‘q’, defined as mlq −= , be a new variable of summation to be employed in (6.28) and 

(6.31) instead of ‘ m ’. Therefore, (i) q=2 when 2+= ml  and (ii) 1−= lq   when m=1, so that 

1,2 −∈ lq ω . At the same time, since qml += , therefore 3=l  if m=1 and q=2, so that 3ω∈l . Also, 

qlm −= . Hence, (6.28) and (6.31) reduce to 
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Comment 6.1. Relations (6.32) and (6.33) are of fundamental importance for the recursive 

theory in progress. Therefore, to be doubly sure that relations (6.32) and (6.33) are deduced below 

somewhat differently. The final expression in (6.22) or (6.23) can alternatively be developed further 

in analogy with item b of the proof of Theorem 5.2 as follows. Let nmlq m +−= , so that 2ω∈q , 

because q=2 when mlm =  and n=2. If ‘q’ is employed as a new variable of summation instead of 

‘lm’, so that qnmlm +−= , then the domain of values of the variable ‘n’ is determined by the 

conjunction of two relations: (i) 2ω∈n , i.e. ∞<≤ n2 , and (ii) qn =  at mlm = . Hence, qn ≤≤2 , 

i.e. qn ,2ω∈ . Therefore, (6.22) and (6.23) become 
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for each 1ω∈m .In this case, relations (6.26), (6.27), (6.29), and (6.30) hold, whereas the relations 
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come instead of (6.28) and (6.31). 

Let ‘l’ defined as qml +=  be a new variable of summation to be employed in (6.281) and 

(6.311) instead of ‘ m ’. If m=1 and q=2 then l=3, so that 3ω∈l . At the same time, since mlq −= , 

therefore 1−= lq  if m=1, so that 1,2 −∈ lq ω . Also, qlm −= . Hence, (6.281) and (6.311) reduce to 

(6.32) and (6.33) as expected.• 
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subject to the pertinent variants of (6.8), (6.80), and (6.15). Particularly, in developing the final 

expression in (6.35), use of equation (6.80) at n = 2  has been made.  

Similarly, by (6.30) and (6.33), relation (6.29) implies that 
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subject to the pertinent variants of (6.10), (6.100), and (6.15). Particularly, in developing the final 

expression in (6.38), use of equation (6.100) at n = 2  has been made. 

Relations (6.34) and (6.37) imply that 

( ) ( ) 0,, 2)1(k2)1(d == dxtxt αα .                                              (6.40) 

2. At l=3, equations (6.36) and (6.39) become 

( ) ( ) ( ) ( )212
)1(
)2(2

)0(
)3(2)3(d ,,,, xtxtxtxt ζηηα +=d ,                                   (6.41) 

( ) ( ) ( ) ( )212
)1(
)2(2

)0(
)3(2)3(k ,,,, xtxtxtxt ζxxα += .                                   (6.42) 

where use of (6.16) at 11 =l  has been made. In this case, at m = 0  and n = 3, equation (6.8) becomes 
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whereas equation (6.10) reduces to 

( ) ( ) ( )[ ]

( ) ( ) ( ) ( )[ ]∑

∑ ∑

=

= =
−

+∇−=

∇−=

2

1
2)1(2

)0(
)2(2)2(2

)0(
)1(

2

1

2

1
2)3(2

)0(
)(2

)0(
)3(

,,,,

,,,

i
iii

i p
pipi

xtxtvxtxtv

xtxtvxt

ζζ

ζx
                             (6.44) 

via (6.100) at n = 3. At the same time, at m = 1 and n = 2 , equations (6.8) and (6.10) become  
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because 
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by the pertinent instances of (6.4), (6.41), and (6.43). By (6.46), it follows that 
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By (6.43) and (6.45), equation (6.41) becomes 
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whereas by (6.44) and (6.47), equation (6.42) reduces to 
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3. By (6.34) and (6.37), it follows from (4.104) that 
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where 
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6.3. Infinite recursive sequences of dynamic, kinematic, and dynamico-kinematic 

boundary conditions at the free surface 
Corollary 6.1. By Theorem 5.1, equations (4.96), (4.99), and (4.104), subject to (5.1), (5.8), 

(6.34), (6.37), and (6.50), reduce to the following three infinite recursive sequences of equations with 

successive 1ω∈l : 
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by (6.40) and (6.51). It is understood that 
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Therefore, equations (6.52)-(6.54) with ascending 1ω∈l , subject to (6.55), are three recursive 

asymptotic sequences of boundary conditions at z = 0 , – dynamic, kinematic, and dynamico-

kinematic, respectively.• 
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Corollary 6.2. Given 2ω∈l , the value of each of the three functional forms ( )2)(d , xtlα , 

( )2)(k , xtlα , and ( )2)( , xtlα  can be expressed (i) in terms of the values of some spatial, temporal, or 

spatiotemporal derivatives at z=0 of the functional form ( )xtn ,)(φ  with all 1,1 −∈ ln ω  and (ii) 

ultimately, in terms of those of the functional form ( )xt,)1(φ . 

Proof: i) Item (i) of the corollary follows from the definitions of αK( )l , αD( )l , and α( )l  as 

given by (6.35), (6.36), (6.38), (6.39), and (6.51). This general recursive property is illustrated by 

(6.35) (or (6.57)), (6.38), (6.48), and (6.49). 

ii) Item (ii) of the corollary follows from the Hypothesis 5.1 implies that the functional form 

( )xtl ,)(φ  with any 2ω∈l  is ultimately expressible in terms of functional form ( )xt,)1(φ .• 

Corollary 6.3. With allowance for (6.55), equation (6.52) can be written as these two: 
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whereas equation (6.53) can be written as these two: 
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From (6.521) and (6.522), subject to (6.56), it follows that Corollary 6.2 applies with ‘ ( )2)( , xtlζ ’ in 

place of ‘ ( )2)(d , xtlα ’, while from (6.531) and (6.532), subject to (6.57), it follows that Corollary 6.2 

applies with ‘
( )
t

xt
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’ in place of ‘ ( )2)(k , xtlα ’. The latter conclusion also follows from the 

former one, for differentiating both sides of each one of equations (6.521) and (6.522) yields 
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Comment 6.2. Comparison of the pair of equation (6.531) and (6.532) and the pair of 

equation (6.523) and (6.524) yields 
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in agreement with (6.54) subject to (6.51) and (6.55)–(6.58).• 

Comment 6.3. By (6.521), equations (6.35) and (6.38) can alternatively be written as 
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Consequently, substitution of (6.521) and (6.522) at l=2 subject to (6.35+) into (6.48) and (6.49) 

allows eliminating ( )2)1( , xtζ  and ( )2)1( , xtζ  from ( )2)3(d , xtα  and ( )2)3(k , xtα , and thus representing 

the two latter in terms of ( )2)2(d , xtα  and the other pertinent functional forms that are preserved.• 

 
6.4. An infinite recursive sequence of kinematic boundary conditions at the bottom 

surface 
Substituting (5.8) into (4.71), and then making use of Theorem 5.1 yields the following 

infinite sequence of kinematic boundary conditions at ( )2xhz −= : 
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where the variable ‘l’ is employed in place of ‘n’ for convenience in making subsequent statements. 

If (4.73) holds then (6.58) turns into 
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Alternatively, (6.59) can be deduced directly from (4.74). Accordingly, if (4.76) holds then (6.59) 

turns into 
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It goes without saying that each one of equations (6.58)–(6.60) holds for each 22 ),( ERxt ×∈ . 

 

7. A general recursive asymptotic wave problem for a liquid layer of a 
uniform depth 

7.1. Basic equations constituting the problem 
Corollary 7.1. In the case of a liquid layer of a uniform depth d, in accordance with (5.8) and 

(6.50), application of the pertinent instances of Theorem 5.1 to the following three equations: (i) 

(4.34) extended to all 3Ex∈ ; (ii) (4.74); and (iii) (4.103) subject to (4.104), (6.50), and (6.51) results 

in the following infinite recursive sequence of non-scaled two-plane boundary value problems for 

the partial velocity potentials )(lφ  of successive asymptotic approximations with ascending 1ω∈l :  
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where 

( ) 0, 2(1) =xtα ,                                                               (7.4) 

in accordance with (6.55). Equation (7.1) is the variant of (5.46) with ‘l’ in place of ‘n’, whereas 

equation (7.2) is just an occurrence (token) of (6.59).• 
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Definition 7.1. 1) In compliance with the nomenclature introduced in Comment 4.6(c), the 

triple of equations (7.1)–(7.3) subject to (7.4) will be denoted by ‘ ( ))()( ll φuT ’ for each given value of 

‘l’ in the set 1ω ; the subscript ‘u’ is the first letter of the word ‘uniform’ (cf. Comment 4.4). All the 

above equations are valid under Hypothesis 4.2. Therefore, in contrast to the symbol ‘ ),(U ΖΦ+T ’ and 

all other relevant symbols that have been introduced in Comment 4.6(c), the symbol ‘ ( ))()( ll φuT ’ does 

not carry a subscript ‘+’ that is indicative of Hypothesis 4.2. 

2) Given 1ω∈m , the finite sequence of triples ( ))()( ll φuT  with ascending ml ,1ω∈  will be 

denoted by ‘ ( ) ( ) ( ))()()2()2()1()1( ,...,, mm φφφ uuu TTT ’ or briefly by ‘ ( )
mlll

,1
)()( ω

φ
∈uT ’. Accordingly, either one 

of the strings ‘ ( ) ( ),..., )2()2()1()1( φφ uu TT ’ and ‘ ( )
∞∈ ,1

)()( ω
φ

llluT ’ stands for an infinite sequence of triples 

( ))()( ll φuT  with ascending 1ω∈l . 

3) The version of ( ))()( ll φuT  with (6.60) in place of (7.2) will be denoted by ‘ ( ))()( ll φ∞T ’ and be 

called a non-scaled two-plane boundary value problem for the partial velocity potential )(lφ  of 

successive asymptotic approximation with ascending 1ω∈l . The denotata of ‘ ( ))()( ll φ∞T ’ and of the 

variants with ‘∞’ in place of ‘u’, of all symbols introduced in the previous item apply to a liquid 

semi-space z≤0.  

4) The version of ( ))()( ll φuT  with (6.58) in place of (7.2) will be denoted by ‘ ( ))()( ll φT ’ and be 

called a non-scaled two-surface boundary value problem for the partial velocity potential )(lφ  of 

successive asymptotic approximation with ascending 1ω∈l . The denotata of ‘ ( ))()( ll φT ’ and of the 

variants with ‘ )(lT ’ in place of ‘ )(luT ’, of all symbols introduced in the previous item apply to a liquid 

layer with a non-uniform (variable) depth described by the functional form ‘ ( )2xh− ’. the same time, 

with an arbitrary depth function h, the triple ( ))1()1( φT  is unsolvable analytically, – to say nothing of 

( ))()( ll φT  with 2ω∈l . Therefore, I shall hereafter treat mainly of ( ))()( ll φuT , whereas ( ))()( ll φ∞T , being 

the limit of ( ))()( ll φT  as ∞→mh ,will be regarded as the limit of ( ))()( ll φuT  as d→∞.• 

Corollary 7.2. In accordance with the general place-holding formula (5.21), multiplying both 

sides of each one of equations (7.1)–(7.4) by ‘ lε ’ results in the following upper case variants of 

those equations: 
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where 

( ) 0,, 2(1) =Α εxt .                                                         (7.8) 

It goes without saying that 
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l
ll xtxtxtxt εαεεφε ),(,, ,),(,, 2)(2)()()( =Α=Φ   for each 1ω∈l .                  (7.9) 

In this case, it is also understood that for each 2ω∈l  ‘ ( )ε,, 2)( xtlΑ ’ can be expressed as the variant 

of ‘ ),( 2)( xtlα ’, in which all constituent functional forms are replaced with their upper case variants  

in accordance with the pertinent instances of the place-holding formula (5.21) Accordingly, ‘ε’ 

becomes a hidden parameter of ‘ ( )ε,, 2)( xtlΑ ’.• 

Definition 7.2. Definition 7.1 applies with “(7.5)”–“(7.8)” and ‘Φ in place of “(7.1)”–“(7.4)” 

and ‘ϕ’ respectively.• 
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7.2. Reduction of ( ))()( ll φuT  for 1ω∈l  

1. I shall seek a solution of the Laplace equation (7.1) at any 1ω∈l  by the method of 

separation of variables in the form: 

( ) ( ) ( )2)()()( ,, xtzxt lll ψθφ =  for each 1ω∈l ,                                      (7.10) 
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where 0)( >lk  is a real-valued constant. Therefore, 
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It follows from (7.15) that 
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where 1)(lc  and 2)(lc  are arbitrary real-valued constants and 0)( >lk  is a strictly positive real number. 

Substitution of (7.8) subject to (7.16) into (7.2) yields: 
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so that (7.16) can be developed as: 
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where I have set 
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Thus, (7.161) can ultimately be written as: 

80 

 



( ) ( ) 0,, 2)(
2

)(2)(2 =+∆ xtkxt lll ψψ ,                                              (7.14) 

( )
dk

dzk
z

l

l
l

)(

)(
)( cosh

)(cosh +
=θ  for each 1ω∈l ,                                    (7.18) 

so that 
( )

0 )( =








−= dx

l

dz
zdθ

.                                                     (7.19) 

Owing to (7.19), the functional form ( )xtl ,)(φ , defined by (7.10) subject to (7.18), satisfies the 

boundary condition (7.2) automatically. 

At the same time, substitution of (7.10) into the left-hand side of equation (7.3) yields: 

( ) ( ) ( ) ( ) ( )2)(

0
2

2)(
2

)(2)(
)( ,

,1, xt
t

xt
z

g
xt

dz
zd

l

z

l
ll

l α
∂

ψ∂
θψ

θ
=












+

=

 for each 1ω∈l ,          (7.20) 

whereas it follows from (7.18) that 

( ) 10)( =lθ   (a),  
( )

dkk
dz

zd
ll

x

l
)()(

0

)( tanh =








=

θ
  (b).                              (7.21) 

By (7.4) and (7.21), relation (7.20) becomes 

( ) ( ) ( )
0

,
, 2

2)1(
2

2)1()1(
2 =+

t
xt

xtk
∂

ψ∂
ψΩ  for 1=l ,                                  (7.22) 

( ) ( ) ( ) ( )2)(2
2)(

2

2)()(
2 ,

,
,1 xt

t
xt

xtk
g l

l
ll α

∂
ψ∂

ψΩ =











+  for each 2ω∈l ,                  (7.23) 

where 

dkgkk lll )()()(
2 tanh)( =dΩ  for each 1ω∈l .                                    (7.24) 

2. Thus, under the definition (7.10), the triple of equations (7.1)–(7.3) subject to (7.4) reduces 

to the quadruple (conjunction of four) equations (7.14), (7.18), (7.22), and (7.23), subject to (7.24), – 

the conjunction set that involves an infinite set of arbitrary strictly positive real numbers 0)( >lk  

with 1ω∈l . However, Hypothesis 5.1 implies that the functional form ( )xtl ,)(φ  with any 2ω∈l  is 

ultimately expressible in terms of the functional form ( )xt,)1(φ . Therefore, once a real number 

0)1( >k  is selected, the following relation must hold: 

0)1()( >== kkk l
  for each 2ω∈l ,                                          (7.30) 
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the understanding being that the variable ‘ )1(k ’ is thereby abbreviated as ‘k’. Hence, the above 

quadruple of equations reduces to the following one for each 1ω∈l : 

( ) ( ) 0,, 2)(
2

2)(2 =+∆ xtkxt ll ψψ  for each 1ω∈l ,                                (7.31) 

( ) ( ) ( ) ( )
kd

dzkdkzkzzzl cosh
)(cosh,,,)(

+
==== ddd θθθθ  for each 1ω∈l ,                (7.32) 

( ) ( ) ( )
0

,
, 2

2)1(
2

2)1(
2 =+

t
xt

xtk
∂

ψ∂
ψΩ  for 1=l ,                                  (7.33) 

( ) ( ) ( ) ( )2)(2
2)(

2

2)(
2 ,

,
,1 xt

t
xt

xtk
g l

l
l α

∂
ψ∂

ψΩ =











+  for each 2ω∈l ,                  (7.34) 

where 

[ ] kdgkkk tanh)()( 22 == dd ΩΩ .                                             (7.35) 

Consequently, in accordance with (7.32) and (7.35), equations (7.19) and (7.21)  

( ) 0 =





−= dxdz
zdθ .                                                      (7.36) 

( ) 10 =θ   (a),  
( )

)(tanh 2

0

)( kkdk
dz

zd

x

l Ω
θ

==








=

   (b).                          (7.37) 

The quantity, i.e. the dimensional strictly positive real number of a dimension “time-1”, )(kΩ , 

defined as  

0tanh),()( >== kdgkdkk dd ΩΩ ,                                         (7.38) 

is called a main initial cyclic eigenfrequency of gravity waves on the liquid layer, whereas the 

functional form ‘ ),( dkΩ ’ or its definies ‘ kdgktanh ’ is called the dispersion functional form of 

those waves. 

Theorem 7.1.  

( ) ( ) 0,, 2)(
2

2)(2 =+∆ xtkxt ll αα  for each 2ω∈l ,                                (7.39) 

Proof: Equations (7.31) and (7.34) can conveniently be written as: 

( ) ( ) 0,,ˆ
2)(2 =xtkxK lψ  for each 1ω∈l                                        (7.40) 

subject to 

( ) ( ) 2
2

2
222 ,ˆ kkxkxK +∆=+∆=                                             (7.41) 

(cf. (7.12)) and as 
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( )( ) ( ) ( )2)(2)( ,,,ˆ xtgxtktL ll αψΩ =  for each 2ω∈l ,                             (7.42) 

subject to 

( )( ) ( )k
t

ktL 2
2

2

,ˆ Ω
∂
∂Ω += .                                                   (7.43) 

Differentiation of both sides of equation (7.40) with respect to ‘t’  twice yields 

( ) ( )
0

,
,ˆ

2
2)(

2

2 =
t

xt
kxK l

∂
ψ∂

 for each 1ω∈l                                       (7.401) 

Therefore, applying of the operator ( )kxK ,ˆ
2  to both sides of equation (7.42) and then making use of 

equations (7.43), (7.401), and (7.40) in this order, one obtains 

( ) ( )( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ,each for  ,,ˆ

0,
,

,ˆ

,,ˆ,ˆ

22)(2

2)(
2

2
2)(

2

2

2)(2

ωa

ψΩ
∂

ψ∂

ψΩ

∈=

=











+=

lxtkxKg

xtk
t

xt
kxK

xtktLkxK

l

l
l

l

                              (7.402) 

whence 

( ) ( ) 0,,ˆ
2)(2 =xtkxK lα  for each 2ω∈l .                                      (7.44) 

QED.• 

 

7.3. Particular solutions of equation (7.34) for 2ω∈l  

Theorem 7.2. Given a time instant Rt ∈0 , for each 22, ERxt ×∈ , the functional form 

( )02)( ,, txtl ∗ψ , defined as: 

( ) ( ) ( ) ( )[ ]∫ ′′−′=∗

t

t
ll tdttkxt

k
gtxt

0

 )(sin,,, 2)(02)( Ωα
Ω

ψ d  for each 2ω∈l .,              (7.45) 

is a unique particular solution of the equation 

( ) ( ) ( ) ( )2)(2
02)(

2

02)(
2 ,

,,
,, xtg

t
txt

txtk l
l

l α
∂

ψ∂
ψΩ =+ ∗

∗  for each 2ω∈l ,             (7.46) 

being the pertinent variant of equation (7.34), – the solution that automatically satisfies its identifying 

conditions: 

( ) 0,, 020)( =∗ txtlψ  (a) and 
( )

0
,,

0

02)( =








=

∗

tt

l

t
txt

∂
∂ψ

 (b)  for each 1ω∈l .             (7.47) 
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Since equation (7.45) holds both for 0tt ≥  and for 0tt ≤ , therefore I call equations (7.47) “identifying 

conditions”, thus avoiding calling them “initial conditions”. 

Proof: Equation (7.45) will be deduced from a lemma to be stated and proved deductively in 

the next subsection. Meanwhile, I shall verify the validity of (7.45) and (7.47) by the following 

straightforward calculations. Equation (7.47a) subject to (7.45) at 0tt =  is self-evident, while 

differentiating both sides of (7.45) with respect to t in accordance with the Leibnitz rule of 

differentiation of an integral with variable limits yields 

( )
( ) ( ) ( )[ ][ ]

( ) ( )[ ] ( ) ( )[ ] , )(cos, )(cos,

)(sin,
,,

00

2)(2)(

2)(
02)(

∫∫ ′′−′=′′−′+

′−′=
∂

∂
=′

∗

t

t
l

t

t
l

ttl
l

tdttkxtgtdttkxtg

ttkxt
k

g
t

txt

ΩαΩα

Ωα
Ω

ψ

            (7.451) 

whence (7.47b) follows immediately. At the same time, another differentiation of both sides of 

(7.451) with respect to t yields 

( ) ( ) ( )[ ][ ]

( ) ( ) ( )[ ]

( ) ( ) ( ) ( )[ ] . )(sin,,

 )(sin,

)(cos,
,,

0

0

2)(2)(

2)(

2)(2
02)(

2

∫

∫

′′−′−=

′′−′−

′−′=
∂

∂
=′

∗

t

t
ll

t

t
l

ttl
l

tdttkxtkgxtg

tdttkxtkg

ttkxtg
t

txt

ΩαΩα

ΩαΩ

Ωα
ψ

                          (7.452) 

Substituting (7.45) and (7.452) into the left-hand side of equation (7.46), one obtains 

( ) ( ) ( ) ( ) ( ) ( )[ ]

( ) ( ) ( ) ( )[ ] ( ),, )(sin,,

 )(sin,
,,

,,

2)(2)(2)(

2)(2
02)(

2

02)(
2

0

0

xtgtdttkxtkgxtg

tdttkxtkg
t

txt
txtk

l

t

t
ll

t

t
l

l
l

αΩαΩα

ΩαΩ
∂

ψ∂
ψΩ

=′′−′−+

′′−′=+

∫

∫∗
∗

       (7.461) 

thus proving (7.46).• 

Comment 7.1. If Rt ∈1 , denoted by ‘ 1t ’, is a time instant distinct from the time instant 

Rt ∈0  that has been denoted by ‘ 0t ’ then Theorem 7.2 holds with ‘ 1t ’ in place ‘ 0t ’. That is to say, 

for each 22, ERxt ×∈ , the functional form ( )12)( ,, txtl ∗ψ , defined as: 

( ) ( ) ( ) ( )[ ]∫ ′′−′=∗

t

t
ll tdttkxt

k
gtxt

1

 )(sin,,, 2)(12)( Ωα
Ω

ψ d  for each 2ω∈l ,             (7.45a) 
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is a unique particular solution of the equation 

( ) ( ) ( ) ( )2)(2
12)(

2

12)(
2 ,

,,
,, xtg

t
txt

txtk l
l

l α
∂

ψ∂
ψΩ =+ ∗

∗  for each 2ω∈l ,           (7.46a) 

being the pertinent variant of equation (7.34), – the solution that automatically satisfies its identifying 

conditions: 

( ) 0,, 121)( =∗ txtlψ  (a) and 
( )

0
,,

1

12)( =








=

∗

tt

l

t
txt

∂
∂ψ

 (b)  for each 1ω∈l ,           (7.47a) 

and that therefore and differs from the solution ( )02)( ,, txtl ∗ψ  given by (7.45). 

Subtraction of equation (7.46a) from equation (7.46) yields 

( ) ( ) ( )[ ] 0,,,, 12)(02)(2

2
2 =−








+ ∗∗ txttxt

t
k ll ψψ

∂
∂Ω  for each 2ω∈l ,                 (7.46b) 

which is a variant of the homogeneous equation (7.33). At the same time, by (7.45) and (7.45a), it 

follows that 

( ) ( ) ( ) ( ) ( )[ ]

( ) ( ) ( )[ ] ( ) ( ) ( )[ ]

( ) ( ) ( )[ ] ( ) ( ) ( )[ ]

,each for 

 )(sin, )(sin,

 )(sin, )(sin,

 )(sin,,,,,

2

2)(2)(

2)(2)(

2)(12)(02)(

1

0

1

01

0

ω

Ωa
Ω

Ωa
Ω

Ωa
Ω

Ωa
Ω

Ωa
Ω

ψψ

∈

′′−′=′′−′+

′′−′=′′−′−

′′−′=−

∫∫

∫∫

∫∗∗

l

tdttkxt
k

gtdttkxt
k

g

tdttkxt
k

gtdttkxt
k

g

tdttkxt
k

gtxttxt

t

t
l

t

t
l

t

t
l

t

t
l

t

t
lll

      (7.45b) 

whence 

( ) ( )[ ] ( ) ( )[ ]∫ ′′−′=
∂
−∂ ∗∗

1

0

 )(cos,
,,,,

2)(
12)(02)(

t

t
l

ll tdttkxtg
t

txttxt
Ωα

ψψ
,            (7.45b1) 

( ) ( )[ ] ( ) ( ) ( )[ ]∫ ′′−′−=
∂
−∂ ∗∗

1

0

 )(sin,
,,,,

2)(2
12)(02)(

2 t

t
l

ll tdttkxtkg
t

txttxt
ΩαΩ

ψψ
.        (7.45b2) 

By (7.45) and (7.45b2), the expression on the left-hand side of equation (7.46b) vanishes as expected. 

Assume that a certain functional form ( )2)1( , xtψ , satisfying both equation (7.31) at l=1 and 

equation (7.33), is found. Then it follows from (7.46b) that 

( ) ( ) ( )2)1()(12)(02)( ,,,,, xtctxttxt lll ψψψ =− ∗∗  for each 1ω∈l ,                    (7.45c) 
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where )(lc  is a certain real number other than 0. Thus, to any given solution ( )2)1( , xtψ  of equation 

(7.33), there corresponds continuum of particular solutions ( )02)( ,, txtl ∗ψ  of equations (7.45) that are 

determined by values of the variable ‘ 0t ’ in continuum (uncountable set) of real numbers, R. 

This result contradicts Hypothesis 5.1, by the argument similar to that used in item 2 of the previous 

subsection for deducing (7.30).  

At the same time, there is a general philosophical principle of “saving thoughts”, the original 

version of which is known under the name “Ockham’s razor” or “The Ockham’s razor principle”, 

after the English Scholastic philosopher William of Ockham or Occam (A.D. ca1300–ca1349). This 

principle says that entities should not be multiplied unless necessary. Consequently, Ockham’s razor 

is the most general groundwork for formulating axiomatic theories, because in setting up any 

particular axiomatic theory, it suggests that, for avoidance contradictions, the number of axioms 

(permanent postulates, permanent hypotheses) should be as small as possible. Therefore, in 

accordance with Ockham’s razor, I shall adopt the following additional hypothesis, being the 

instance of Theorem 7.2 for 00 =t .• 

Hypothesis 7.1. For each 22, ERxt ×∈ , the functional form ( )2)( , xtlψ , defined as: 

( ) ( ) ( ) ( ) ( )[ ]∫ ′′−′== ∗

t

lll tdttkxt
k

gxtxt
0

2)(2)(2)(  )(sin,0,,, Ωα
Ω

ψψ dd  for each 2ω∈l ,      (7.48) 

is the only pertinent full solution of equation (7.34), – the solution that automatically satisfies its 

identifying conditions: 

( ) 0,0 2)( =xlψ  (a) and 
( )

0
,

0

2)( =








=t

l

t
xt

∂
∂ψ

 (b)  for each 1ω∈l .                   (7.49) 

In this case, the qualifier “full” to “solution” means that ( )2)( , xtlψ  is actually defined for each 2ω∈l  

as: 

( ) ( ) ( ) ( )0,,,, 2)(2)1(2)( xtxtcxt lll ∗+= ψψψ   subject to ( ) 0=lc .                   (7.48a)• 

 
7.4. An auxiliary identifying value problem of a forced motion of an abstract unit one-

dimensional harmonic oscillator 
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Lemma 7.1. Let a real-valued functional form ‘ )(tf ’ of time variable ‘ t ’, which is assumed 

to be defined for all Rt∈  and whose values are assumed to be absolutely integrable on any finite 

interval of R. Then, given a real number ω>0, for each Rt∈  the functional form ‘ )(tu ’, defined as: 

∫ ′′−′=
t

tdtttftu
0

 )(sin)(1)( ω
ω

d ,                                            (7.50) 

is a unique particular solution of the equation 

( )tftutu =+ )()( 2ω ,                                                  (7.51) 

which satisfies its identifying conditions: 

( ) 00 =u  (a) and 0)0( =u  (b);                                             (7.52) 

it is understood that 

dt
tdutu )()( =d , 2

2 )()(
dt

tudtu =d .                                              (7.53) 

Just as (7.45), equation (7.50) holds both for 0tt ≥  and for 0tt ≤ . Therefore, equations (7.52) are 

called “identifying conditions”, and not “initial conditions”. 

Most naturally, equation (7.51) can be interpreted as one that describes, at each given time 

instant t, the one-dimensional displacement )(tu  of a point material particle, or of the mass center of 

a material solid body, of unit mass from its equilibrium position 0)0( =u  under the action both of the 

internal recovering force )(2 tuω−  with a stiffness coefficient (per unit mass) 2ω  and of the external 

force )(tf . The imaginary one-dimensional system of the material point particle, or of the material 

body, of unit mass, acted upon only by the recovering force )(2 tuω− , is capable of executing one-

dimensional free vibrations with cyclic frequency 0>ω , and is therefore called an abstract unit one-

dimensional harmonic oscillator (cf. Landau and Lifshitz [1988, p. 58]).  

Proof: 1) It is understood that Theorem 7.2 and Hypothesis 7.1 are instance of this lemma. 

Therefore, in analogy with the proof of Theorem 7.2, the validity of equations (7.50) and (7.52) can 

be verified by the following straightforward calculations. Equation (7.52a) subject to (7.50) at 0=t  

is self-evident, while differentiating both sides of (7.50) with respect to t yields 

( ) ( )[ ] ( ) ( )∫∫ ′′−′=′′−′+′−′= ∗=′

tt

tt tdtttftdtttftttf
dt

tdu

00

 )(cos )(cos)(sin1 ωωω
ω

,     (7.501) 
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whence (7.52b) follows immediately. At the same time, another differentiation of both sides of 

(7.501) with respect to t yields 

( ) ( )[ ] ( )

( ) ( ) . )(sin

 )(sin)(cos

0

2

2

0

∫

∫

′′−′−=

′′−′−′−′=

∗

=′

t

t

t
tt

tdtttftf

tdtttftttf
dt

tud

ωω

ωωω

                        (7.502) 

Substituting (7.50) and (7.502) into the left-hand side of equation (7.51) subject to (7.53) yields s 

( ) ( )

( ) ( ) ( ) ( ), )(sin )(sin
00

2
2

2

tftdtttftdtttftf

tu
dt

tud

tt

=′′−′+′′−′−=

+

∫∫ ∗ωωωω

ω
                 (7.511) 

thus proving (7.51). Still, in order to establish the foundations of equation (7.50), it is instructive to 

deduce it from (7.51)–(7.53) by the pertinent instance of the method of variation of parameters (see 

Ellsgolts [1980, pp. 122–126, especially Example 3, pp. 125–126]}, which is done below.  

2) The general solution of the homogeneous equation 

0)()( 2 =+ tyty ω ,                                                  (7.54) 

adjoint of (7.51), has the form 

tctctytcty
i

ii ωω sincos)()()( 21

2

1
+==∑

=

,                                    (7.55) 

the understanding being that )(1 ty  and )(2 ty , defined as 

tty ωcos)(1 =  and tty ωsin)(2 = ,                                          (7.56) 

are fundamental solutions of (7.54), while ‘ 1c ’ and ‘ 2c ’ are arbitrary real-valued constants. In 

applying the method of variation of parameters to the nonhomogeneous equation (7.51), the solution 

of the latter is sought in the form 

ttcttctytctu
i

ii ωω sin)(cos)()()()( 21

2

1
+==∑

=

,                                (7.57) 

so that two unknown functions )(1 tc  and )(2 tc  are introduced in place of the one unknown function 

)(tu . Since the former two functions have to satisfy only one equation (7.51) subject to (7.57), it can 

be required that they should satisfy some other additional equation. The latter is chosen to have the 

form 
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0sin)(cos)()()( 21

2

1
=+=∑

=

ttcttctytc
i

ii ωω  ,                                (7.58) 

so that 

ttcttctytctytctytctu
i

ii
i

ii
i

ii ωωωω cos)(sin)()()()()()()()( 21

2

1

2

1

2

1
+−==+= ∑∑∑

===

 .     (7.59) 

That is, owing to (7.57), )(tu  has the same form that it would have in the case of constant 1c  and 2c . 

By (7.55) and (7.56), it follows from (7.59) that  

),(cos)(sin)()()()()(

)()()()()()()()()(

2
21

2

1

2
2

1

2

1

2

1

2

1

2

1

tuttcttctytctytc

tytctytctytctytctu

i
ii

i
ii

i
ii

i
ii

i
ii

i
ii

ωωωωωω −+−=−=

+=+=

∑∑

∑∑∑∑

==

====





           (7.60) 

Consequently, by (7.55) and (7.60), equation (7.51) becomes 

)(cos)(sin)( 21 tfttcttc =+− ωωωω  .                                       (7.61) 

Solving the system of two linear algebraic equations (7.58) and (7.60) with respect to )(1 tc  and 

)(2 tc  yields 

)(cos)(1)(  ,sin)(1)( 21 tfttftcttftc ==−= ω
ω

ω
ω

 ,                            (7.62) 

whence 

2
0

21
0

1 cos)(1)(  ,sin)(1)( cdftccdftc
tt

+=+−= ∫∫ tωtt
ω

tωtt
ω

,                   (7.63) 

‘ 1c ’ and ‘ 1c ’ being arbitrary real-valued constants. Equation (7.57) subject to (7.63) becomes 

tctc

tdttfttdttfttu
tt

ωω

ω
ω
ωω

ω
ω

sincos

cos)(sinsin)(cos)(

21

00

++

′′′+′′′−= ∫∫                          (7.64) 

or 

[ ]

( ) ,sincos)(sin1

sincos)(sincoscossin1)(

21
0

21
0

tctctdtftt

tctctdtftttttu

t

t

ωωω
ω

ωωωωωω
ω

++′′′−=

++′′′−′=

∫

∫
              (7.65) 
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where use of the pertinent variant of the first one of the following two general equations has been 

made: 

. (b)  sin   sin cos  cos)( cos
,(a)  sin   cos cos  sin)( sin

bababa
bababa

=±
±=±

                                 (7.66) 

In accordance with (7.50) and (7.501), it follows from (7.65) that 

(b)  )0(  ,(a)  )0( 21 cucu ==  .                                              (7.67) 

Therefore, )(tu  given by (7.65) satisfies equations (7.52) if and only if 

021 == cc .                                                           (7.68) 

The lemma is established.• 

Comment 7.2. With 0=ω , equation (5.33) subject to (5.34) becomes 

)()(
2

2

tf
dt

tud
=  for each Rt∈ .                                             (7.69) 

The general solution of this equation can be obtained straightforwardly by two successive 

integrations with respect to t thus: 

tcctftdtdtu
tt

21
00

)()( ++′′′′= ∫∫
′′

                                             (7.70) 

subject to (7.67). At the same time, as ω→0, equation (7.65) becomes 

( ) 1
0

)()( ctdtftttu
t

+′′′−= ∫                                                 (7.71) 

subject to (7.67,a) and (7.52,b). Making use of the Leibnitz rule of differentiation of an integral with 

variable limits, it can readily be verified by the pertinent straightforward calculations that )(tu , given 

by (7.71), satisfies equation (7.69) indeed; namely: 

( ) ( )[ ] ( ) ( )∫∫ ′′=′′+′′−= =′

tt

tt tdtftdtftftt
dt

tdu

00

  )( ,                              (7.711) 

( ) ( ) ( )tftdtf
dt
d

dt
tud t

=′′= ∫
0

2

2

                                              (7.712) 

 (cf. (7.501) and (7.502)); equation (7.52,b) follows from (7.711) immediately.• 

 

7.5. Reduction ( ))()( ll ΦUT  and its solutions for 1ω∈l  
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Multiplying both sides of equation (7.10) subject to (7.32) by lε  yields: 

( ) ( ) ( )2)()( ,, xtzxt ll Ψ=Φ θ  for each 1ω∈l ,                                    (7.72) 

where 

( ) l
ll xtxt εψ ),(, 2)(2)( =Ψ   for each 1ω∈l ,                                     (7.73) 

in addition to (7.9). In this case, equation (7.14) is replaced with this one: 

( ) ( ) 0,, 2)(
2

)(2)(2 =Ψ+Ψ∆ xtkxt lll .                                           (7.74) 

Consequently, under the definition (7.72), the following three equations subject to (7.8) come instead 

of equations (7.31), (7.33), and (7.34) respectively: 

( ) ( ) 0,, 2)(
2

2)(2 =Ψ+Ψ∆ xtkxt ll  for each 1ω∈l ,                                (7.75) 

( ) ( ) ( )
0

,
, 2

2)1(
2

2)1(
2 =

Ψ
+Ψ

t
xt

xtk
∂

∂
Ω  for 1=l ,                                  (7.76) 

( ) ( ) ( ) ( )2)(2
2)(

2

2)(
2 ,

,
,1 xt

t
xt

xtk
g l

l
l Α=











 Ψ
+Ψ

∂
∂

Ω  for each 2ω∈l .                  (7.77) 

Likewise, all of the rest of subsections 7.2 and 7.3 apply with the upper case letter variants of 

functional variables in place of the lower case ones. 

 
7.6. A general recursive asymptotic wave problem for a liquid semi-infinite space 

A liquid semi-infinite space z≤0 can be regarded as the limiting case of a gravity wave of a 

short wavelength kπλ 2=  on a liquid layer of a uniform depth d, such that kd→∞. Therefore, all 

formulas of subsection ns 7.2, 7.3, and 7.5 that involve tokens of the functional form ‘ ( )zθ ’ defined 

by (7.32) hold if those tokens are replaced with tokens of the functional form ‘ ( )z∞θ ’ defined as: 

( ) ( ) ( ) kz
kdkd

dzkdzk

kdkdkd
e

ee
ee

kd
dzkdkzkzz =

+
+

=
+

=== −

+−+

∞→∞→∞→∞∞

)()(

lim
cosh

)(coshlim,,lim, θθθ dd     (7.78) 

subject to z≤0. In this case, it follows from (7.38) that 

0tanhlim),(lim)( >===
∞→∞→∞ gkkdgkdkk

kdkd
ΩΩ d ,                           (7.79) 
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8. A progressive or standing plane monochromatic water wave as the 
first non-vanishing approximation of the recursive theory 

8.1. Fundamental solutions of the set of equations (7.31) at l=1 and (7.33) 
The basic Eulerian equation of motion (4.24), an asymptotic solution of which is under the 

study, is nonlinear. Therefore, its solutions, whatever they could be, do not satisfy a principle of 

superposition. For instance, if )1(V  and )2(V  are two different solutions of equation (4.24) then the 

sum )2()1( VV +  does not satisfy that equation. Therefore, the functional form ( )2)1( , xtψ , which 

determines both the scaled velocity potential of the first approximation ( )xt,)1(φ  (see equation (7.10) 

subject to (7.32)), and the non-scaled one ( )xt,)1(Φ  (see equations (7.72) subject to (7.73), for l=1), 

is sought as a solution of c In compliance with Definition 7.1(1), this set of equations will be denoted 

by ‘ ( ))1(ψD ’. The set of equation (7.75) at l=1 and of equation (7.76) is the pertinent variant of the 

above set and it will therefore be denoted by ‘ ( ))1(ΨD ’. The set ( ))1(ψD  implies that ( )2)1( , xtψ  should 

be interpreted as a single plane monochromatic wave of a wave number 0>k  (introduced by 

equations (7.13) and (7.30)) and of the cyclic eigenfrequency )(kΩ , defined by equation (7.38). 

Accordingly, neither ( )2)1( , xtψ  nor ( )2)1( , xtΨ  can be sought, e.g., in the form of any Fourier integral. 

Both equation (7.31) at l=1 and equation (7.33) are linear in ( )2)1( , xtψ  and homogeneous. 

Fundamental real solutions of the former equation are given by these two trigonometric functional 

forms:  

22cos xk ⋅  and 22sin xk ⋅ ,                                                   (8.1) 

where 

yx kkkkk ,, 212 ==                                                       (8.2) 

subject to  
22

2
2

1
2

2
2

2 kkkkk =+==  ,                                                 (8.3) 

and also where 

yxxxx ,, 212 ==  .                                                      (8.4) 

Fundamental real solutions of equation (7.33) are given by these two trigonometric functional forms: 

tk)(cosΩ  and tk)(sinΩ ,                                                  (8.5) 
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subject to (7.38). Functional forms (8.1) can be combined with functional forms (8.5) so as to create 

various fundamental trigonometric functional forms satisfying ( ))1(ψD , i.e. both equations: (7.31) at 

l=1 and (7.33) simultaneously. To be specific, each one of the following four fundamental 

trigonometric functional forms satisfies ( ))1(ψD  and is descriptive of a plane standing gravity wave: 

( )
( )
( )
( ) ,(d)  cos )(cos,,

,(c)    sin )(cos,,
,(b)    cos )(sin,,
,(a)      sin )(sin,,

22221,1

22221,1

22221,1

22221,1

xktkkxt
xktkkxt
xktkkxt

xktkkxt

⋅=

⋅=

⋅=

⋅=

−−

−

−

Ωc

Ωc

Ωc

Ωc

d

d

d

d

                                     (8.6) 

whereas each one of the following four fundamental trigonometric functional forms also satisfies 

( ))1(ψD  but it is descriptive of a plane progressive gravity wave: 

( ) [ ]
( ) [ ]
( ) [ ]
( ) [ ] (d).  )(cos,,

,(c)  )(cos,,

(b),   )(sin,,

,(a)   )(sin,,

22221

22221

22221

22221

xktkkxt
xktkkxt

xktkkxt
xktkkxt

⋅+=

⋅−=

⋅+=

⋅−=

+
−

−
−

+

−

Ωc

Ωc

Ωc

Ωc

d

d

d

d

                                       (8.7) 

The first or second or only occurrence of the subscript ‘1’ or ‘-1’ in a definiendum of definitions (8.6) 

and (8.7) is indicative of the respective occurrence of ‘sin’ or ‘cos’ in the definiens. The definientia 

of definitions (8.7) have been deduced from (8.1) and (8.5) by the instances of equations (7.66) with  

tk)(Ωα =  and 22 xk ⋅=β .                                                 (8.8) 

In addition to the appropriate fundamental trigonometric functional form or forms selected from (8.7) 

and (8.8), ( )2)1( , xtψ  may in principle involve an arbitrary real-valued constant factor. Still, this 

factor will be particularized in accordance with the following considerations. 

 
8.2. A dimension factor of the velocity potential 

In accordance with (5.8) and (5.14), the functional form ( )xt,)1(Φ  is the a scaled velocity 

potential in the first, linear approximation with respect to the dimensionless scaling parameter 

[ )1,0∈ε . Therefore, ( )xt,)1(Φ  should have a dimension of tl2 , where ‘l’ stands for ‘length’ and ‘t’  

for ‘time’. Each one of the pertinent functional forms ( )2)( , xtlΨ , ( )xt,)1(φ , and ( )2)1( , xtψ  must have 

the same dimension;  that is, symbolically  
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( )[ ] ( )[ ] ( )[ ] ( )[ ] tl,,,, 2
2)()1(2)()1( ===Ψ=Φ xtxtxtxt ll ψφ ,                             (8.9) 

where a pair of square brackets [ ] stands for the dimension of the expression that it encloses. At the 

same time, it will be assumed that ka=ε , where ‘a’ is an arbitrary real-valued constant, whose 

value can be particularized when desired and be called the effective amplitude of ( )xt,)1(Φ  and hence 

that of ( )2)( , xtlΨ ; the sense of the name “effective amplitude” will be explicated before long. Since 

[k]=l-1, therefore [a]=l. Either ( )xt,)1(φ  or ( )2)1( , xtψ  does not involve ε and therefore it does not 

involve a. Therefore, in order to provide ( )2)1( , xtψ  and hence ( )xt,)1(φ  with the necessary dimension, 

I shall supplement the entire pure trigonometric functional form, involved in each one of the two 

functional forms ( )2)1( , xtψ  and ( )xt,)1(φ , with a certain constant dimension factor ( )kγ  to be 

composed of some appropriate parameterrs available in the problem. Namely, I define that factor 

thus: 

( ) 0
tanh)( 3 >==

kdk
g

kk
gk

Ω
g d , so that ( )[ ] tl2=kγ .                          (8.10) 

Consequently, 

( ) ( ) 0
)(tanh

lim
)(

limlim 33 >=====
∞

∞→∞→∞→∞ kk
g

k
g

kdk
g

kk
gkk

ddd ΩΩ
gg d .             (8.11) 

(cf. (7.79)). 

Beside the dimension factor ( )kγ , some entire pure trigonometric functional forms can for 

convenience be supplemented by a sign factor – or +. Criteria for the choice of both the dimension 

factor and the sign factor are relevant to the sense of ‘a’, i.e. to the sense of the name “effective 

amplitude”, so that they will be explicated in due course before long. 

 
8.3. A plane monochromatic standing or progressive gravity wave on a liquid layer as 

the first approximation of the recursive asymptotic series 
8.3.1. General definitions 

1. In accordance with the two previous subsections, the solution of the set of equations (7.31) 

at l=1 and (7.33) will be selected either as one of the following four, descriptive of standing waves: 

( ) ( ) ( )22,22, ,,,, kxtkkxt νµνµ χµγψ −=  for { } { }1,11,1, −×−∈νµ ,                  (8.12) 

subject to (8.6) and (8.10), or as one of the following four, descriptive of progressive waves: 
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( ) ( ) ( )2222 ,,,, kxtkkxt λ
µ

λ
µ χµγψ −=  for { } { }−+×−∈ ,1,1,λµ ,                    (8.13) 

subject to (8.7) and (8.10). That is, once either μ and ν in (8.12) or μ and λ in (8.13) are selected, I 

shall set either  

( ) ( ) ( ) ( )22,22,2)1( ,,,,, kxtkkxtxt νµνµ χµγψψ −==                               (8.14) 

or 

( ) ( ) ( ) ( )22222)1( ,,,,, kxtkkxtxt λ
µ

λ
µ χµγψψ −==                                (8.15) 

respectively. By (7.10) subject to (7.32), I shall also set either 

( ) ( ) ( ) ( )22,2,)1( ,,,,, kxtzkxtxt νµνµ ψθφφ ==                                     (8.16) 

in the case of (8.14) or 

( ) ( ) ( ) ( )222)1( ,,,,, kxtzkxtxt λ
µ

λ
µ ψθφφ ==                                       (8.17) 

in the case of (8.15). In accordance with (5.8), (5.14), (7.72), and (7.73), ( )xt,)1(Φ  and ( )2)1( , xtΨ  are 

defined correspondingly either as 

( ) ( ) ( ) ( ) ( ) ( )22,2,2)1()1( ,,,,,, kxtzkxtxtzxt νµνµ ψεθεφθ ==Ψ=Φ  ,                   (8.18) 

so that 

( ) ( )22,2)1( ,,, kxtxt νµεψ=Ψ  ,                                              (8.19) 

– in the case of (8.14), or as  

( ) ( ) ( ) ( ) ( ) ( )2222)1()1( ,,,,,, kxtzkxtxtzxt λ
µ

λ
µ ψεθεφθ ==Ψ=Φ  ,                  (8.20) 

so that 

( ) ( )222)1( ,,, kxtxt λ
µεψ=Ψ  ,                                               (8.21) 

– in the case of (8.15) (cf. Lamb [1932, Arts 228, 229]). 

2. By (7.10) subject to (7.32), equation (6.521) subject to (6.56) becomes 

( ) ( ) ( )
t

xt
gt

xt
g

xt
∂

∂ψ
∂

∂φ
ζ 2)1(2

)0(
)1(

2)1(

,1,1, −=−=                                  (8.22) 

and hence, by (5.1) and (5.7), 

( ) ( ) ( ) ( )
t

xt
g
akxtakxtxt

∂
∂ψ

ζεζ 2)1(
2)1(2)1(2)1(

,
,,, −===Ζ .                         (8.23) 

Consequently, by (8.14) subject to (8.6), equation (8.22) can be specified thus: 
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( ) ( ) ( ) ( ) ( )

( ) ( ),,,1,,
)(

,,,,1,,,

22,
22,

22,22,
22,2)1(

kxt
kt

kxt
kk

t
kxt

g
k

t
kxt

g
kxtxt

νµ
νµ

νµνµ
νµ

χ
∂

∂χ
Ω
µ

∂
∂χµg

∂
∂ψ

ζζ

−==

=−== 

            (8.24) 

and hence equation (8.23) yields: 

( ) ( ) ( ) ( )22,22,22,2)1( ,,,,,,, kxtakxtakkxtxt νµνµνµ χζ −==Ζ=Ζ  .                   (8.25) 

By (8.6), the last equation particularly means that 

( )
( )
( )
( ) ,(d)  cos )(sin,,

,(c)    sin )(sin,,
,(b)   cos )(cos,,
,(a)     sin )(cos,,

22221,1

22221,1

22221,1

22221,1

xktkakxt
xktkakxt
xktkakxt

xktkakxt

⋅=Ζ

⋅=Ζ

⋅=Ζ

⋅=Ζ

−−

−

−

Ω

Ω

Ω

Ω

d

d

d

d

                                 (8.251) 

while equation (8.24) is particularized by the variant of (8.251) with ‘ζ’ and ‘k-1’ in place of ‘Ζ’ and 

‘a’ respectively. Analogously, by (8.15) subject to (8.7), equation (8.22) can be specified thus: 

( ) ( ) ( ) ( ) ( )

( ) ( ),,,1,,
)(

,,,,1,,,

22
22

2222
222)1(

kxt
kt

kxt
kk

t
kxt

g
k

t
kxt

g
kxtxt

λ
µ

λ
µ

λ
µ

λ
µλ

µ

χ
∂

∂χ
Ω
µ

∂
∂χµg

∂
∂ψ

ζζ

−==

=−== 

               (8.26) 

and hence equation (8.23) yields: 

( ) ( ) ( ) ( )2222222)1( ,,,,,,, kxtakxtakkxtxt λ
µ

λ
µ

λ
µ χζ −==Ζ=Ζ  .                     (8.27) 

By (8.7), the last equation particularly means that 

( ) [ ]
( ) [ ]
( ) [ ]
( ) [ ] ,(d)   )(sin,,

,(c)   )(sin,,

(b),   )(cos,,

,(a)   )(cos,,

22221

22221

22221

22221

xktkakxt
xktkakxt
xktkakxt
xktkakxt

⋅+=Ζ

⋅−=Ζ

⋅+=Ζ

⋅−=Ζ

+
−

−
−

+

−

Ω

Ω

Ω

Ω

d

d

d

d

                                  (8.271) 

while equation (8.26) is particularized by the variant of (8.271) with ‘ζ’ and ‘k-1’ in place of ‘Ζ’ and 

‘a’ respectively. Thus, in accordance with (8.251) and (8.271), a is the amplitude of displacement of 

the free surface of the liquid layer due to either a standing gravity wave or a progressive gravity 

wave. This interpretation of ‘a’ is preserved also in the case of a semi-infinite liquid space z≤0, 

provided that ‘ )(kΩ ’ defined by (7.38) is replaced with ‘ )(k∞Ω ’ defined by (7.79). 
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3. Once a non-scaled velocity potential ( )xt,)1(φ  or the respective scaled velocity potential 

( )xt,)1(Φ  is selected, – the former from those defined by (8.16) and (8.17 ) and the latter from those 

defined by (8.18) and (8.20), – all pertinent characteristics of the fluid flow can be calculated. 
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8.3.2. A progressive plane monochromatic gravity water wave 

Concention 8.1. 1) For the sake of definiteness and without loss of generality, I shall 

henceforth confine myself to the following non-scaled velocity potential of a plane progressive 

monochromatic gravity water wave: 

( ) ( ) ( ) ( ) ( ) ( ) ( )22222)1( ,,,,,,, kxtzkkxtzkxtxt −−− −=== µµµ χθµγψθφφ                   (8.28) 

and hence to the respective scaled one: 

( ) ( ) ( ) ( ) ( ) ( ) ( )22222)1( ,,,,,,, kxtzkakkxtzkxtxt −−− −===Φ µµµ χθγµψεθεφ ,           (8.29) 

subject to (8.7,a,c) and hence subject to some particular { }1,1 −∈µ  and subject to λ=–. It is 

understood that (8.28) and (8.29) can alternatively be specified for and λ=+, whereas  

( ) ( )2222 ,,,, kxtkxt −= −+
µµ χχ .                                             (8.28+) 

2) In order to make statements relevant to both versions of ( )xt,)1(φ  or ( )xt,)1(Φ , I set 

cos  sin, 11 == −
 ττ ,                                                   (8.30)• 

1. Under Convention 8.1, for each { }1,1 −∈µ : 

( ) ( )2222 )(,, xktkkxt ⋅−=− Ωtχ µµ ,                                         (8.31) 

( ) ( ) ( )22
2222 )()(

)(,,
xktkk

t
xktk

t
kxt

⋅−=
∂

⋅−∂
=

∂
∂

−

−

ΩtΩµ
Ωtχ

µ
µµ ,                   (8.32) 

( ) ( ) ( )

{ }.2,1each for 

)(
)(,,

22
2222

∈

⋅−−=
∂

⋅−∂
=

∂
∂

−

−

i

xktkk
x

xktk
x

kxt
i

ii

Ωtµ
Ωtc

µ
µµ

                  (8.33) 

Consequently, by (7.32), (8.10), and (8.30), equation (8.28) (e.g.) becomes 

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( )

( ),)(
cosh

)(cosh
tanh

)(
)(

,,,,,,,

22

22

22222)1(

xktk
kd

dzk
kdk

g
k

xktkz
kk

g
kxtzkkxtzkxtxt

⋅−
+

−=

⋅−−=

−=== −−−

Ωtµ

Ωtθ
Ω
µ

cθµgψθφφ

µ

µ

µµµ
d

                (8.34) 

whence, in view of (8.33),  

( ) ( ) ( ) ( ) ( ) ( )

( ) { },2,1each for  )(
cosh

)(cosh
tanh

)(,
,,

22

22)1(
)1()1(

∈⋅−
+

=

∂
⋅−∂

−=
∂

∂
=∇=

− ixktk
kd

dzk
kdk

g
k
k

x
xktk

zk
x

xt
xtxtv

i

ii
ii

Ωt

Ωt
θµg

f
f

µ

µ

             (8.35a) 
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( ) ( ) ( ) ( ) ( ) ( )

( ) 3.for  )(
cosh

)(sinh
tanh

)(
,

,,

22

22
3

)1(
)1(33)1(

=⋅−
+

−=

⋅−
∂

∂
−=

∂
∂

=∇=

ixktk
kd

dzk
kdk

g

xktk
z
zk

x
xt

xtxtv

Ωtµ

Ωtθµg
f

f

µ

µ

            (8.35b) 

Particularly, equations (8.34), (8.35a), and (8.35b) at z=0 become 

( ) ( )[ ] ( )220)1(2
)0(

)1( )(
tanh

,, xktk
kdk

g
k

xtxt
z

⋅−−==
=

Ωtµφφ µ
d ,                   (8.34') 

( ) ( )[ ] ( ) { }2,1each for  )(
tanh

,, 220)1(2
)0(

)1( ∈⋅−== −=
ixktk

kdk
g

k
kxtvxtv i

zii Ωt µ
d ,     (8.35a') 

( ) ( )[ ] ( ) 3for   )(tanh,, 2203)1(2
)0(
3)1( =⋅−−==

=
ixktk

k
kdgxtvxtv

z
Ωtµ µ

d .           (8.35b') 

At the same time, equation (8.26) at λ=– becomes 

( ) ( ) ( ) ( )2222222)1( )(1,,1,,, xktk
k

kxt
k

kxtxt ⋅−=== −
−
−

− Ωtχζζ µµµ
 .                (8.36) 

2. By (8.3), (8.35a), and (8.35b), equation (5.50) at l=2 can be developed thus: 

( ) ( ) ( )

( )

( ) .)(
cosh

)(sinh

)(
cosh

)(cosh
tanh2

),(),(
2
1),(

2
1),(

22
2

2

22
2

2
9

2
3)1(

2

1

2
)1(9

3

1

2
)1(9)2k(






⋅−






 +

+






⋅−






 +

=









+==

−

==
∑∑

xktk
kd

dzk

xktk
kd

dzk
kdk

g

xtvxtvxtvxte
i

i
i

i

Ωt

Ωtρ

ρρ

µ

µ                 (8.37) 

At the same time, equations (7.66) with β=α yield 

(c)  sincos1  (b),  sincos2cos  ,(a)  cossin22sin 2222 aaaaaaaa +=−== ,      (8.38) 

whereas the half-difference and half-sum of (8.38c) and (8.38b) yield 

(b)  2cos1cos2  (a),  2cos1sin2 22 aaaa +=−= .                            (8.39) 

By (8.30), the pertinent instances of (8.39) become 

( ) ( )[ ]2222
2 )(2cos1

2
1)( xktkxktk ⋅−=⋅−± ΩµΩt µ   for each { }1,1 −∈µ .           (8.40) 

Since  
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( ) αα αα iiee sin
2
1sinh −=−= −   (a),  ( ) αα αα iee cos

2
1cosh =+= −   (b),           (8.41) 

therefore equations (8.38) and (8.39) are equivalent to the following ones of hyperbolic 

trigonometry: 

(c),  sinhcosh1
(b),  sinhcosh2cosh  ,(a)  coshsinh22sinh

22

22

aa

aaaaaa

−=

+==
                  (8.42) 

(b)  12coshcosh2 (a),  12coshsinh2 22 +=−= aaaa ,                         (8.43) 

respectively. It is also noteworthy that 

kdkdkd
kd

kdkdkdkd 2sinhcoshsinh2
cosh

coshsinh2cosh2tanh
2

2 === ,             (8.44) 

by the instance of (8.41a) with kd=dα . 

Making use of (8.40) and of the instances of (8.42b) and (8.42c) with )( dzk +=dα  in that 

order, and also making use of the train of equations (8.44), equation (8.37) can be developed thus: 

( )[ ]{
( )[ ]}

( )[ ].)(2cos)(2cosh
2sinh2

)(2cos1)(sinh

)(2cos1)(cosh
2sinh2

),(

22
9

22
2

22
29

)2k(

xktkdzk
kdk

g
xktkdzk

xktkdzk
kdk

gxte

⋅−++=

⋅−−++

⋅−++=

Ωµρ
Ωµ

Ωµρ

                (8.45) 

Particularly, equation (8.45) at z=0 becomes 

[ ] ( )[ ]22
9

0)2k(2
)0(
)2k( )(2cos2cosh

2sinh2
),(),( xktkkd

kdk
gxtexte

z
⋅−+==

=
Ωµρ

d .       (8.45') 

3. Let  

02 == 

ykk , so that 01 >== kkk x
 .                                       (8.46) 

Then, by (8.44), equations (8.34), (8.35a), and (8.35b) reduce to 

( ) ( ) ( )
( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ),)(
2sinh

2)(
)(

0,,0,,,,

0,,0,,,,

0,,,0,,,,,, )1()1(

xktk
kdk

g
k

xktkz
kk

g

kxtzkkxtzk

kxtzkxtz

kzxtkzxtxt

xx

xx

xx

xx

−−=−−=

−=−=

==

==

−−

−−

−

ΩtµΩtθ
Ω
µ

χθµgχθµg

ψθψθ

φφφ

µµ

µµ

µµ

µ

d

d

dd

                (8.47) 
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( ) ( ) ( )

( ),)()(cosh
2sinh

2

0,,0,,,,,, )1()1()1(

xktkdzk
kdk

g
k
k

kzxtvkzxtvxtv

x
x

xxxxx

−+=

==

− Ωt µ

dd

                              (8.48) 

( ) ( ) ( )

( ).)()(sinh
2sinh

2

0,,0,,,,,, )1()1()1(

xktkdzk
kdk

g

kzxtvkzxtvxtv

x

xzxzz

−+−=

==

Ωtµ µ

dd

                               (8.49) 

the understanding being that ( ) 0,)1( =xtv y . By (8.30), it follows from (8.48) and (8.49) that  

( )[ ] ( )[ ]

( ) ( ) 1.)()(

)(sinh
2sinh

2,)(cosh
2sinh

2,

22

2
2

)1(

2
2

)1(

=−+−=









++








+

−−

−−

xktkxktk

dzk
kdk

gxtvdzk
kdk

gxtv

xx

zx

ΩtΩt µµ

   (8.50) 

 

8.3.3. A standing plane monochromatic gravity water wave 

Convention 8.2. For the sake of brevity and without loss of generality, I shall, under 

definition (8.30), write the non-scaled velocity potential of a plane standing monochromatic gravity 

water wave as 

( ) ( ) ( ) ( ) ( ) ( ) ( )22222)1( ,,,,,,, kxtzkkxtzkxtxt µνµνµν χθµγψθφφ −===                (8.51) 

and hence the respective scaled one as: 

( ) ( ) ( ) ( ) ( ) ( ) ( )22222)1( ,,,,,,, kxtzkakkxtzkxtxt µνµνµν χθγµψεθεφ −===Φ  ,          (8.52) 

subject to (8.6) and hence subject to some particular { }1,1 −∈µ  and { }1,1 −∈ν .• 

1. Under definition (8.30) it follows from (8.6) that for each { }1,1 −∈µ  and each { }1,1 −∈ν : 

( ) ( ) ( )2222 )(,, xktkkxt ⋅= νµµν tΩtχ ,                                        (8.53) 

( ) ( ) ( ) ( ) ( )2222
22 )()(

)(,,
xktkkxk

t
tk

t
kxt

⋅=⋅
∂

∂
=

∂
∂

− νµν
µµν tΩtΩµt
Ωtχ

,             (8.54) 

( ) ( ) ( ) ( ) ( )

{ }.2,1each for 

)()(
,,

222
2222

∈

⋅−=
∂

⋅∂
=

∂
∂

−

i

xktkk
x

xktk
x

kxt
i

ii
νµ

ν
µ

µν tΩtµνtΩt
c

              (8.55) 

Consequently, by (7.32), (8.10), and (8.30), equation (8.50) (e.g.) becomes 

101 

 



( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( ),)(
cosh

)(cosh
tanh

)(
)(

,,,,,,,

22

22

22222)1(

xktk
kd

dzk
kdk

g
k

xktkz
kk

g
kxtzkkxtzkxtxt

⋅
+

−=

⋅−=

−===

nµ

nµ

µnµnµn

tΩtµ

tΩtθ
Ω
µ

cθµgψθφφ d

               (8.56) 

whence, in view of (8.55),  

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) { },2,1each for  )(
cosh

)(cosh
tanh

)(
,

,,

22

22)1(
)1()1(

∈⋅
+

−=

∂
⋅∂

−=
∂

∂
=∇=

− ixktk
kd

dzk
kdk

g
k
k

x
xktkzk

x
xt

xtxtv

i

ii
ii

nµ

n
µ

tΩtµn

tΩtθµg
f

f
         (8.57a) 

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) 3.for  )(
cosh

)(sinh
tanh

)(
,

,,

22

22
3

)1(
)1(33)1(

=⋅
+

−=

⋅
∂

∂
−=

∂
∂

=∇=

ixktk
kd

dzk
kdk

g

xktk
z
zk

x
xt

xtxtv

nµ

nµ

tΩtµ

tΩtθµg
f

f
           (8.57b) 

Particularly, equations (8.56), (8.57a), and (8.57b) at z=0 become 

( ) ( )[ ] ( ) ( )220)1(2
)0(

)1( )(
tanh

,, xktk
kdk

g
k

xtxt
z

⋅−==
= nµ tΩtµφφ d ,                   (8.56') 

( ) ( )[ ] ( ) ( )

{ },2,1each for 

)(
tanh

,, 220)1(2
)0(

)1(

∈

⋅== −=

i

xktk
kdk

g
k
kxtvxtv i

zii nµ tΩtµnd

               (8.57a') 

( ) ( )[ ] ( ) ( ) 3for   )(tanh,, 2203)1(2
)0(
3)1( =⋅−==

=
ixktk

k
kdgxtvxtv

z nµ tΩtµd .         (8.57b') 

At the same time, equation (8.24) becomes 

( ) ( ) ( ) ( ) ( )2222,22,2)1( )(1,,1,,, xktk
k

kxt
k

kxtxt ⋅=== −− νµνµνµ tΩtχζζ  .             (8.58) 

2. By (8.3), (8.57a), and (8.57b), equation (5.50) at l=2 can be developed thus: 

( ) ( ) ( )

( )[
( )] ( ).)()(sinh

)(cosh
coshtanh2

),(),(
2
1),(

2
1),(

2
22

22

22
22

2
9

2
3)1(

2

1

2
)1(9

3

1

2
)1(9)2k(

tkxkdzk

xkdzk
kdkdk

g

xtvxtvxtvxte
i

i
i

i

Ωtt

tρ

ρρ

µn

n

⋅++

⋅+=









+==

−

==
∑∑

                (8.59) 

By (8.30), the pertinent instances of (8.39) become 
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( ) [ ]tktk )(2cos1
2
1)(2 ΩµΩt µ =±  for each { }1,1 −∈µ ,                         (8.60) 

( ) ( )[ ]2222
2 2cos1

2
1 xkxk ⋅=⋅± ντ ν   for each { }1,1 −∈ν .                         (8.61) 

Making use of (8.60) and (8.61) and of the instances of (8.42b) and (8.42c) with )( dzk +=dα  in that 

order, and also making use of the train of equations (8.44), equation (8.59) can be developed thus: 

( )[ ]{
( )[ ]}[ ]

( )[ ][ ].)(2cos1.2cos)(2cosh
2sinh4

)(2cos1.2cos1)(sinh

2cos1)(cosh
2sinh4

),(

22
9

22
2

22
29

)2k(

tkxkdzk
kdk

g
tkxkdzk

xkdzk
kdk

gxte

Ωµnρ
Ωµn

nρ

−⋅++=

−⋅−++

⋅++=

                 (8.62) 

Particularly, equation (8.62) at z=0 becomes 

[ ]
( )[ ][ ].)(2cos12cos2cosh

2sinh4

),(),(

22
9

0)2k(2
)0(
)2k(

tkxkkd
kdk

g

xtexte
z

Ωµnρ
−⋅+=

=
=

d

                    (8.62') 

3. If (8.46) hold then. by (8.44), equations (8.56), (8.57a), and (8.57b) reduce to 

( ) ( ) ( )
( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ),)(
2sinh

2)(
)(

0,,0,,,,

0,,0,,,,

0,,,0,,,,,,)1(

xktkz
kdk

g
k

xktkz
kk

g

kxtzkkxtzk

kxtzkxtz

kzxtkzxtxt

xx

xx

xx

xx

nµnµ

µnµn

µnµn

µnµn

tΩtθµtΩtθ
Ω
µ

χθµgχθµg

ψθψθ

φφφ

−=−=

−=−=

==

==

d

d

dd

          (8.63) 

( ) ( ) ( )

( ) ( )

( ) ( ),)()(cosh
2sinh

2

)(
cosh

)(cosh
tanh

0,,0,,,,,, )1()1()1(

xktkdzk
kdk

g
k
k

xktk
kd

dzk
kdk

g
k
k

kzxtvkzxtvxtv

x
x

x
x

xxxxx

nµ

nµ

tΩtµn

tΩtµn

−

−

+−=

+
−=

== dd

                         (8.64) 

( ) ( ) ( )

( ) ( )

( ) ( ).)()(sinh
2sinh

2

)(
cosh

)(sinh
tanh

0,,0,,,,,, )1()1()1(

xktkdzk
kdk

g

xktk
kd

dzk
kdk

g

kzxtvkzxtvxtv

x

x

xzxzz

nµ

nµ

tΩtµ

tΩtµ

+−=

+
−=

== dd

                              (8.65) 

the understanding being that ( ) 0,)1( =xtv y . By (8.30), it follows from (8.64) and (8.65) that  
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( )[ ] ( )[ ]

( ) ( ) ( )[ ] ( ).)()(

)(sinh
2sinh

2,)(cosh
2sinh

2,

2222

2
2

)1(

2
2

)1(

tkxkxktk

dzk
kdk

gxtvdzk
kdk

gxtv

xx

zx

ΩtttΩt µnnµ =+=









++








+

−

−−

   (8.66)) 

 

9. The cyclic frequency and related scalar characteristic of a progressive 
plane monochromatic gravity water wave 

9.1. The second dimensionless parameter and basic scalar characteristics of a 
progressive plane monochromatic gravity water wave 

1. Besides the dimensionless strictly positive parameter 0>= kaε , there is in the recursive 

asymptotic problem in question another dimensionless strictly positive parameter 0>= kdd , whose 

value affects the character of solutions of the problem (cf. (7.78), (7.79), and (8.11)). Various aspects 

of this parameter are made explicated below in this subsection, 

Definition 9.1. Given d>0, 

( ) 0tanh, ≥=





= δδδΩδΣ δ

δg
δ

δ ,                                          (9.1) 

the understanding being that, given 22 Ek ∈ , 

02
2
2

2
12 ≥==+== kddkdddd d , subject to dk 22 =

dd .                      (9.2)• 

Lemma 9.1 (and at the same time a definition of ‘ sg ’, ‘ sp ’, and ‘ m±1 ’). For each ),0( +∞∈δ : 

0)()()()( p1g >== δδ
∂δ
δΣ∂δ sms δ ,                                            (9.3) 

where 

0tanh)()(p >==
δ
δ

δ
δΣδ δs ,                                               (9.4) 

0
2sinh

21
2
1)2(1 >






 ±=± δ

δδ δm .                                              (9.5) 

By (9.3), the values of the functional form ‘ )(δΣ ’, as defined by (9.1), monotonically increase from 

0)0( =Σ  to +∞=+∞)(Σ as δ increases from 0  to +∞ . 

Proof: It follows from (9.1) that 
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[ ]

.
2sinh

21
2

)(
coshsinh

1
2

)tanh(

)cosh()tanh()tanh(
2
1)(

2/1

22/12/12/12/1







 +=






 +=

+= −−−

δ
δ

δ
δΣ

δδ
δ

δ
δδ

δδδδδ
∂δ
δΣ∂

                         (9.31) 

QED.• 

Comment 9.1. Except for the useful relations 

)()2()()( p1gp δδδδ smss −=− ,                                               (9.6) 

1)2()2( 11 =+ − δδ mm ,                                                     (9.7) 

which immediately follow from (9.3) and (9.5) respectively, the functional form ‘ )2(1 δ−m ’ is 

irrelevant to ‘ )(g δs ’ as such. This form appears in some formulae relevant to depth-integrated 

characteristics of the fluid flow.• 

Lemma 9.2 (and at the same time a definition of ‘ 1−Σ ’). For each ),0[ +∞∈σ : there is 

exactly one [ )∞∈− ,0)(1 σΣ  such that for each ),0[ +∞∈δ : 

)(1 σΣδ −=  if and only if σδΣ =)( .                                          (9.8) 

Proof: Owing to strictly monotonic increase of )(δΣ  with increase of σ in the real semi-axis, 

as stated in Lemma 9.1, given ),0[ +∞∈σ : the equation σδΣ =)(  has a unique solution with respect 

to ‘δ’. This solution is denoted by ‘ )(1 σΣ − ’, so that 1−Σ  is the inverse of the bijective function Σ. 

QED.• 

Comment 9.2. For the sake of brevity, I use ‘ )(2 kΩ ’ (e.g.) interchangeably with ‘ [ ]2)(kΩ ’. 

At the same time, ‘ )(1 σΣ − ’ has by definition nothing to do either with ‘ [ ] 1)( −σΣ ’ or with 

‘ )(1 σΣ ’.• 

Corollary 9.1 (and at the same time a definition of ‘ cg ’ and ‘ cp ’). Given d ∈ ∞( , )0 , for each 

),0[ +∞∈k : 

)()()(),()( 0 kd
d
ckd

d
gdkd

d
gdkk ΣΣΣΩΩ ====d ,                          (9.9) 

( ) ( ) ( ) )()()()(,, g0ggg kdsckdsgd
dk
kdd

d
d

d
g

k
dkdkckc

kd

==



===

=dd
dΣ

∂
Ω∂

dd ,      (9.10) 

( ) ( ) ( ) )()()()(,, p0ppp kdsckdsgd
kd
kdgd

k
kd

d
g

k
dkdkckc ======

ΣΣΩ
dd ,     (9.11) 
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the understanding being that 

c gd0 0d= > ,                                                         (9.12) 

and that, in accordance with (9.6), 

0),()2(),( p1g >= dkckdmdkc ,                                           (9.13) 

It is understood that for each ),0[ +∞∈δ : 

),/(),/()()( g
1

0g
2/1

g ddccddcgds ddd −− == ,                                (9.101) 

),/(),/()()( p
1

0p
2/1

p ddccddcgds ddd −− ==d ,                                (9.111) 

which are converse of (9.10) and (9.11). 

Proof: The trains of equations (9.9)–(9.11) along with (9.12) and (9.13) immediately follow 

from (9.1) and (9.3)–(9.5). Equations (9.101) and (9.111) immediately follow from (9.10) and (9.11). 

QED.• 

Comment 9.3. 1) The dispersion functional form ‘ ), ( dkΩ ’ is a characteristic of the whole 

recursive asymptotic wave problem in question. Still, the most natural interpretation of ‘ ), ( dkΩ ’ is 

that, given a wave vector 0,022 -Ek ∈ , ), ( dkΩ  is the cyclic frequency of a progressive plane 

monochromatic gravity water wave, of the wave number 02 >= kk   and hence of the wavelength 

kπλ 2= , the understanding being that the velocity potential of the associated fluid flow is a 

particular solution of the problem ( ))1()1( φuT , i.e. of the triple of equations (7.1)–(7.3) at l=1 subject to 

(7.4). In this case, c k dg ( , )  is the wave group speed, whereas c k dp ( , )  is the wave phase speed. In 

contrast to the dimensional quantities ), ( dkΩ , c k dg ( , ) , and c k dp ( , ) , the corresponding 

dimensionless quantities )(δΣ , )(g δs , and )(p δs  are called “the reduced wave cyclic frequency”, 

“the reduced wave group speed”, and “the reduced wave phase speed”, respectively, – in the sense 

that these are independent either of ‘ g ’ or of ‘ d ’. 

2) By (7.38), the pertinent straightforward calculations implied in (9.10) yield 
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( ) ( ) ( ) ( )

( )δ
δδδ

δδ

∂
∂

∂
∂

∂
Ω∂

g020

22

gg

coshtanh4
22sinh

cosh
22sinh

tanh4
1

cosh
tanh

tanh2
1

tanh
tanh2

1tanh,,

scc

kδ
kδkδ

kδkδ
gδ

kδ
kδkδ

kδk
g

k
kδk

kδk
g

k
kδgk

k
δkδkckc

==
+

=







 +

=





 +=

==== δδ

            (9.10') 

subject to (9.12).• 

Corollary 9.2 (and at the same time a definition of ‘Κ’). Given d ∈ +∞( , )0 , for each 

ω ∈ +∞( , )0 , there is exactly one  









== − ωΣωΚωΚ

g
d

d
d 11),()( dd ,                                         (9.14) 

such that for each [ )+∞∈ ,0k : 

),( dk ωΚ=  if and only if ωκΩ =),( d .                                    (9.15) 

Proof: The corollary follows from Lemma 9.2 by (9.1) and (9.2), with the understanding that  

ωσ
g
d

=d  and conversely σω
d
g

=d .                                    (9.16)• 

9.2. A long-wave range 
Corollary 9.3. For each )2/,0[ πδ ∈ : 

( ) ( )[ ] ( )







++−== 4

42
222

15
2

3
1 δδδδδΣδΣ oδ ,                                 (9.17) 

( ) ( )







++−= 4

42

360
19

6
1 δδδδδΣ o ,                                          (9.18) 

( ) ( )4
42

g 72
19

2
1 δδδδ os ++−= ,                                            (9.19) 

( )4
42

p 360
19

6
1)()( δδδ

δ
δΣδ os ++−==δ ,                                             (9.20) 

( ) ( )4
42

1 45
14

3
22 δδδδ om +−=− .                                            (9.21) 

The Maclaurin series for ‘ )2(1 δm ’ is determined by (9.7) subject to (9.21). 
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Proof: 1) The known Maclaurin series for ‘ δtanh ’ (see, e.g., Gradshteyn and Ryzhik [1980, 

p. 35, art. 1.411, item 6]) can be written for each ( )2/,2/ ππδ −∈  as 

( )[ ]2
01tanh δχδδ −= ,                                                   (9.22) 

where 

( ) ( )4
42

2
0 15

2
3

δδδδχ o+−=δ .                                               (9.23) 

Equation (9.17) immediately follows from (9.1) by (9.23). 

2) In order to prove (9.18), notice that 00tanh =  and 1tanh =∞ , whereas 

( ) ( )0,1coshtanh 2 ∈= −δ
δ
δ

δ
δ  for each ( )∞∈ ,0δ . Hence, 

δδ << tanh0  for each ( )∞∈ ,0δ .                                         (9.24) 

By (9.24), it follows from (9.22) that 

[ )1,0)( 2
0 ∈δχ  for each ( )2/,2/ ππδ −∈ .                                   (9.25) 

By (9.1), (9.22), and (9.25), the following Maclaurin series with respect to ‘ )( 2
0 δχ ’ converges for 

each [ )2/,0 πδ ∈ : 

( ) ( ) ( ) ( ) ( )( )22
0

22
0

2
0

2
0 8

1
2
111 δχδχδχδχ

δ
δΣ o−−−=−= .                       (9.26) 

By (9.23), equation (9.26) yields (9.18). Equation (9.19) immediately follows from (9.3) by (9.18). 

Lastly, (9.21) immediately follows from (9.5) with the help of the instance of the known Laurent 

series (see, e.g., Gradshteyn and Ryzhik [1980, p. 35, art. 1.412, item 12]) 

( ) 







++−== − )(

360
7

6
11sinhcsch 4

42
1 yoyy

y
yy   for each ( )π,0∈y ,                (9.27) 

with kdy 22 == dd . The corollary is established.• 

Corollary 9.4. Given ( )∞∈ ,0d , for each ( )2/,0 π∈kd : 

3
)(),(

1),(10
2

2
0

2
p

22
0

2 kd
c

dkc
kc

dk
<−=−<

Ω ,                                     (9.28) 

6
)(),(

1),(10
2

0

p

0

kd
c

dkc
kc
dk

<−=−<
Ω ,                                      (9.29) 

0 1
20

2

< − <
c k d

c
kdg ( , ) ( )

,                                                 (9.30) 
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the understanding being that 

lim ( , ) lim ( , )
k k

c k d c k d c
→ →

= =
0 0 0p g .                                           (9.31) 

Proof: The corollary follows from Corollary 9.3 by (9.2) and (9.9)–(9.12).• 

Definition 9.2. Given ( )∞∈ ,0d , a progressive wave of a wave number ( )∞∈ ,0k  is said to 

be long in regard to a liquid layer of depth d , – or, alternatively, given ( )∞∈ ,0k , a liquid layer of a 

depth ( )∞∈ ,0d  is said to be shallow, or thin, in regard to a progressive wave of a wave number k , – 

if and only if  

kd ≤ ≅0 6 0 775. . ,                                                     (9.32) 

 which corresponds to 
1
6

1
10

2( )kd ≤  in (9.29).• 

Comment 9.4. 1) Criterion (9.32) can be rewritten as  

λ π
d
> ≅

2
0 6

811
.

. ,                                                       (9.32') 

where λ π= 2 / k  is the wavelength. 

2) There is an empiric fact that a progressive quasi-plane quasi-monochromatic gravity water 

wave of  local amplitude a  and of local wave number k  is disintegrated (breaks) when it approaches 

some region, in which  

6.0<= kaε .                                                       (9.32a) 

and which often is also qualified as a shallow water one. However, criterion (9.32a) is independent 

of criterion (9.32). Therefore, a water wave region that satisfies criterion (9.32a) should more 

correctly be qualified as a high-amplitude one. It is noteworthy that the effect of gravity wave break 

in a high-amplitude region due to bottom effects cannot be associated with the velocity potential 

Φ ( ) ( , )2 t x  of second order with respect to ka, because the latter potential turns out to be bounded 

throughout, as shown in the next section. For avoidance of the wave disintegration, the assumption 

that the wave amplitude a is small as compare to the depth d should be made.• 

Definition 9.3. In analogy with (8.30), it is convenient for our purpose at hand to modify 

definition (7.32) thus: 

( ) ( ) ( ) ( ) ( ) ( )zkzdkz
kd

dzkdkzkzz θθθθθθ ===
+

=== −−−
ddd ,,,

cosh
)(cosh,,, 111            (9.33) 

and to supplement it with the definition: 
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( ) ( ) ( ) ( )
kd

dzk
z

dkz
k

dkzkzz
cosh

)(sinh,,1,,, 1
111

+
=

∂
∂

=== −θθθθ ddd .                     (9.34) 

Thus, the functional variables ‘ 1−θ ’ and ‘θ’ are synonyms, any one of which determines the 

dependence on ‘z’ of each one of the functional forms ( )xtl ,)(φ  and ( )xtv il ,)(  for each 1ω∈l  and each 

{ }2,1∈i , whereas the functional variable ‘ 1θ ’ determines the dependence on ‘z’ of the functional 

form ( )xtv l ,3)(  for each 1ω∈l .• 

Corollary 9.5. Given ( )∞∈ ,0d , for each [ )2/,0 π∈kd , for each ( )+∞∞−∈ ,z : 

( ) ( ) ( )( ) ( )( )442242
1 242

24
12

2
11,, dzkozdzddzzkdzzkdkz ++−−+−++=−θ ,     (9.35) 

( ) ( ) ( )( ) ( )( )33223
1 364

12
1,, dzkozdzddzkdzkdkz ++−−+−+=θ .               (9.36) 

Proof: In accordance with (9.33) and (9.33), multiplication of each one of the known series 

(see, e.g., Gradshteyn and Ryzhik [1980, p. 35, art. 1.411, items 4 and 2]): 

∑
∞

=

=
0

2

)!2(
 cosh 

n

n

n
xx , ∑

∞

=

+

+
=

0

12

)!12(
 sinh 

n

n

n
xx , for each ( )+∞∞−∈ ,x ,                  (9.37) 

with ( )dzkx +=  by the known series (ibid., p. 35, art. 1.411, item 10): 

( )4
42

1

!4
5

!2
1 )(cosh hsec δδδδδ o++−== −δ  for each ( )2/,2/ ππδ −∈ ,             (9.38) 

subject to (9.2), yields (9.35) and (9.36) respectively. In this case, once (9.35) is deduced, equation 

(9.36) can, alternatively, be obtained by differentiating (9.35) with respect ‘ z ’, in accordance with 

(9.34). QED.• 

Comment 9.5. Under Convention 8.1, given { }1,1 −∈µ , 

( ) ( ) ( ) ( )221)1( )(,,, xktkdkzkakxt ⋅−−=Φ − Ωtθγµ µ ,                            (9.39) 

by (8.29)–(8.31) and (9.33). At the same time, by (9.1), (9.2), and (9.12), equation (8.10) becomes 

( ) 0
)(tanh

1
tanh

1
)(

0 >====
δΣδδΩ

γ
k

cγδ
kkδk

γ
kkk

γk δ .                       (9.40) 

If ( )2/,0  π∈kd  then it follows from (9.40) by (9.18) that 

( ) ( )







+−+== 4

42
00

406
1

)(
δδδ

δδΣ
γ o

k
c

k
ck .                                   (9.41) 
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In accordance with (9.35) and (9.40), the functional form ( )xt,)1(Φ  as defined by (9.39) becomes 

unbounded as k → 0 , unless of course a special additional assumption that a → 0  as k → 0  is 

made. Still, all measurable characteristics of the pertinent fluid flow, which are expressed in terms of 

partial derivatives of ( )xt,)1(Φ  with respect to ‘ t ’ or ‘ xi ’, – such characteristics, e.g., as as ( )xtV i ,)1(  

at { }2,1∈i , ( )xtV ,3)1( , ( )xtPd ,)1( , ( )xtE ,)2(k , etc, – remain regular as k → 0 . All these characteristics 

can immediately be written in the first non-vanishing approximation with respect to kd  with the 

help of the series obtained above in this subsection.• 

 

9.3. A short-wave range 
Corollary 9.6. For each q ∈ ∞( , )0 : 

( ) 







−+= ∑

∞

=

−

1

22 )1(21
n

nn e δδδΣ .                                            (9.42) 

( ) ( )



 ++−= −−− δδδδδΣ 442

2
11 eoee ,                                     (9.43) 

( ) ( ) ( ) ( )



 +−−−+= −−− δδδ δδ

δ
δ 442

g 18
2
1141

2
1 eoees ,                        (9.44) 

( ) ( )



 ++−= −−− δδδ

δ
δ 442

p 2
111 eoees ,                                     (9.45) 

∑
∞

=

−−
± ±=

0

42
1 2

2
1)2(

n

neem δδδδ                                               (9.46) 

Proof: By the conventional definition, 

)2(1
1
1tanh 2

2

δχδ δ

δ

δδ

δδ

∞−

−

−

−

−=
+
−

=
+
−

= δ





  for each ( )∞∈ ,0δ ,                    (9.47) 

the understanding being that 

( ) ∑
∞

=

−
−

−

∞ −−=
+

=
1

)1(2
1
2

n

nyn
y

y

e
e

ey χ  for each ( )∞∈ ,0y                          (9.48) 

(see, e.g., Gradshteyn and Ryzhik [1980, p. 23, art. 1.232, item 1]). Equation (9.42) immediately 

follows from (9.1), by (9.47) and by (9.48) with δ2=y . It then follows from the first expression for 

‘ ( )y∞χ ’ in (9.48) that 
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( )
( ) 0
1

2
2 <

+
−=

−

−
∞

y

y

e
e

dy
ydχ  for each y ∈ ∞( , )0 .                                (9.49) 

Thus, the values of ‘ χ∞ ( )y ’ monotonically decrease from χ∞ =( )0 1  to χ∞ ∞ =( ) 0  as y  increases 

from 0  to ∞. Therefore, 

( ) ( )1,0∈∞ yχ  for each ( )∞∈ ,0y                                            (9.50) 

(cf. (9.26). Hence, by (9.47) and by (9.50) with δ2=y , it follows from (9.1) that the following 

Maclaurin series with respect to ‘ )2( δχ∞ ’ converges for each ( )∞∈ ,0δ : 

( ) ( ) ( ) ( ) ( )( )δχδχδχδχδδΣδ 22
8
12

2
1121tanh 222/1

∞∞∞∞
− −−−=−== o           (9.51) 

(cf. (9.26)). By the last expression for ‘ χ∞ ( )y ’ in (9.48) with δ2=δy , equation (9.51) reduces to 

(9.43), whereas. equations (9.44) and (9.45) immediately follow from (9.3) by (9.43). Lastly, (9.46) 

immediately follows from (9.5) with the help of this self-evident equation 

∑
∞

=

−−
−

−

−
− =

−
=

−
==

0

2
2

1 2
1

22)sh (csch 
n

nyy
y

y

yy ee
e
e

ee
yy  , y ∈ ∞( , )0                 (9.52) 

(see, e.g., Gradshteyn and Ryzhik [1980, p. 23, art. 1.232, item 2]) at δ2=y . The corollary is 

established.• 

Comment 9.6. It follow from (9.1)–(9.5) and (9.9)–(9.12) by (9.43)–(9.46) that, given 

k ∈ ∞( , )0 : 

gkdkk
d

==∞
∞→

),(lim),( ΩΩ d ,                                            (9.53) 

k
g

k
kdkckc

d
=

∞
==∞

∞→

),(),(lim),( pp
Ω

d ,                                    (9.54) 

),(
2
1

2
1),(),(lim),( pgg ∞==

∞
==∞

∞→
kc

k
g

dk
kddkckc

d

Ω
d ,                      (9.53) 

m m kd
d± →∞ ±∞ = =1 1 2

1
2

( ) lim ( ) .                                             (9.56) 

By (9.11), (9.53), and (9.54), it follows from (9.42) and (9.43) that given d ∈ ∞( , )0 , for each 

k ∈ ∞( , )0 : 

kde
kc

dkc
k

dk 2
2
p

2
p

2

2

2
),(
),(

1
),(
),(10 −<

∞
−=

∞
−<
Ω
Ω ,                                    (9.57) 
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kde
kc

dkc
k

dk 2

p

p

),(
),(

1
),(
),(10 −<

∞
−=

∞
−<
Ω
Ω .                                   (9.59)• 

Definition 9.4. Given d ∈ ∞( , )0 , a progressive mode of a wave number k ∈ ∞( , )0  is said 

either to be intermediate or to be short inregard to a liquid layer of depth d , – or, alternatively, 

given k ∈ ∞( , )0 : a liquid layer of a depth d ∈ ∞( , )0  is said either to be transitional or to be deep (or 

thick), in regard to a progressive of wave number k , – depending on whether 

0 6 05 10. . ln≤ ≤kd                                                     (9.59) 

or whether 

kd > ≅0 5 10 1151. ln . ,                                                   (9.60) 

respectively. In this case, the criterion kd = 05 10. ln  is equivalent to e kd− =2 01.  (cf. (9.58)).• 

λ π
d
> ≅

2
0 6

811
.

. ,                                                       (9.32') 

Comment 9.7. Criteria (9.59) and (9.60), can be rewritten as 

4
10

2
0 6

π λ π
λn .

≤ ≤
d

                                                     (9.59') 

and as ` 

λ π
d
< ≅

4
10

546
λn

.                                                       (9.60') 

respectively, where λ π= 2 / k . In the case of a liquid layer with a mildly varying depth d h x= ( )2 , 

condition (3.46) does not suffice for the refraction of a wave of a local wave number k x( )2  to cease. 

Therefore, the term ‘deep layer’, or ‘thick layer’, must be redefined if one wants it to connote a 

certain criterion of the absence of wave refraction.• 

Corollary 9.7. Given ( )∞∈ ,0d , given ),0( ∞∈k , for each z d∈ −[ , ]0 : 

∑
∞

=

−+− −±=
0

2)2(
1 )1(][)(

n

nkdndzkkz eeez,k,d


θ .                                   (9.61) 

Hence, given ),0( ∞∈k : given z ∈ −∞[ , )0 : 

zkkz

d
eedkzkz −

∞→
===∞ ),,(lim),,( 11 

d θθ .                                    (9.62) 

Proof: In accordance with (9.35) and (9.36), multiplication of the instance at x k z d= +( ) of 

each one of the evident equations 
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)1(
2
1sinh  ),1(

2
1cosh 22 xxxx eexeex −− +=+= ,                                (9.63) 

which are valid for all x ∈ −∞ +∞( , ) , by the evident equation 

∑
∞

=

−−
−

−

−
− −=

+
=

+
==

0

2
2

1 )1(2
1

22)cosh (sech
n

nn ee
e
e

ee
δδ

δ

δ

δδδδ δ , ),0( +∞∈δ           (9.64) 

(cf. Gradshteyn and Ryzhik [1980, p. 23, art. 1.232, item 3]), subject to (9.2), yields (9.61).• 

Comment 9.8. 1) By (9.2), (9.43) and by (9.52) with kdy 22 == dd , equation (8.41) can be 

developed thus 

( ) ( ) 0
2
11

)(
442

23
0 >



 ++−== −−− δδδ

δΣ
γ eoee

k
γ

k
ck .                           (9.65) 

Consequently, under Convention 8.1, given { }1,1 −∈µ , ( )xt,)1(Φ  is defined by (9.39) subject to 

(9.61) and (9,65), so that ( )xt,)1(Φ  is proportional to 21−k . That is, just as in the case of a shallow 

liquid layer (see Comment 9.5), ( )xt,)1(Φ  of the pertinent fluid flow in the case of an intermediate or 

deep liquid layer becomes unbounded as k → 0  Still, as before, all measurable characteristics of the 

fluid flow, which are expressed in terms of partial derivatives of ( )xt,)1(Φ  with respect to ‘ t ’ or 

‘ xi ’, turns out to be bounded as k → 0 . 

2) Although all series which have been deduced above this subsection converge for each 

),0[ ∞∈= kddd , the sum of several first terms (in particular, the first term alone) of a series can be 

used as an approximation to the corresponding prototype functional form  only in the case of 

intermediate and short waves or, equivalently, in the case of transitional and deep (thick) liquid 

layers. If particularly ),2/151,1[ ∞∈= kddd  then the given plane monochromatic wave is short, or 

equivalently, the given liquid layer is deep, – in accordance with Definition 9.4. If k  becomes large 

enough then surface tension must be taken into account.• 
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10. The second-order asymptotic approximations to the velocity 
potentials of progressive and standing plane monochromatic gravity 

water waves 

10.1. The inhomogeneous terms in the boundary conditions at z = 0  in the presence 
of a progressive wave 

Lemma 10.1. Under Convention 8.1, given µ ∈ −{ , }1 1 , given 0,022 -Ek ∈ , for each 

22, ERxt ×∈ :  

( ) ( ) ( )[ ]222)2(d )(2cos2cosh21
2sinh2

1, xktkkd
kdk

xt ⋅−−+−= Ωµα ,             (10.1) 

( ) ( )222)2(k )(2sin
tanh

, xktk
kdk

gxt ⋅−−= Ωµa ,                              (10.2) 

( ) ( )

( ).)(2sin
2sinh

)(3

)(2sintanh
2sinh

3,

22

222)2(

xktk
kdk
k

xktk
k

kdg
kd

xt

⋅−=

⋅−=

ΩΩµ

Ωµa
                         (10.3) 

Proof: I proceed from equations (6.35) and (6.38) in their before-last forms and also from 

equation (6.51) at l=2, namely 

( ) ( ) ( ) ( )











+−= 2)1(

2
)0(
3)1(

02
(0)

)2(k
0

2)2(d ,
,

,1, xt
t

xtv
xte

g
xt ζ

∂
∂

ρ
ρ

α ,                     (10.10) 

( ) ( ) ( )[ ]∑
=

∇−=
2

1
2)1(2

)0(
)1(2)2(k ,,,

i
ii xtxtvxt ζα ,                                   (10.20) 

( ) ( ) ( )2)2(k
2)2(d

2)2( ,
,

, xt
t

xt
xt α

∂
∂α

α −= .                                     (10.30) 

1) The first summand in the square brackets on the right-hand side of equation (10.10) is 

given by (8.45'), whereas the second one is determined by (8.35b') and (8.36) as follows: 

( ) ( ) ( ) ( )

( ) ( )[ ],)(2cos1
2

tanh)(tanh

)(
)(tanh,

,

2222
2

2

22
22

2)1(
2

)0(
3)1(

xktk
k

kdgxktk
k

kdg

xktk
t

xktk
k

kdg
k

xt
t

xtv

⋅−+−=⋅−−=

⋅−
⋅−

−=

−

−

ΩµΩtµ

Ωt
∂

Ω∂tµζ
∂

∂

µ

µ
µ

   (10.11) 

where use of the pertinent instance of (8.40) has been made. By (8.45') and (10.11), equation (10.10) 

can be developed thus: 
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( ) ( )[ ]

( )[ ]

[
( ) ( )].)(2cos2sinhtanh1

2sinhtanh2cosh
2sinh2

1

)(2cos1
2
tanh

)(2cos2cosh
2sinh2

1
,

22

22
0

22
9

0
2)2(d

xktkkdkd

kdkdkd
kdk

xktk
k

kdg

xktkkd
kdk

g
gxt

⋅−−+

−−=



⋅−+−



 ⋅−+−=

Ωµ

Ωµρ

Ωµρ
ρ

a

             (10.12) 

By the pertinent instances of (8.42,b,c), it follows that 

,1sinhcosh
cosh

coshsinh2sinhcosh2sinhtanh2cosh

22

2
22

=−=

−+=−

kdkd
kd

kdkdkdkdkdkdkd             (10.13) 

,2cosh2sinh21sinh21sinh3cosh
cosh

coshsinh2sinhcosh2sinhtanh1

2222

2
22

kdkdkdkdkd
kd

kdkdkdkdkdkd

−=−=−=−=

−−=−            (10.14) 

By (10.13) and (10.14), equation (10.12) immediately turns into (10.1). 

2) By (8.35a') and (8.36), and also by the pertinent instance of (8.40), equation (10.20) can be 

developed thus: 

( ) ( )

( )[ ]

( )

( ),)(2sin
tanh

)(2sin
tanh2

)(2cos1
tanh2

1

)(
tanh

1,

22

22

2

1
2

2

1
222

2

1
22

2
22)2(k

xktk
kdk

g

xktkkk
kdk

g
k

xktkk
kdk

g
k

xktkk
kdk

g
k

xt

i
ii

i
ii

i
ii

⋅−−=

⋅−







−=

⋅−+∇−=

⋅−∇−=

∑

∑

∑

=

=

=
−

Ωµ

Ωµ

Ωµ

Ωta µ

                       (10.21) 

which proves (10.2). 

3) Differentiation of both sides of equation (10.1) with respect to ‘t’ yields 

( ) ( ) ( )

( ) ( ).)(2sin
2sinh

2cosh2tanh

)(2sin
2sinh

2cosh2)(,

22

22
2)2(d

xktk
kd

kd
k

kdg

xktk
kdk

kdk
t

xt

⋅−
−

=

⋅−
−

=
∂

∂

Ωµ

ΩΩµa

                     (10.31) 

where use of (7.38) has been made in developing the final expression. Substitution of (10.31) and 

(10.2) into (10.30) yields 
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( ) ( )

( ),)(2sintanh
2sinh

3

)(2sin
tanh

1
2sinh

2cosh2tanh,

22

222)2(

xktk
k

kdg
kd

xktk
kdkd

kd
k

kdgxt

⋅−=

⋅−





 +

−
=

Ωµ

Ωµa
           (10.32) 

because 

( ) ,
2sinh

3
2sinh

12cosh2cosh2
coshsinh2

cosh22cosh2
tanh

1
2sinh

2cosh2 2

kdkd
kdkd

kdkd
kdkd

kdkd
kd

=
++−

=

+−
=+

−

                          (10.33) 

where use of the instance of (8.43b) with α=kd has been made. The train of equations (10.32) proves 

(10.3). The lemma is established.• 

 
10.2. The second-order approximation of the velocity potential in the presence of a 

progressive wave 
In accordance with (7.10) at l=2 subject to (7.32), 

( ) ( ) ( ) ( )2)2(2)2()2( ,
cosh

)(cosh,, xt
kd

dzkxtzxt ψψθφ +
== dd ,                            (10.4) 

while for each 22, ERxt ×∈ , the functional form ( )2)2( , xtψ , defined by (7.48) at l=2 as: 

( ) ( ) ( ) ( ) ( )[ ]∫ ′′−′== ∗

t

tdttkxt
k

gxtxt
0

2)2(2)2(2)2(  )(sin,0,,, Ωα
Ω

ψψ dd ,                   (10.5) 

is the only pertinent full solution of equation (7.34), – the solution that automatically satisfies its 

identifying conditions (7.49) at l=2: 

( ) 0,0 2)2( =xψ  (a) and 
( )

0
,

0

2)2( =








=tt
xt

∂
∂ψ

 (b),                               (10.6) 

so that, by  (7.48) at l=2, 

( ) ( ) ( ) ( )0,,,, 2)2(2)1(22)2( xtxtcxt ∗+= ψψψ   subject to ( ) 02 =c .                       (10.7) 

Substitution of (10.3) into (10.5) yields 

( ) ( )2)2(p2)2( ,
2sinh

3, xtI
kdk

gxt µψ = ,                                          (10.8) 

where 
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( ) [ ] ( )[ ]∫ ′′−⋅−′=
t

tdttkxktkxtI
0

222)2(p  )(sin)(2sin, ΩΩd ;                         (10.9) 

the subscript ‘p’ is the first letter of ‘progresive’.  

It follows from (7.66,b) that 

[ ] )( cos)cos(
2
1sin   sin βαβαβα +−−= .                                (10.10) 

Hence, the integrand of (10.9) can be developed as the following instance of (10.10): 

( )[ ] [ ]

( )[ ] ( )[ ]{ }

( )[ ] ( )[ ]{ }.2)(cos23)(cos
2
1

2)(cos23)(cos
2
1

)(2sin)(sin

2222

2222

22

xkttkxkttk

xkttkxkttk

xktkttk

⋅−+′−⋅−−′=

⋅−′+−⋅+′−=

⋅−′′−

ΩΩ

ΩΩ

ΩΩ

                  (10.91) 

Consequently, he integral (10.9) subject to (10.91) is calculated thus: 

( ) ( )[ ] ( )[ ]{ }

( )[ ] ( )[ ]

[ ] [ ] [ ] .2)(sin2)(sin
3
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3
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)(2
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




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  (10.92) 

Thus, ( )2)2( , xtψ  is given by (10.8) subject to (10.92), while ( )xt,)2(φ  is expressed in terms of 

( )2)2( , xtψ  by (10.4). Hence finally, by (5.14), 
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        (10.11) 

because 
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k

kdkd
k

kd
gk

sinh
)(

coshtanh
)(

cosh

22 ΩΩ
== .                                   (10.111) 
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10.3. The inhomogeneous terms in the boundary conditions at z = 0  in the presence 
of a standing wave 

Lemma 10.2. Under Convention 8.2, given µ ∈ −{ , }1 1 , given }1,1{ −∈ν , given 

0,022 -Ek ∈ , for each 22, ERxt ×∈ :  

( ) ( )[ ]{

( ) ( )[ ] },)(2cos2cos2cosh212cosh2

2cos2cosh1
2sinh4

1,

22

222)2(d

tkxkkdkd

xkkd
kdk

xt

Ωnµ

nα

⋅−+−+

⋅+−=
                 (10.12) 

( ) ( )222)2(k 2cos)(2sin
tanh2

, xktk
kdk

gxt ⋅−= Ωµna ,                        (10.13) 

( ) ( ) ( )

( ) ( )[ ]

( ) ( )[ ] tkxk
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k
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t

xt
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2sinh2
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)(2sin2cos1
2sinh2
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,
,

,
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2)2(k
2)2(d
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ΩnΩµ

Ωnµ

a
a

a

⋅−
−

−=

⋅−
−

−=

−
∂

∂
=d

                (10.14) 

Proof: Just as in the case of a progressive wave, I proceed from the general equations 

(10.10)–(10.30).  

1) The first summand in the square brackets on the right-hand side of equation (10.10) is 

given by (8.62'), whereas he second one is determined by (8.57b) and (8.58) as follows: 

( ) ( ) ( ) ( ) ( )

( ) ( )

[ ] ( )[ ],2cos1)(2cos1
4

tanh

)(tanh

)(
)(tanh,

,
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22
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2
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3)1(
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k
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k
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t
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k
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k
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t

xtv

⋅−+−=
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−

−

nΩµ

tΩtµ

tΩt
∂
Ω∂tµζ

∂
∂

nµ

nµ
µ

     (10.121) 

where use of the pertinent instances of (8.60) and (8.61) has been made. By (8.62') and (10.121), 

equation (10.10) becomes: 

( ) ( )[ ][ ]

( )[ ][ ]}.)(2cos12cos1tanh

)(2cos12cos2cosh
2sinh

1
4
1,

22

222)2(d

tkxkkd
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Ωµn
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+⋅−+


 −⋅+−=

       (10.122) 

This can conveniently be written as` 

( ) ( ) ( )[ ]tkxcxc
k

xt )(2cos.
4
1, 22202)2(d Ωµα += ,                              (10.123) 
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where 

( ) ( )[ ] ( )[ ]

( )
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      (10.124) 
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       (10.125) 

because 

,
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1
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12cosh2cosh
coshsinh2

sinh22cosh
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       (10.128) 

.
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sinh21tanh
2sinh

1 2

kd
kd

kd
kdkd

kd
−

=
−

=−                         (10.129) 

By the final expression in (10.124) and (10.125), equation (10.123) turns into (10.12). 

2) By (8.57a') and (8.58), equation (10.20) can be developed thus` 
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because 
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1
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1
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i
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i
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The train of equations (10.131) proves (10.13). 

3) Differentiation of both sides of equation (10.12) with respect to ‘t’ yields 

( )

( ) ( )[ ]
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      (10.141) 

where use of (7.38) has been made in developing the final expression. Substitution of (10.141) and 

(10.13) into (10.30) yields 
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     (10.142) 

because 

( ) ,2cosh2112cosh2cosh2
sinh

coshsinh22cosh2
tanh

2sinh2cosh2
2

kdkdkd
kd

kdkdkd
kd
kdkd

−=+−−=

−−=−−                   (10.143) 

where use of the instance of (8.43b) with α= kd has been made. The train of equations (10.142) 

proves (10.14). The lemma is established.• 
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10.4. The second-order approximation of the velocity potential in the presence of a 
standing wave 

In the case of a standing wave, equations (10.4)–(10.7) retain. In this case, substitution of 

(10.14) into (10.5) yields 

( ) ( ) ( )[ ] ( )2)2(s222)2( ,2cos1
2sinh2

12cosh2, xtIxk
kdk
kdgxt ⋅−

−
−= nµψ ,                  (10.15) 

where 

( ) ( )[ ]∫ ′′−′=
t

tdttktkxtI
0

2)2(s  )(sin)(2sin, ΩΩd ;                               (10.16) 

the subscript ‘s’ is the first letter of ‘standing’. The integrand of (10.6) can be developed as the 

following instance of (10.10): 

( )[ ] ( )[ ] ( )[ ]{ }
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Consequently, the integral (10.16) subject to (10.161) is calculated thus: 
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     (10.162) 

Thus, ( )2)2( , xtψ  is given by (10.15) subject to (10.162), while ( )xt,)2(φ  is expressed in terms 

of ( )2)2( , xtψ  by (10.4). Hence finally, by (5.14) and (10.111), 
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because 
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)(

tanhcosh
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2Ω
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10.5. Main general and concrete results and their implications 

 

10.5.1. Preliminary remarks 

In accordance with (5.14) (see also (7.72) and (7.73)), given an initial wave number k>0, 

given an initial amplitude a>0, the scaled partial velocity potential ( )ε,;)( xtlΦ  of the lth asymptotic 

approximation, subject to 1ω∈l , with respect to the dimensionless parameter ‘ε’, such as ka=ε , to 

the given scaled partial velocity potential ( )ε,;)1( xtΦ  of a priming (primary) progressive, or 

standing, plane monochromatic gravity water wave (briefly PPPMGWW or PSPMGWW 

respectively) on a uniform water layer of a depth -d from the equilibrium free surface z=0, – the 

wave, which serves as the first non-vanishing approximation, – is defined as:  

( ) ( ) ( ) ),(),(,;, )()()()( xtkaxtxtxt l
l

l
l

ll φφεε ==Φ=Φ   for each 1ω∈l ,              (10.18) 

where ),()( xtlφ  is the respective lth secondary non-scaled partial velocity potential; t is a time point, 

while x,y,z,x,xxxx === 3213
 , in accordance with item 4 of subsection 1.2. Given 1ω∈l , the 

functional form ),()( xtlΦ  allows in principle calculating all characteristics of the pertinent wave-

related fluid flow in the liquid layer in the lth asymptotic approximation with respect to ‘ ε ’, – such 
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characteristics particularly as the liquid velocity components ( )xtV li ,)(  for each 3,1ω∈i , the dynamic 

pressure ( )xtP l ,)(d , and the vertical displacement ( )2)( , xtlΖ  of the disturbed free surface from the 

equilibrium plane z=0, – and it also allows immediately (not mediately via ),()1( xtl+Φ ) calculating 

strictly some, i.e. some but not all,  characteristics of the ed fluid flow in the (l+1)th asymptotic 

approximation with respect to ‘ ε ’, – such characteristics particularly as the volumetric kinetic 

energy density ( )xtE l ,)(k  and the energy flux density vector (the Poynting vector) components 

( )xtQ li ,)(  for each 3,1ω∈i . The former characteristics will be called characteristics of first kind and 

the latter characteristics of second kind, with respect to ),()( xtlΦ . 

In what follows, I shall summarize various sets of the following interrelated concrete scaled 

functional forms in the case of a PPPMGWW or PSPMGWW as the first non-vanishing 

approximation; a properly specified ),()1( xtΦ , the related ),()2( xtΦ , the displacements of the free 

surface points from the equilibrium plane z=0 in the respective approximations, ( )2)1( , xtΖ  and 

( )2)2( , xtΖ , and also temporal partial derivatives of the latter, ( ) txt ∂Ζ∂ 2)1( ,  and ( ) txt ∂Ζ∂ 2)2( , . All 

formulas displayed below are subject to definitions (7.38), (8.2)–(8.4), and (8.30), i.e. subject to 

0tanh),()( >== kdgkdkk dd ΩΩ ,                                       (10.19) 

yx kkkkk ,, 212 ==  , 22
2

2
1

2
2

2
2 kkkkk =+==  , yxxxx ,, 212 ==  ,          (10.20) 

cos  sin, 11 == −
 ττ ,                                                   (10.21) 

respectively. 

 

10.5.2. The case of a progressive wave 

Given { }1,1 −∈µ : 

( ) ( ) ( )
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                          (10.22) 

– in accordance with (8.34); 
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– in accordance with (10.11); 
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         (10.25) 

– in accordance with (5.7), (6.34), (6.52), (6.55), (10.1), (10.22), and (10.23), because particularly 
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by (6.34) and (10.1), and also because 
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by (10.23); 
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             (10.27) 

– in accordance with (5.7), (6.37), (6.53), (6.55), (10.2), (10.22), and (10.23), because particularly 
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by (6.37) and (10.2), and also because 
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by (10.23), whereas 
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== ,                       (10.273) 

kdkd 2cosh2cosh21 2 +=+ ,                                          (10.274) 

by (7.38), (8.42a), and (8.43b). 

In order to be doubly sure in self-consistency of the above results, here follow 

straightforward calculations of ( ) txt ∂Ζ∂ 2)1( ,  and ( ) txt ∂Ζ∂ 2)2( ,  by differentiating both sides of 

(10.24) and both sides of (10.25) with respect to ‘t’: 
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                       (10.27a) 

which coincide with (10.26) and (10.27) respectively, as expected. 

Under the general definition 
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it follows from (10.24)–(10.27) that 
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Consequently, given ( )∞∈ ,0a , given ( )∞∈ ,0k , it follows from (10.30) that 

( ) 0
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lim,lim
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kaxt
d

t

d
.                                  (10.311) 

Also, equation (10.30) coincides with equation (4.12) in Longuet-Higgins and Stewart [1962], which 

was deduced there from intuitive considerations. 

 

10.5.3. The case of a standing wave 

Given { }1,1 −∈µ , given { }1,1 −∈ν : 
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– in accordance with (8.56); 
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– in accordance with (10.17); 
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and 
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 (to be reduced below), – in accordance with (5.7), (6.34), (6.52), (6.55), (10.12), (10.32), and 

(10.33), because particularly 
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by (6.34) and (10.12), and also because 
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by (10.33); 
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and 
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(to be reduced further below),– in accordance with (5.7), (6.37), (6.53), (6.55), (10.13), (10.32), and 

(10.33), because particularly 
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by (6.37) and (10.13), and also because 
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by (10.33) and (10.273). Equations (10.350) and (10.370) are reduced in what follows. 

Equations (10.350) can conveniently be written in the form 
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where 

( ) ( )[ ]2220 2cos2cosh13 xkkdxC ⋅+−= νd ,                                 (10.354) 
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Thus, equation (10.353) subject to (10.354)–(10.356) can be written as the following single whole 

reduced equation: 
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In analogy with (10.353) subject to (10.35r)–(10.356), equation (10.370) can conveniently be 

written in the form 
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where 

( ) ( ) ( )[ ]2221 2cos112cosh22 xkkdxD ⋅−−= νd ,                            (10.374) 
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Thus, equation (10.373) subject to (10.374) and (10.355) can be written as the following single whole 

reduced equation: 
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Just as in the case of (10.26a) and (10.27a), in order to be doubly` sure in self-consistency of 

the above results, here follow straightforward calculations of ( ) txt ∂Ζ∂ 2)1( ,  and ( ) txt ∂Ζ∂ 2)2( ,  by 

differentiating both sides of (10.34) and both sides of (10.35) with respect to ‘t’: 
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which coincide with (10.36) and (10.37) respectively, as expected. 

Under the general definition (10.28), it follows from (10.34)–(10.37) that 
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Equation (10.39) comes now instead of (10.30). By definitions (8.2)–(8.4), it follows that 
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so that ‘ ( )222cos xk ⋅ ’ is a doubly periodic functional form of the spatial variables ‘ 1x ’ and ‘ 2x ’ with 

periods 11 2 kπλ =  and 22 2 kπλ =  respectively, – a form that takes on values in the interval [–

1,1]. At the same time, given d>0, given { }1,1 −∈ν , the functional form ‘ kd2cosh1 ν+ ’ takes on 

values in the interval ( )kdkd 22 cosh2,sinh2− , by (8.43,a.b). Therefore, values of the functional form 

( )txt 2)2( ,Ζ , defined by (10.39), satisfy the relation: 
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Under the general definition 
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it follows from (10.39) that 
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(cf. (10.30)). Consequently, given ( )∞∈ ,0a , given ( )∞∈ ,0k , it follows from (10.43) that 
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(cf. (10.301)). 

 

10.5.4. Concluding remarks 

1) Equation (8.29) subject to (8.34) and equation (8.52) subject to (8.56) are particular cases 

of (10.18) at l= 1, while equations (10.11) and (10.17) are particular cases of (10.18) at l= 2. 

Accordingly, unless stated otherwise, by ‘ ),()1( xtΦ ’, I shall henceforth mean either the functional 

form defined by (8.29) subject to (8.34) or that defined by (8.52) subject to (8.56); and likewise, by 

‘Φ ( ) ( , )2 t x ’, I shall henceforth mean either the functional form defined by (10.11) or that defined by 
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(10.17). The theory of gravity water waves will be called a linear one if it is based on ),()1( xtΦ , and 

a bilinear one if it is based on ),(),( )2()1( xtxt Φ+Φ . Both )(kΩ  (defined by (7.38)) and kd2sinh  are 

of the order of k as k → 0 . Therefore, it follows from (10.11) or (10.17) that ( ) 0,)2( →Φ xt  as 

k → 0  and it also follows that, in either case, values of the functional form Φ ( ) ( , )2 t x  along with 

values of all its partial derivatives of any order are periodic in t and are bounded as t → ±∞ .  

2) In accordance with (5.8), the entire asymptotic expansion of the scaled velocity potential 

( )xt,Φ  of a fluid flow in the water layer of a uniform depth d in powers of ka subject to a priming 

progressive, or standing, plane monochromatic gravity water wave (briefly PPPMGWW or 

PSPMGWW respectively) of a wave number k and of a surface amplitude a is written as  

( ) ( ) ( ) ( )∑
∞

=
∞ =ΦΦ=Φ

1
)(]1,[ ),(,;~,;,

l
l

l xtkaxtxtxt φεε  ,                          (10.44) 

subject to a well-established an algorithm for successively calculating the non-scaled velocity 

potentials ),()( xtlφ  for all 2ω∈l . At the same time, there are known in mathematics several different 

kinds of convergence of infinite functional sequences in general and of infinite series and improper 

integrals in particular, – such kinds of convergence as absolute, conditional, uniform, and mean 

square ones (see, e.g., Apostol [1963, pp. 353, 359, 360, 390–396, 407,408] and Budak and Fomin 

[1978, pp. 319–331, 366–374]). Uniform convergence is a quite universal kind of convergence, for 

which there exist convenient tests as Caushy’s, Weierstass’, and Abel’s ones (see, e.g., Apostol 

[1963, pp. 395–396] and Budak and Fomin [1978, pp. 328–331]). In this case, uniform convergence 

implies convergence in the mean square, but not vice versa (Budak and Fomin [1978, pp. 272–274]). 

It is understood that in order to prove or disprove that a given functional series (as an asymptotic 

one) converges in a certain sense, one should employ only well-established tests for convergence of 

the given kind, and not to rely on the intuition. Unfortunately, none of the existing convergence 

criteria is applicable to an asymptotic series (10.44) for the following reason, because in contrast to 

‘ ( )xt,)2(Φ ’ calculations of ‘ ( )xt,)3(Φ ’ turn out to be intolerably prolix. Therefore, the question 

whether or not the asymptotic series (10.44) converges remains unanswered. 

3) One may, of course, assumed by analogy that ( )xtl ,)(Φ  at any 3ω∈l  and, particularly, 

( )xt,)3(Φ , and also all its partial derivatives of any order have similar properties of temporo-spatial 

periodicity and hence the same properties of boundedness at t → ±∞  as those of ( )xt,)2(Φ  and of all 
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its partial derivatives. Alternatively, one can make any other assumption regarding ( )xtl ,)(Φ  at some 

3ω∈l . In this case, however, one should remember that if it happens that for some (strictly some or 

all) 3ω∈l  ( )xtl ,)(φ  is unbounded as t → +∞  or t → −∞  then the asymptotic power series 

( )ε,;]1,[ xt∞Φ  of ( )xt,Φ , defined by (10.44), should not necessarily be divergent. In other words, there 

is no direct connection between the property of some or all coefficients ( )xtl ,)(φ  of the asymptotic 

power series ( )ε,;]1,[ xt∞Φ  to be unbounded at t → +∞  or t → −∞  on the one hand and the property 

of that series either to diverge or to converge on the other hand. Here follows an example that 

illustrates this property. 

4) It is known that for each ( )+∞∞−∈ ,X  and each 0ω∈p : 
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Therefore, given ( )x0 ∈ − ∞ +∞, , the Taylor series for ( )xx +0cos  and with respect to x, defined as 

( )x X x= − ∈ − ∞ +∞0 , ,                                               (10.47) 

about the point x0  can be written as 
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where conventionally 0! 1= . It is known that both series (10.48) and (10.49) absolutely converge for 

each x  satisfying (10.47). If, particularly, x0 0=  so that X x= , then (10.48) and (10.49) turn into 

the known Maclaurin series for ‘ cos x ’ and ‘ sin x ’ with an infinite radius of absolute convergence, 

namely, 
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Let x t0
= ω  and x t= ε , so that ( )X t= +ω ε , where ‘ω ’ and ‘ t ’ are constants, i.e. ω  and 

t  are given numbers, while ‘ε ’ is a variable that is introduced instead of ‘ x ’. In this case, equations 

(10.48) and (10.49) become 
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Thus, in spite of the fact that both series (10.51) and (10.52) absolutely converge for each 

εt ∈ −∞ +∞( , ) , each individual term of either series, except for the very first term ‘ cosωt ’ or 

‘ sinωt ’ corresponding to 0=n , is unbounded as t → ±∞ . In this case, the domain of values both of 

‘ cos X ’ and of ‘ sin X ’ is the interval [ , ]−11 , whereas the domain of values of any unbounded term 

of any one of the series (10.48)–(10.52) is either the entire set of real numbers, ( , )−∞ +∞  or one of its 

semi-infinite subsets [ , )0 +∞  and [ , )0 −∞ . Therefore, it is impossible to establish from those series 

that the functional forms ‘ cos X ’ and ‘ sin X ’ are periodic. 

5) It would be incorrect to conclude that a certain oscillatory motion of a physical system is 

unstable only on the base of the fact that, in a higher-order asymptotic approximation, the only 

coordinate, or one of the coordinates, of that motion increases indefinitely with unlimited increase of 

t (except, perhaps, for the case when the coordinate increases exponentially with t ). The 

unboundedness of the higher-order approximation may just mean that the relevant asymptotic 

expansion is not a suitable iterative algorithm for constructing a consistent perturbation theory of the 

phenomenon.  

6) The water wave problem under discussion is a non-linearW. Consequently, the infinite 

asymptotic series solving the problem does not satisfy a superposition principle in the sense that the 

term-by-term sum of two asymptotic series corresponding to two different priming progressive, or 

standing waves, is not an asymptotic series generated by the sum of the two priming waves. 
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