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Abstract

Formulas which relate basic mathematical constants, operations and prime numbers are presented. Some related
ideas are explored.

Introductory note: This text was previously published on Scribd1.

1 Introduction
The well-known Euler equation is often cited as the example of mathematical beauty. A similarly beautiful formulas
(I believe) can be related to the prime numbers. I will present formulas converging for any natural number and I will also
construct a smooth primality test function. However, unless some summation of the formulas presented later in this text
exists, the results are probably not of practical use.

2 Method
I propose here one realization of the sieve of Eratosthenes constructed with periodic functions. Let me define periodic
functions with period L (natural number) which have (within one period) the following properties:

QL(x) =


1 if x = 0 or x = L

0 if x is a natural number different from L (and 0)
arbitrary value elswhere

Then the function

Q (x) =

∞∑
L=2

QL (x)

represents a sieve-based primality test where the condition for a natural number k (> 0) is:

k is prime if and only if Q (k) = 1.

Many variants of this construction can be thought of. One might start with L = 1

Q (x) =

∞∑
L=1

QL (x)

getting then
k is prime if and only if Q (k) = 2.
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One can also define

QL(x) =


L if x = 0 or x = L

0 if x is a natural number different from L (and 0)
arbitrary value elswhere

Q (x) =

∞∑
L=2

QL (x)

leading to the condition
k is prime if and only if Q (k) = k.

Starting in this case with L = 1, Q (x) =
∑∞

L=1 Q
L (x), one has

k is prime if and only if Q (k) = k + 1.

A finite (but growing with L) realization can be constructed by truncating the summation (with k a natural number)

Q (k) =
k∑

L=2

QL (k) .

3 Realization and mathematical beauty
Different realizations of the functions QL can be proposed. A very elegant one can be written as

QL (k) =

q+L−1∑
n=q

ei
2π
L nk,

Q (k) =

Lmax∑
L=2

QL (k) .

I adopt the most natural choice q = 0 and Lmax = ∞

Q (k) =

∞∑
L=2

L−1∑
n=0

ei
2π
L nk

where the condition
k is prime if and only if Q (k) = k

applies. Obviously, many different alternatives exist: one could, for example, take the real part of this expression.
At this stage “beautiful” equalities can be constructed. A naturally elegant expressions can be written as

∞∑
L=2

L−1∑
n=0

ei
2π
L nk = k or

∞∑
L=1

L−1∑
n=0

ei
2π
L nk = k + 1 (1)

which relate a prime number k (in the “if and only if” sense) with the constants π and e and with the imaginary unit
i. Furthermore, we have the operation of multiplication (and division), exponentiation2 and addition3 (and subtraction).
Present is also the neutral element of multiplication “1” (in the sum limit for the first formula) and the neutral element of
addition “zero” (only in sum limits) . In addition, the expressions contains the infinity symbol. Moving everything on one
side of the equation one can make appear “zero” also outside the summation limits. In any of these expressions the upper
L-summation limit can be changed to k, leading so to finite (but growing) expressions.

2and in some sense also “L”-th root (radical), since L is in the denominator of the exponent.
3In the first formula the addition is represented by the symbol Σ.
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4 Further computations

4.1 Summing geometric series
The internal summation in (1) (with the outer L-summation limit modified ∞ → k) corresponds to a geometric series and
can be performed

Q (k) =
k∑

L=2

L−1∑
n=0

e2πi
n
Lk

=
k∑

L=2

[
L−1∑
n=0

(
e2πi

k
L

)n]

=
k∑

L=2

 lim
k′→k


(
e2πi

k′
L

)L
− 1

e2πi
k
L

′
− 1




=
k∑

L=2

{
lim
k′→k

[
e2πik

′ − 1

e2πi
k′
L − 1

]}
.

Unfortunately, the geometric series summation formula does not apply to series with quotient 1, which is actually an
important situation four our prime-number case. Fortunately however, the summation formula limit corresponds to the
correct value. For this reason the limit appears in the expressions above. Since the limit exists for all terms, we can, for
a finite series, interchange the order of the summation and the limit4

Q (k) = lim
k′→k

[(
e2πik

′
− 1
) k∑

L=2

1

e
2πik′

L − 1

]
. (2)

4.2 Alternative expressions for QL

The summed expression makes one think of many alternatives of the same nature: alternating function in the numerator
making it vanish for every natural number, divided by a function with period L which, in division, provides a finite
non-zero limit after L− 1 “zeros” generated by the numerator. For example

QL (x) =
1

L2

1− cos (2πx)

1− cos
(
2π
L x
)

or

QL (x) =
1

L2

sin2 (πx)

sin2
(
π
Lx
)

with “k is prime ⇔ Q (k) = 1”.

4.3 Exploiting the sum
The sum in (2) seems to be an interesting object and can be further processed5. Let me use the notation φ = 2πk′. If
there would be a way to rapidly evaluate

k∑
L=2

1

ei
φ
L − 1

, (3)

then an efficient primality test would result. I doubt any closed finite (i.e. not growing) elementary-function formula can
be found:

• If it existed it would be already known.

• The prime numbers are too complicated and “profound” to be “pinioned” by a simple formula.
4Mixing little bit the natural numbers with the real numbers, but, hopefully, in an understandable way.
5The question is, whether it is worth it...
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However, strangely enough, the real part of terms in (3) is equal to − 1
2 and can be easily summed

k∑
L=2

1

ei
φ
L − 1

=
k∑

L=2

[
Re

(
1

ei
φ
L − 1

)
+ iIm

(
1

ei
φ
L − 1

)]

=
k∑

L=2

(
−1

2

)
+ i

k∑
L=2

1

2

sin
(
φ
L

)
cos
(
φ
L

)
− 1

=
1− k

2
+

i

2

k∑
L=2

sin
(
φ
L

) [
cos
(
φ
L

)
+ 1
][

cos
(
φ
L

)
− 1
] [
cos
(
φ
L

)
+ 1
]

=
1− k

2
+

i

2

k∑
L=2

sin
(
φ
L

) [
cos
(
φ
L

)
+ 1
]

cos2
(
φ
L

)
− 1

=
1− k

2
+

i

2

k∑
L=2

sin
(
φ
L

) [
cos
(
φ
L

)
+ 1
]

1− sin2
(
φ
L

)
− 1

=
1− k

2
− i

2

k∑
L=2

cos
(
φ
L

)
+ 1

sin
(
φ
L

)
=

1− k

2
− i

2

[
k∑

L=2

cos
(
φ
L

)
sin
(
φ
L

) +
k∑

L=2

1

sin
(
φ
L

)]

=
1− k

2
− i

2

[
k∑

L=2

cot
(φ
L

)
+

k∑
L=2

csc
(φ
L

)]
.

Considering the whole expression (2), the summation of the real part does not help us. In proximity of a natural number
(especially when k = mL, with m natural), only the imaginary part plays a role and the real part vanishes . To see it,
one can use the Taylor expansion

lim
k′→k

[(
e2πik

′
− 1
) k∑

L=2

1

e
2πik′

L − 1

]
= lim

ε→0

{[
e2πi(k+ε) − 1

] k∑
L=2

1

e
2πik′

L − 1

}

= lim
ε→0

[(
e2πike2πiε − 1

) k∑
L=2

1

e
2πik′

L − 1

]

= lim
ε→0

{
[1 (1 + 2πiε)− 1]

k∑
L=2

1

e
2πik′

L − 1

}

= lim
ε→0

{
2πiε

k∑
L=2

[
Re

(
1

e
2πik′

L − 1

)
+ iIm

(
1

e
2πik′

L − 1

)]}

= lim
ε→0

[
2πiε

k∑
L=2

Re

(
1

e
2πik′

L − 1

)]
− lim

ε→0

[
2πε

k∑
L=2

Im

(
1

e
2πik′

L − 1

)]

= lim
ε→0

[
2πiε

1− k

2

]
− 2π lim

ε→0

[
ε

k∑
L=2

Im

(
1

e
2πik′

L − 1

)]

= 0− 2π lim
ε→0

{
ε

k∑
L=2

Im

[
1

e
2πi(k+ε)

L − 1

]}
.

5 Continuous function
Numerical results suggest that the expression of the type

Q (x) =

∞∑
L=2

L−1∑
n=0

ei
2π
L nx
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does not converge for real arguments different from the natural numbers. If one wants to construct a real-argument
real-value continuous function, one needs to do some modifications. A finite expression of the form

k∑
L=2

L−1∑
n=0

e2πi
n
Lk

does not provide a natural generalization to real numbers. One can rather keep the infinite summation and transform the
summed expression. It is convenient to start with

∞∑
L=2

1

L

L−1∑
n=0

e2πi
n
Lx

where the condition “x is prime ⇔ Q (x) = 1” applies. The function

QL (x) =
1

L

L−1∑
n=0

e2πi
n
Lx

is complex, in the construction I propose, the real part is taken. The new definition stands

QL (x) = Re

(
1

L

L−1∑
n=0

e2πi
n
Lx

)

= lim
x′→x

1

L
Re

(
e2πix

′ − 1

e2πi
x′
L − 1

)

= lim
x′→x

1

2L

1− cos (2πx′)− cos
(

2πx′

L

)
+ cos (2πx′) cos

(
2πx′

L

)
+ sin (2πx′) sin

(
2πx′

L

)
1− cos

(
2πx′

L

)
= lim

x′→x

1

2L

1− cos (2πx′) +
sin (2πx′) sin

(
2πx′

L

)
1− cos

(
2πx′

L

)
 .

This expression is little bit long but one should not panic: it is the real part of the average of L complex unitary vectors.
Now I want to profit from the following

lim
L→∞

1L = 1,

lim
L→∞

yL = 0 for |y| < 1

to make the function converge. The continuous function can be written as6

QR (x) =
∞∑

L=2

[
QL (x)

]L
=

∞∑
L=2

[
1

L
Re

(
L−1∑
n=0

e2πi
n
Lx

)]L
. (4)

Being too lazy to provide rigorous proof, let me provide some arguments:

• If x is far from a natural number, then all the functions QL (x) can be majorated by the same number q (x) < 1.
Consequently

∞∑
L=2

[
QL (x)

]L
can be majorated by the geometric series

∞∑
L=2

qL

which is convergent. The assumption of the possibility of majoration needs to be thought of. The real part of the
complex QL function can approach one only if all complex unitary vectors are close to one. If x is far from a natural
number this is not true7.

6I apologize for the redefinition of QL: now QL is not “the thing” which is summed over L, but
(
QL

)L is summed.
7I admit the argumentation is not sufficient.
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Figure 1: Function QR (produced with Lmax = 100).

• If x is close to a natural number, all but finite number of functions QL (x) are approaching zero. From the finite
number of those approaching one, I can choose the biggest one and use it for majoration based on a geometric series,
as in the previous case.

One may notice that a discontinuity could be produced, because rising to a growing power leads to a discontinuity at 1
(consider xn in the neighborhood of x = 1 for n → ∞). This is however not our case: this discontinuity is pushed with
increasing L to infinity because the period of the functions QL grows to infinity. The only discontinuity that QR (x) has is
thus situated at x = 0. The function can be extended to negative numbers as it is naturally an even function. The graph
of QR is plotted in Figure 1. Let me summarize the important properties of the function QR:

• QR is defined for every xεR except zero.

• If k is natural number then “k is prime ⇔ QR (k) = 1”.

• If k is natural number then QR (k) is also natural and corresponds to the number of all (natural) divisors of k greater
than 1.

The numerical computations actually suggest, a much weaker condition is enough for the sum to converge: one can take
the square of QL instead of taking the L-th power

QR (x) =
∞∑

L=2

[
QL (x)

]2
.
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I study this kind of expression later in Section 6.2.

6 Pushing calculations (too much) - brainstorming
In this section I allow myself “free” computations neglecting the mathematical rules: changing the order of infinite sums,
using expansions beyond their convergence domains, etc... This being said, I will make no more comments on this issue.
The aim is to satisfy my curiosity and see what interesting formal structures are hidden in the equations.

6.1 Power expansion of cotangent and cosecant
The power expressions for cot and csc are known. However, in order to arrive to the Riemann zeta function, it is convenient
to start with L = 1 and to switch to an infinite summation

Q (k) = lim
k′→k

[(
e2πik

′
− 1
) ∞∑

L=1

1

e
2πik′

L − 1

]

with “k is prime ⇔ Q (k) = 2”. I admit the limit is very suspicious: clearly the function is well defined for any natural
number when written in the form

Q (k) =
∞∑

L=1

L−1∑
n=0

e2πi
n
Lk.

It seems, however, it is not defined in any neighborhood of it8. Therefore, the limit expression resulting from summing up
the geometric series might not make sense (limit = approaching the natural number from its neighborhood). This said,
let me come back to the subject: after the modifications, the imaginary part of the sum looks like

Im

( ∞∑
L=1

1

ei
φ
L − 1

)
= −1

2

[ ∞∑
L=1

cot
(φ
L

)
+

∞∑
L=1

csc
(φ
L

)]

= −1

2

∞∑
L=1

[
cot
(φ
L

)
+ csc

(φ
L

)]
= −1

2

∞∑
L=1

{[ ∞∑
n=0

(−1)
n
22nB2n

(2n)!

(φ
L

)2n−1
]
+

[ ∞∑
n=0

(−1)
n+1

2
(
22n−1 − 1

)
B2n

(2n)!

(φ
L

)2n−1
]}

= −1

2

∞∑
L=1

{ ∞∑
n=0

[
(−1)

n
22nB2n

(2n)!

(φ
L

)2n−1

+
(−1)

n+1
2
(
22n−1 − 1

)
B2n

(2n)!

(φ
L

)2n−1
]}

= −1

2

∞∑
L=1

{ ∞∑
n=0

[{
(−1)

n
22n + (−1)

n+1
2
(
22n−1 − 1

)} B2n

(2n)!

(φ
L

)2n−1
]}

= −1

2

∞∑
L=1

{ ∞∑
n=0

[{
22n − 2

(
22n−1 − 1

)} (−1)
n
B2n

(2n)!

(φ
L

)2n−1
]}

= −1

2

∞∑
L=1

{ ∞∑
n=0

[{
22n − 22n + 2

} (−1)
n
B2n

(2n)!

(φ
L

)2n−1
]}

= −
∞∑

L=1

{ ∞∑
n=0

[
(−1)

n
B2n

(2n)!

(φ
L

)2n−1
]}

.

8Based on numerical observations, this needs to be shown.
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Surprisingly, a rather compact expression is obtained. Changing the summation order one has

Im

( ∞∑
L=1

1

ei
φ
L − 1

)
= −

∞∑
n=0

{ ∞∑
L=1

[
(−1)

n
B2n

(2n)!

(
1

L

)2n−1

φ2n−1

]}

=
∞∑

n=0

[
(−1)

n+1
B2n

(2n)!
φ2n−1

∞∑
L=1

(
1

L

)2n−1
]

=

∞∑
n=0

[
(−1)

n+1
B2n

(2n)!
(2πk)

2n−1
ζ (2n− 1)

]

=
∞∑

n=0

(−1)
n+1

(2π)
2n−1

ζ (2n− 1)B2n

(2n)!
k2n−1.

It is quite unfortunate that we get an odd number as the Riemann zeta function argument instead of an even one. In
the latter case we would avoid the pathology for n = 1, where ζ (1) is not defined and an explicit formula formula with
Bernoulli numbers would be available. Ignoring all the pathologies, the “formal” summary is

Q (k) = lim
k′→k

[(
e2πik

′
− 1
) ∞∑

L=1

1

e
2πik′

L − 1

]

= lim
k′→k

{(
e2πik

′
− 1
)[

Re

( ∞∑
L=1

1

e
2πik′

L − 1

)
+ iIm

( ∞∑
L=1

1

e
2πik′

L − 1

)]}

= lim
k′→k

{(
e2πik

′
− 1
)[

−k′

2
+ i

∞∑
n=0

(−1)
n+1

(2π)
2n−1

ζ (2n− 1)B2n

(2n)!
k′2n−1

]}
k is natural

= lim
ϵ→0

[
−2πε

∞∑
n=0

(−1)
n+1

(2π)
2n−1

ζ (2n− 1)B2n

(2n)!
(k + ε)

2n−1

]

= lim
ϵ→0

[
ε

∞∑
n=0

(−1)
n
(2π)

2n
ζ (2n− 1)B2n

(2n)!
(k + ε)

2n−1

]
.

6.2 Exploring “alternative” sine-based expression
Numerical results ( = increasing Lmax) about the summation

Q (x) =

∞∑
L=1

1

L2

sin2 (πx)

sin2
(
π
Lx
) (5)

are ambiguous. Their optimistic interpretation is: the sum converges and is worth to be studied. I start by putting the
L-independent term in front of the summation symbol

Q (k) = lim
k′→k

[
sin2 (πk′)

∞∑
L=1

1

L2

1

sin2
(
π
Lk

′
)] .

Further, one has

1

sin2 (α)
= csc2 (α)

=
+∞∑

k=−∞

1

(kπ + α)
2 .
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So9

Q (k) = lim
k′→k

[
sin2 (πk′)

∞∑
L=1

1

L2

+∞∑
q=−∞

1(
qπ + π

Lk
′
)2
]

= lim
k′→k

sin2 (πk′) ∞∑
L=1

1

L2

+∞∑
q=−∞

1(
qπL+πk′

L

)2


= lim
k′→k

[
sin2 (πk′)

∞∑
L=1

L2

L2

+∞∑
q=−∞

1

(qπL+ πk′)
2

]

= lim
k′→k

[
sin2 (πk′)

π2

∞∑
L=1

+∞∑
q=−∞

1

(qL+ k′)
2

]

= lim
k′→k

 sin2 (πk′)
π2

+∞∑
q=−∞

∞∑
L=1

1[
q
(
L+ k′

q

)]2


= lim
k′→k

 sin2 (πk′)
π2

+∞∑
q=−∞

1

q2

∞∑
L=1

1(
L+ k′

q

)2


= lim
k′→k

{
sin2 (πk′)

π2

+∞∑
q=−∞

1

q2

[
ζ

(
2,

k′

q

)
− 1

k′2

q2

]}

= lim
k′→k

{
sin2 (πk′)

π2

+∞∑
q=−∞

1

q2

[
ζ

(
2,

k′

q

)
− q2

k′2

]}

= lim
k′→k

 sin2 (πk′)

π2

+∞∑
q=−∞

ζ
(
2, k′

q

)
q2

− 1

k′2


= lim

k′→k

sin2 (πk′)

π2


+∞∑
q=1

ζ
(
2, k′

q

)
q2

+
ζ
(
2,−k′

q

)
q2

− 2

k′2

+

 lim
q→0

ζ
(
2, k′

q

)
q2

− 1

k′2

 .

Expression is rather ugly, not very simple and limits appear. But, surprisingly enough, numerical computation suggest
that this expression is a “good” one. It seems the expression 5 indeed converges, limits exist and the numerator and the
denominator are finite in the neighborhood of a natural number. They can be calculated for k + ε (k being natural) and
their ratio taken. The true question now is: how quickly the expression converges with respect to qmax and how does it
correlate with the size of the natural number k one wants to check for primality. I use WxMaxima and observe (on a
standard computer):

• If I check for primality of the 1000-th prime number k = 7919 and I take ε = 10−6, qmax = 104, then the test works
and takes couple of seconds.

• The test with the previous settings is successful for k = 9931.

• The test with the previous settings fails for k = 10067 (the next prime number after k = 9931).

The correlation seems to be quite unfortunate: I summed over L, but it seems the q variable took exactly its function, the
test works if k ≲ qmax, no better. Nobody expects to get a summation-free expression. One however hopes to trade the
“unfortunate” L-summation for a different summation that would not strongly depend of the size of k. This is the only
case I managed to sum over L: the trade happened, the profit is zero. Let me remind you that for this case the condition
“k is prime ⇔ Q (k) = 2” applies. The WxMaxima code is in Appendix.

6.3 Partial fraction expansion of cotangent and cosecant
Haven found additional expansions for cot and csc I come back to investigating the sum

∞∑
L=1

cot

(
π
2k

L

)
+ csc

(
π
2k

L

)
.

9ζ stands for the Hurwitz zeta function.

9



One has

π cot (πx) =
1

x
+

∞∑
n=1

2x

x2 − n2
, π csc (πx) =

1

x
+

∞∑
n=1

(−1)
n
2x

x2 − n2
,

so

cot (πx) =
1

π

(
1

x
+

∞∑
n=1

2x

x2 − n2

)
, csc (πx) =

1

π

(
1

x
+

∞∑
n=1

(−1)
n
2x

x2 − n2

)
.

This implies

Im

( ∞∑
L=1

1

ei
φ
L − 1

)
= −1

2

∞∑
L=1

[
cot

(
π
2k

L

)
+ csc

(
π
2k

L

)]

= −1

2

∞∑
L=1

[
1

π

(
1
2k
L

+
∞∑

n=1

2 2k
L(

2k
L

)2 − n2

)
+

1

π

(
1
2k
L

+
∞∑

n=1

(−1)
n
2 2k

L(
2k
L

)2 − n2

)]

= − 1

2π

∞∑
L=1

[
L

k
+

∞∑
n=1

4
Lk

4
L2 k2 − n2

+
∞∑

n=1

(−1)
n 4

Lk
4
L2 k2 − n2

]

= − 1

2π

∞∑
L=1

[
L

k
+

4k

L

( ∞∑
n=1

1
4
L2 k2 − n2

+
∞∑

n=1

(−1)
n

4
L2 k2 − n2

)]

= − 1

2π

∞∑
L=1

[
L

k
+

8k

L

∞∑
n=1

1
4
L2 k2 − (2n)

2

]

= − 1

2π

∞∑
L=1

[
L

k
+

8k

L

∞∑
n=1

1
4
L2 k2 − 4n2

]

= − 1

2π

∞∑
L=1

[
L

k
+

2k

L

∞∑
n=1

1
1
L2 k2 − n2

]

= − 1

2π

∞∑
L=1

[
L

k
+

2k

L

∞∑
n=1

1
k2−L2n2

L2

]

= − 1

2π

∞∑
L=1

[
L

k
+

2k

L

∞∑
n=1

L2

k2 − L2n2

]

= − 1

2π

∞∑
L=1

[
L

k
+ 2kL

∞∑
n=1

1

k2 − L2n2

]

= − 1

2π

∞∑
L=1

[
L

k
+ 2kL

∞∑
n=1

1

k2
(
1− L2n2

k2

)]

= − 1

2π

∞∑
L=1

[
L

k
+ 2

L

k

∞∑
n=1

1

1− L2n2

k2

]

= − 1

2π

∞∑
L=1

[
L

k

(
1 + 2

∞∑
n=1

1

1− L2n2

k2

)]

= − 1

2πk

∞∑
L=1

(
L+ 2L

∞∑
n=1

1

1− L2n2

k2

)
.

A compact expression is obtained, but I do not see how it could be processed any further. One would like to switch the
summations, in order to get rid of the L-sum. It is clear that, to test an entire number k, one needs to sum L ∼ k terms,
which is bad (if we want to get an efficient primality test). But presumably the sum of the type

∞∑
m=1

m

1− a2m2
↔

∞∑
L=1

L

1− n2

k2 L2

diverge for any a (probably becoming too close to a harmonic series with increasing m). It seems the summation oven n
can be done, but this is “one step forward and one step back”, returning to an expression summed over different period
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lengths. The following formula may be true10

∞∑
n=0

1

1− a2n2
=

1

2
+

1

2a
π cot

(π
a

)
,

so

Im

( ∞∑
L=1

1

ei
φ
L − 1

)
= − 1

2πk

∞∑
L=1

(
L+ 2L

∞∑
n=1

1

1− L2n2

k2

)

= − 1

2πk

∞∑
L=1

(
L− 2L+ 2L

∞∑
n=0

1

1− L2n2

k2

)

= − 1

2πk

∞∑
L=1

[
2L

( ∞∑
n=0

1

1− L2

k2 n2

)
− L

]

= − 1

2πk

∞∑
L=1

{
2L

[
1

2
+

1

2L
k

π cot

(
π
L
k

)]
− L

}

= − 1

2πk

∞∑
L=1

{
2L

[
1

2
+

k

2L
π cot

(
πk

L

)]
− L

}

= − 1

2πk

∞∑
L=1

[
kπ cot

(
πk

L

)]

= −1

2

∞∑
L=1

cot

(
πk

L

)
.

Expression is nice, but summation over period lengths remains. A very small step “forward” can be claimed: instead two
trigonometric functions, only one appears. This could be probably achieved using some standard trigonometric identities.
To get a finite formula I apply the cutoff Lmax = k. The primality test then looks like

lim
k′→k

[(
e2πik

′
− 1
) k∑

L=1

1

e
2πik′

L − 1

]
= −2π lim

ε→0

{
ε

k∑
L=1

Im

[
1

e
2πik′

L − 1

]}

= π lim
ε→0

ε
k∑

L=1

cot

[
π (k + ε)

L

]
.

It is certainly a nice expression, with the criterion “k is prime ⇔ Q (k) = k + 1”.

6.4 Removing limit for n-summed expression
In the expression with the sine function

QL (x) =
1

L2

sin2 (πx)

sin2
(
π
Lx
)

the Chebyshev polynomials of the second kind Un can be used to remove the limit. The procedure stands

1

L2

sin2 (πx)

sin2
(
π
Lx
) =

[
sin
(
Lπx

L

)
L sin

(
πx
L

)]2

=

[
sin
(
πx
L

)
UL−1

[
cos
(
πx
L

)]
L sin

(
πx
L

) ]2
=

1

L2
U2
L−1

[
cos
(πx
L

)]
Getting so

Q (k) = lim
k′→k

∑
L

1

L2

sin2 (πk′)

sin2
(
π
Lk

′
)

=
∑
L

1

L2
U2
L−1

(
cos

πk

L

)
.

10Suggested by Wolfram Mathematica online “Series Calculator”.
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I doubt this helps in any way, but it is nice to see the limit disappear.

6.5 Three sums reordered
One can take the real part of the initial expression

∞∑
L=2

L−1∑
n=0

ei
2π
L nk

and try to proceed with three sums (Bj refers to the Bernoulli polynomials)

Re

[ ∞∑
L=2

L−1∑
n=0

exp

(
i
2π

L
nk

)]
=

∞∑
L=2

L−1∑
n=0

cos

(
2π

L
nk

)

=
∞∑

L=2

L−1∑
n=0

∞∑
j=0

(−1)
j

(2j)!

(
2π

L
nk

)2j

=
∞∑
j=0

(−1)
j
(2π)

2j

(2j)!
k2j

∞∑
L=2

L−1∑
n=0

1

L2j
n2j

=

∞∑
j=0

(−1)
j
(2π)

2j

(2j)!
k2j

∞∑
L=2

1

L2j

L−1∑
n=0

n2j

=
∞∑
j=0

(−1)
j
(2π)

2j

(2j)!
k2j

∞∑
L=2

1

L2j

B2j+1 (L)−B2j+1 (0)

2j + 1

=

∞∑
L=2

[B1 (L)−B1 (0)] +

∞∑
j=1

(−1)
j
(2π)

2j

(2j)!
k2j

∞∑
L=2

1

L2j

B2j+1 (L)

2j + 1

=
∞∑

L=2

[
L− 1

2
+

1

2

]
+

∞∑
j=1

(−1)
j
(2π)

2j

(2j)!
k2j

∞∑
L=2

1

L2j

B2j+1 (L)

2j + 1

=
∞∑

L=2

L+
∞∑
j=1

(−1)
j
(2π)

2j

(2j)!
k2j

∞∑
L=2

1

L2j

B2j+1 (L)

2j + 1

=

∞∑
L=2

L+

∞∑
j=1

(−1)
j
(2π)

2j

(2j)! (2j + 1)
k2j

∞∑
L=2

B2j+1 (L)

L2j

One however arrives to the pathology
∑∞

L=2 L.
More might be expected from squaring the “normalized” expression (i.e. with the 1/L factor), the numerical analysis
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suggests it converges for positive real numbers (as already mentioned). Formal procedure looks like

∞∑
L=2

[
1

L

L−1∑
n=0

cos

(
2π

L
nk

)]2
=

∞∑
L=2

1

L2

[
L−1∑
n=0

cos

(
2π

L
nk

)]2
(∑

w

aw

)2

=
∑
q,w

aqaw

=
∞∑

L=2

1

L2

L−1∑
n=0

L−1∑
m=0

[
cos

(
2π

L
nk

)
cos

(
2π

L
mk

)]

=
∞∑

L=2

1

L2

L−1∑
n=0

L−1∑
m=0

[cos (ak) cos (bk)]

with a =
2π

L
n and b =

2π

L
m

=
∞∑

L=2

1

L2

L−1∑
n=0

L−1∑
m=0

∞∑
j=0

(−1)
j

(2j)!

[
j∑

q=0

(
2j
2q

)
a
2(j−q)
n,L b2qm,L

]
k2j

=
∞∑
j=0

(−1)
j

(2j)!
k2j

j∑
q=0

(
2j
2q

) ∞∑
L=2

1

L2

L−1∑
n=0

L−1∑
m=0

(
2π

L
n

)2(j−q)(
2π

L
m

)2q

=

∞∑
j=0

(−1)
j

(2j)!
k2j

j∑
q=0

(
2j
2q

)
(2π)

2(j−q)
(2π)

2q
∞∑

L=2

1

L2

L−1∑
n=0

L−1∑
m=0

1

L2(j−q)
n2(j−q) 1

L2q
m2q

=
∞∑
j=0

(−1)
j

(2j)!
k2j

j∑
q=0

(
2j
2q

)
(2π)

2j
∞∑

L=2

1

L2

1

L2j

L−1∑
n=0

n2(j−q)
L−1∑
m=0

m2q

=
∞∑
j=0

(−1)
j
(2π)

2j

(2j)!
k2j

j∑
q=0

(
2j
2q

)
×

∞∑
L=2

1

L2

1

L2j

B2(j−q)+1 (L)−B2(j−q)+1 (0)

2 (j − q) + 1

B2q+1 (L)−B2q+1 (0)

2q + 1

=
∞∑
j=0

(−1)
j
(2π)

2j

(2j)!
k2j

j∑
q=0

(
2j
2q

)
(2π)

2j

(2j − 2q + 1) (2q + 1)
×

∞∑
L=2

[
B2(j−q)+1 (L)−B2(j−q)+1

]
[B2q+1 (L)−B2q+1]

L2(1+j)

=

∞∑
j=0

λ (j) k2j

where

λ (j) =

j∑
q=0

(
2j
2q

)
(−1)

j
(2π)

2j

(2j − 2q + 1) (2q + 1) (2j)!

∞∑
L=2

[
B2(j−q)+1 (L)−B2(j−q)+1

]
[B2q+1 (L)−B2q+1]

L2(1+j)
.

Three (too much) sums remain and, in addition, numerical computations suggest a divergent behavior.
Many other possibilities could be investigated. For example, one could from the beginning interchange the L and n

summation realizing that the two double sums

∞∑
L=1

L−1∑
n=0

,

∞∑
n=0

∞∑
L=n+1

cover the same region in the L, n plane. Loosing my hopes about possible better convergence properties of such and similar
approaches, I stop my investigations here.
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7 Conclusion
I addressed two points in this text: beauty and efficiency. I believe I succeeded in finding beautiful formulas, but I did
not managed to convert them into an efficient primality test (this being presumably related to the L-summation). I think
I made clear that the expressions of the form ∑

L

g
(φ
L

)
,

where g is an exponential or a trigonometric function, play an important role in the prime-number mathematics.
Looking on the internet I discovered a huge amount of existing mathematical information, tools and methods which

could be used in this domain and may allow for further treatment of the above expressions. As a mathematical hobbyist,
I would need to invest more time and energy to further explore this topic than I actually can.

I apologize for too detailed computations. I appreciate when an author is very detailed, so try to be I.

Appendix

WxMaxima code for primality test with Hurwitz zeta function (sine-based expression)

load (" b f f a c ") $
prec : 30$
hwzInSum(k , q ) := ( b fhzeta (2 , k/q , prec ) + bfhzeta (2 ,−k/q , prec ) )/ q^2 − 2/k^2;
hwzSum(k , qMax) := sum(hwzInSum(k , q ) , q , 1 , qMax ) ;
hwzPrime (k , eps , qMax) := ( s i n (%pi ∗( k+eps ))^2/% pi^2

∗ ( b fhzeta ( 2 , ( k+eps )/ eps , prec )/ eps^2 − 1/(k+eps )^2
+ hwzSum(k+eps , qMax) ) ) ;

f l o a t ( hwzPrime (9931 , 0 . 000001 , 10000 ) ) ;
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