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Abstract 

 

Many have suggested that the infinite set has a fundamental problem. The 

usual complaint rails against the actually infinite which (say critics of 

various finitist persuasions) unjustifiably goes beyond  the finite. Here we 

identify the exact opposite. The problem of the infinite set defined to have 

an identity (content) that is specified and restricted to be forever finite . 

 

Set theory is taken at its word. The existence of the infinite set and the 

representation of irrational reals as infinite sets of terms is accepted. In this 

context, it is shown that the standard definition of the infinite countable set 

is inconsistent with the existence of its own classic convergents of 

construction. If the set is  infinite then it must be quite unlike that which set 

theory asserts it to be. 

 

Set theory found itself in some trouble over a century ago trusting an 

unrestricted  anthropic comprehension. But serious doubt is cast on the 

validity of infinite sets which have been defined by a comprehension which 

overly-restricts  their content. 
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1. Set Totality Theorem 

The standard definition of a countable infinite set is inconsistent 

with the foundation of its own infinite sequence of construction. 

Definitions 

[A] Let the set 𝑆 be an infinite countable set of elements: 

𝑆 =  {𝑠1 , 𝑠2  … 𝑠𝑘  … }    (∀𝑘 finite) 

[B] Let the partial collections or convergents  of construction 

of  𝜆1 be the infinite sequence of finite sets: 

𝑆1  ,    𝑆2          …  𝑆𝑘                         … 

{𝑠1 }, {𝑠1 , 𝑠2 }  … {𝑠1 , 𝑠2  … 𝑠𝑘  … }  …  

[C] By standard definition and assumption, every element of the countable 

infinite set {𝑠1 , 𝑠2, 𝑠3  … }  is indexed by a natural number: 

𝑧 ∈ {𝑠1 , 𝑠2 , 𝑠3  … }  →  ∃𝑘  ( 𝑧 = 𝑠𝑘 ∈  {𝑠1 , 𝑠2  … 𝑠𝑘 } )  (1) 

 

Theorem Proof 

The set 𝑆 is a proper superset of every one of its indexed convergents: 

𝑆 ⊃ ⋯ 𝑆𝑘 …  ⊃ 𝑆3  ⊃ 𝑆2  ⊃ 𝑆1    (2a) 

→ 𝑆 ⊃ ( 𝑆𝑘   ∀𝑘 )  (2b) 

Expanding the element content of 𝑆 and its convergents: 

→ {𝑠1 , 𝑠2 , 𝑠3  … } ⊃ ( {𝑠1 , 𝑠2  … 𝑠𝑘} ∀𝑘 )  (3) 

By the meaning of the proper superset relation: 

→ ∃𝑧 ∈ {𝑠1 , 𝑠2 , 𝑠3  … }    ( 𝑧 ∉  {𝑠1 , 𝑠2  … 𝑠𝑘}  ∀𝑘 )     (4) 

Not every element of {𝑠1 , 𝑠2 , 𝑠3  … } is indexed by a natural number. 

Contradiction between (1) and (4). 

QED. 
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2 Taking Set Theory at its Word 

Are we misled by the Set Totality theorem ?  One simple way to get closer to the 

argument is to consider a sequence of finite cases. 

 

Let 𝑆 be an infinite countable set and 𝑆1  , 𝑆2  … 𝑆𝑘  its first 𝑘 convergents of 

construction.  We (should) have no hesitation in accepting the following sequence of 

implications: 

 

𝑆 ⊃ 𝑆1    

→ ∃𝑧 ∈ 𝑆  ( 𝑧 ∉ 𝑆1  )   

 

𝑆 ⊃ 𝑆2 ⊃ 𝑆1    

→ ∃𝑧 ∈ 𝑆  ( 𝑧 ∉ 𝑆2  &  𝑧 ∉ 𝑆1 )   

⋮ 

𝑆 ⊃ 𝑆𝑘   ⊃ ⋯  ⊃ 𝑆2 ⊃ 𝑆1   

→ ∃𝑧 ∈ 𝑆  ( 𝑧 ∉ 𝑆𝑘   & … &  𝑧 ∉ 𝑆2   &  𝑧 ∉ 𝑆1 )   

 

That is, for the case of 𝑘 finite, no matter how large; 

 ∃𝑧 ∈ 𝑆  ( 𝑧 ∉ 𝑆𝑖   ∀𝑖 = 1, 𝑘)   

 

What we understand from each small case (finite 𝑘) is unambiguously shown. But it is 

irrelevant that the case is small 1. There is no reason to think that the result would not  

apply in the infinite case.  Taking set theory at its word – that the infinite collection is 

nothing more than  a natural totality of all finitely indexed instances – why would the 

result be any different if we let the index domain be extended to all  natural numbers ? 

In fact mathematical induction over the above sequence of implications can be used to 

derive  ∃𝑧 ∈ 𝑆  ( 𝑧 ∉ 𝑆𝑖   ∀𝑖)  . 

 

The Set Totality theorem has been described for the case of any simple infinite but 

countable set 𝑆 and each of its finite convergents.  This means it must apply to the 

archetype infinite set of ZF set theory { 0 , 1 , 2 , …  } and to the classic general real 

quantity expressed as an infinite set of bits. 

 

 

 

 

 
1  From a turn of phrase used by Prof James Franklin (UNSW) [1] 

  



The Simple Infinite Set 

4 © Ken Seton 

 

3. As Applied to an Irrational Real 

The standard definition of a countable infinite set is inconsistent 

with the foundation of its own infinite sequence of construction. 

Definitions 

[A] Let an irrational real 𝜆1 on the unit interval [0,1]  

be specified as an infinite binary series of terms  𝜆 1𝑘 : 

𝜆1  =  
1

21 [0/1] +
1

22 [0/1]   + ⋯ +  
1

2𝑘 [0/1] + ⋯   

       =  𝜆 11        + 𝜆 12           + ⋯ +  𝜆 1𝑘         + ⋯   

The real 𝜆1 can be represented  by an infinite subset of the 

included elements of the binary base set  { 
1

21
 ,

1

22
 ,

1

23
 … } : 

𝜆1  ∼  { 𝜆 11 , 𝜆 12  … 𝜆 1𝑘  … }    (∀𝑘 such that  𝜆 1𝑘 =  
1

2𝑘  ≠ 0 ) 

[B] Let the infinite sequence of rational reals: 

 𝜆 1
1 ,     𝜆 2

1              …  𝜆 𝑘
1  … 

be the partial sums or convergents  of construction of  𝜆1  , 

similarly represented as (finite) subsets of the binary base set: 

{ 𝜆 11 }, { 𝜆 11 , 𝜆 12 }  … { 𝜆 11 , 𝜆 12 , … 𝜆 1𝑘} …  

[C] By standard definition and assumption, every element of the countable 

infinite set { 𝜆 11 , 𝜆 12 , 𝜆 13 … }  is indexed by a natural number: 

𝑧 ∈ { 𝜆 11 , 𝜆 12 , 𝜆 13 … }  →  ∃𝑘  ( 𝑧 = 𝜆 1𝑘 ∈  { 𝜆 11 , 𝜆 12 , … 𝜆 1𝑘} )  (1) 

 

Theorem Proof 

The real 𝜆1 is a superset of each and every one of its indexed convergents: 

𝜆1 ⊃ …  𝜆 𝑘
1 …  ⊇  𝜆 3

1  ⊇  𝜆 2
1  ⊇  𝜆 1

1   (2a) 

→ 𝜆1 ⊃ (  𝜆 𝑘
1 ∀𝑘 )  (2b) 

Expanding the element content of 𝜆1 and its convergents: 

→ { 𝜆 11 , 𝜆 12 , 𝜆 13 … } ⊃ ( { 𝜆 11 , 𝜆 12 , … 𝜆 1𝑘} ∀𝑘 )  (3) 

By the meaning of the proper superset relation: 

→ ∃𝑧 ∈ { 𝜆 11 , 𝜆 12 , 𝜆 13 … }    ( 𝑧 ∉  { 𝜆 11 , 𝜆 12 , … 𝜆 1𝑘}  ∀𝑘 )     (4) 

Not every element of { 𝜆 11 , 𝜆 12 , 𝜆 13 … } is indexed by a natural number. 

Contradiction between (1) and (4). 

QED. 
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4 The Objection Domain 

If we accept the existence of the irrational real 𝜆1 represented as an infinite set of series 

terms, it is a superset of every one of its finite convergents  𝜆 𝑘
1 . If this were not the 

case 𝜆1 would be rational.  This establishes (2) of the theorem.  Now of course the set 

of elements { 𝜆 11 , 𝜆 12 , 𝜆 13 … } always contains some  element in addition to the 

elements of any { 𝜆 11 , 𝜆 12 , … 𝜆 1𝑘}. A proper observation is that this can be satisfied 

by a different  indexed element for each  𝜆 𝑘
1 and this promotes a sceptical critique 

that the inference at (4) of the theorem is invalid. 

 

The observation is correct but the objection wrong. 

The Set Totality theorem does not  seek to find element(s) of the convergents that 

reside as-it-were closer and closer to the ultimate content of 𝜆1 , as if pursuing some 

prey across the plains of the potentially infinite, one-foot-after-the-other.  It uses the 

extant understanding that 𝜆1 is a fixed set.  And it is a superset of any  of the indexed 

convergents. One will not and cannot locate a 𝑘 for which this is not true.  This means 

that it is true  ∀𝑘 .  The meaning of the superset relation then provides the content 

implication for the sets of terms that correspond to the set and its convergents. 

 

The objection fails because it is asserting that ∀𝑘 means other than  a totality of all finite 

index values.  It says in effect that only the potential  infinite is permitted. This disowns 

the leap that mathematical induction is able to take to the conclusion ∀𝑘 and is a 

rejection of set theory’s leap to the actually infinite set. 

 

On the other hand, the theorem has traction because it accepts the representation of 𝜆1 

as an actually  infinite set and the quantification ∀ as exhaustive and complete over all  

finite values of the index and therefore decisive for the proposition. It is so abundantly 

clear that the set representation of an irrational real 𝜆1 is a proper superset of all  of its 

finitely indexed convergents … that one is left wondering just where the objection can 

obtain any support at all, other than by appeal to definition and authority. 

 

A key perspective arising from the theorem is that the projection or leap from the 

convergents of construction to the fixed infinite set is matched by a simultaneous 

projection or leap of the set’s content.  The indexed sequence of set convergents is 

always synchronized with the content  of the sequence.  Given the formation of the 

infinite set, why would we imagine that the corresponding content  of the sequence 

could have any imperative other than to take that same leap ? 

 

The act of making the set actually infinite  has of necessity forced its identity beyond 

the finitely indexed realm.  The leap to the infinite cannot yield a set that is otherwise. 

 

  



The Simple Infinite Set 

6 © Ken Seton 

 

5. Quite Unlike that which Set Theory Asserts 

There are significant consequences arising from the Set Totality theorem. 

On the one hand, it would be concluded by many a finitist that it is invalid nonsense to 

assert the existence of the single set totality of (say) all the natural numbers.  Most 

attacks on infinite set theory come from this direction.  And many paradoxes and 

ridiculi proffered in support arise from the inconsistency identified by the theorem. 

 

On the other hand, one might accept that reals such as 1 2𝜋⁄  exist, with a commensurate 

representation as infinite sets.  In this case, by the Set Totality theorem, an infinite  set 

representing that real must contain at least one element other than  those contained in 

any of the finitely indexed convergents of its construction.  And it is clear what these 

[non-indexed] elements must be: 

 

       { 𝜆 11 },   { 𝜆 11 , 𝜆 12 }  …  ↷ {      𝜆 11 , 𝜆 12    … [0]  }  

       { 𝜆 1
1 },   { 𝜆 1

1 ,  𝜆 2
1 }  … ↷ {    𝜆 1

1 ,  𝜆 2
1   …  [𝜆1] }   

{  }, { 0 },       { 0,1 }               … ↷ { 0 , 1 ,       2 ,     … [𝜔] }  

 

The ultimate set of the last line above, the archetype infinite set of set theory, must 

necessarily  contain a transfinite element.  It is somewhat ironic that if we embrace the 

actually  infinite set, the formation of the set forces the presence of the transfinite in 

the set .  The theorem shows us that the set necessarily contains a transfinite element 

- that is, an element not equal to any finite natural number.  So let us call this element 

𝜔.  No longer do we have to define 𝜔 as  { 0, 1, 2 , … } . In this sense the Set Totality 

theorem provides a kind of heuristic proof that the transfinite exists, albeit by 

assuming that we can  form the set. Firstly, the set itself can be described as transfinite, 

because it exists other than as one of the finitely indexed convergent sets in the 

sequence of its construction.  But the set is (correspondingly) also transfinite because 

its identity (content) is not all finitely indexed per  that sequence of construction. 

 

If infinite sets are to be accepted and contradiction is to be avoided, the above sets 

(or any sets that contain such sequences of elements) do not exist without  also 

containing the relevant [non-indexed] limit elements.  And this has great consequence. 

Infinite sets are quite unlike that which set theory asserts they be.  To cut to the chase: 

 

 

 

 

  

The rationals can be listed . 

But the rationals cannot be formed into a single infinite set  without that 

set containing all reals .  The set of all rationals  is the set of all reals . 
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6. A Good Idea at the Time 

It is easy to imagine that one defines, or granting a construction, extracts or creates the 

collection of finite numbers. 0, 1, 2, 3, …  Supported by familiarity and a supposed 

integrity of definition, one might feel that it cannot be a mistake to conceptualize the 

idea that there exists a totality or single set  of all but only such numbers.  Such a single 

set seems to be in complete harmony with the element contributions from the 

construction, so what could possibly be wrong with it ? It is a set Cantor [2,P86] would 

have identified as  

 

a collection into a whole of definite and separate objects 

of our intuition or our thought. 

 

And the extant definition of the countable infinite set does  continue to be supported 

essentially on the basis of our intuition or thought .  It is a conceptualization that sits 

easily and lightly in the mind’s eye.  But as with the historical troubles of set theory, it 

is naïve to assume automatically that what we  prefer, imagine or assert can just be so. 

It is known that an unrestricted  formation of very large sets can lead to contradiction.  

But the formation of actually infinite  sets restricted  to contain only finitely indexed 

elements  is also contradictory. 

 

Aristotle , Gauss and many a philosopher, church father and lay thinker, known and 

unknown, have rejected the idea of the completed infinite sequence of natural 

numbers.  And they are of course correct, in that each is understanding the natural 

numbers as an infinite list .  And as a list  0, 1, 2, 3, …  has no  natural maximum. 

 

Cantor was right to explore the infinite as a meaningful mathematical concept.  But who 

could resist the weight of history, the opinions of such giants as Aristotle and Gauss or 

the logic itself.  In this context, there was only one solution: the never-ending sequence 

without maximum was to be maintained and placed inside  a single fixed collection, the 

set.  And as a new principle of generation, this single object  was to be made the first 

transfinite  ordinal.  It seemed like a good idea at the time.  Indeed, it was a great idea.  

But the Set Totality theorem is proof that this infinite set is inconsistent.  That in the 

fullness of its identity the set  of all natural numbers must itself contain at least one 

element that is not  a natural number.  The transfinite makes its appearance in the set 

by the act  of set formation itself … and in a sense, it is placed where all intuition always 

said it would be when imagining a list; juxtaposed with but beyond the great chasm at 

the transfinite end  of the endless natural  sequence. 
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There remains today an attitude concerning the infinite that: 

Infinite totalities do not exist in any sense of the word (i.e. either 

really or ideally). More precisely, any mention, or purported mention, 

of infinite totalities is, literally, meaningless. Nevertheless, we should 

act as if infinite totalities really existed.  

These words are from Abraham Robinson [3, P230], a student of Abraham Fraenkel. 

They express a typically modern depending-on-the-company-one-keeps nominalism. 

It is a duplicitous, somewhat imprecise and certainly far from bold understanding of 

the mathematical infinite. 

 

And it is a nonsensical understanding that does mathematics no service.  To the realist, 

for whom the infinite holds no automatic terrors, the actually infinite is neither more 

nor less meaningful or real than the tangents to a circle and vanishing points, negative 

numbers and their roots or the existence of the real 1
2𝜋⁄   and its commensurate 

expression as a sum of discrete finitely defined rationals. 

 

The difficulty here is not with the idea of the set, or even the actual infinite.  The 

problem is with the contradictory schizomorphic actually infinite set  constrained to 

be forever finite . 

 

Whether he saw it or not, this hybrid infinite set is surely a candidate for Hermann 

Weyl’s inner instability of the foundations  when he wrote [4] in 1920: 

 

The antinomies of set theory are usually regarded as border skirmishes 

that concern only the remotest provinces of the mathematical empire … 

(but) every earnest and honest reflection must lead to the realization 

that the troubles … (are) symptoms (of an) inner instability of the 

foundations upon which the structure of the empire rests. 

 

The very existence of the Set Totality theorem should give us pause, because it uses 

simple every-day logic. A logic happily used and accepted in other contexts as 

transparent and definitive.  Given the implications that rest upon the theorem’s efficacy 

– and because  it is so simple – one would hope and expect that a refutation is not 

argued merely on the grounds that it is  simple, challenges definition or just cannot be 

right. 
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