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In the year 2017 it was formally conjectured that if the Bender-Brody-Miiller (BBM) Hamiltonian
can be shown to be self-adjoint, then the Riemann hypothesis holds true. Herein we discuss the
domain and eigenvalues of the Bender-Brody-Miiller conjecture. Moreover, a second quantization
of the BBM Schrédinger equation is performed, and a closed-form solution for the nontrivial zeros
of the Riemann zeta function is obtained. Finally, it is shown that all of the nontrivial zeros are
located at R(z) = 1/2.

I. INTRODUCTION

It was recently shown in [I] that the eigenvalues of a Bender-Brody-Miiller (BBM) Hamiltonian operator correspond
to the nontrivial zeroes of the Riemann zeta function [2]. Although the BBM Hamiltonian is pseudo-Hermitian, it
is consistent with the Berry-Keating conjecture [3, [4]. The eigenvalues of the BBM Hamiltonian are taken to be the
imaginary parts of the nontrivial zeroes of the zeta function
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The idea that the imaginary parts of the zeroes of Eq. are given by a self-adjoint operator was conjectured by
Hilbert and Pélya [5]. Formally, Hilbert and Pdélya determined that if the eigenfunctions of a self-adjoint operator
satisfy the boundary conditions v, (0) = 0 V n, then the eigenvalues are the nontrivial zeroes of Eq. . The BBM
Hamiltonian also satisfies the Berry-Keating conjecture, which states that when # and p commute, the Hamiltonian
reduces to the classical H = 2xp.

Remark. If there are nontrivial roots of Fq. for which R(2) # 1/2, the corresponding eigenvalues and eigenstates
are degenerate [].

II. NONTRIVIAL ZEROS OF THE RIEMANN ZETA FUNCTION
A. Bender-Brody-Miiller Hamiltonian

Theorem 1. The eigenvalues of the Hamiltonian
H= (@t pi)(1— ) @)
1—e
are real, where p = —ihd,, h=1, and & = x.
Remark. If the Riemann hypothesis is correct [2], the the eigenvalues of Eq. (3) are degenerate [1].

Proof. Let ¢, (x) be an eigenfunction of Eq. with an eigenvalue A = i(2z — 1):

ﬁ¢Z($) = A\, (). (3)
Then we have the relation
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Letting
pz(z) = [1 — exp(—=0y) Y= (),
= Ay, (), (5)
where Ay () = ¢, () — 1. (z — 1), and
A=1- exp(—0y), (6)
is a shift operator. Upon inserting Eq. into Eq. with p = —ih0,, h = 1, and & = x, we obtain
(=20, — iDsa)p. (2) = Apa (a). (7)

Then we have

[ oo [

(Orzp2(2)) e (2)dr = —iX” / (@) oz (2)da. (8)
R+ R+

As p.(x — 00) — 0, next we integrate the first term on the LHS of Eq. by parts to obtain

* X . d
| sewpei@ar = [ oo [ i@ o) )
R+ R+ R+ z
and the second term on the LHS of Eq. by parts to obtain
* * d *
| sor@oupiis = [ p@it@e— [ pulae (ot (10)
R+ R+ R+ £
Upon substituting Eqs. @ and into Eq. , we obtain
. d d, ., |
| @ teendot [ eu@p(oi@)ds = (X - 2)N, (1)
R+ €T R+ €T
where
N= [ ¢iz)p.(x)d. (12)
R+
Next, we split o, (x) into real and imaginary components, such that
P:(2) = Px(z) () + ipg(z) (@), (13)
and substitute Eq. into Eq. such that
d d A
Pr() (@)r—Pne)(@)de + | og()(@)2 —ps(e) (@)de + N =i—-N. (14)
R+ X R+ dl’ 2

Upon setting A = i(2z — 1) in Eq. , it can be seen that the nontrivial zeros of Eq. are

1 d 1 d 3
In =57 /]R+ Pr(z) (2)T () (2)de + /}R+ P32 (2)T (o) (2)da + 5. (15)
It can be seen that all terms on the LHS of Eq. are real, thereby verifying Theorem O

Corollary 1.1. [1] Solutions to the equation ffw = Fv are given by the Hurwitz zeta function
Vz(z) = =((z, 2+ 1)

= 1

D w0
—(r+1+n)?

on the positive half line x € RT with eigenvalues i(22 — 1), and z € C, n € Z* for the boundary condition 1, (0) = 0.

Moreover, R(z) > 1, and R(z + 1) > 0. As —1.(0) is the Riemann zeta function, i.e., Eq. , this implies that z

belongs to the discrete set of zeros of the Riemann zeta function.



Since

) exp(fi-%(z)ln(n)> cos(S(z)-ln(n)) .sin(%(z)in(n))
e nR(z) - nR(2) - nR(2) :

we have

cos (%(z) “In(x 4+ n)) - Cos (%(2) ‘In(x + 1+ n))

PR(z)(T) = (z + n)R() (x4 1+ n)RE) ’
sin (%(2) ‘In(z+1+ n)) sin (%(3) In(z + n))
ws(z)(fﬂ) = (z +1+n)RE) - (x +n)R)

Upon inserting Egs. and into Eq. , it can be seen that

cos (%(2) “In(x + n)) d Ccos (%(z) In(z + n))

/]R+ Pir(2) (ﬂf)x%wmn(@dfﬂ = /]R+ G e Ydr @+ )" dz
cos (%(z) “In(x 4+ n)) d cos (S‘s z)-In(z+1+ n))
B /R+ (x +n)RE) dx (x+1+n)RE du
cos (%(z) ‘ln(z 4+ 1+ n)) J cos (%(z) “ln(x 4+ n))
B /R+ (x+1+n)RE dx (x + n)R(=) de
cos (i‘r(z) ‘In(z+1+ n)) d cos (%(z) ‘In(z+1+ n))
* /R+ (x4 1+ n)R) Yz (x4+1+n)R) 4,
and
d sin (%(z) In(z+1+ n)) 4 sin (%(2) In(z+ 1+ n))
/ P3(2) (@)a s () (2)de = /]R+ Gr1en)™® @& (mtlin)ie dx
sin (S(z) ‘In(z + 1+ n)) 4 sin (% z) - In(z + n))
B /R+ (x 4+ 1+ n)R) Y dx (z + n)R) de
sin (%(z) “In(x + n)) 4 sin (%(z) ‘In(z+ 1+ n))
B /R+ (x + n)R(=) Tz (z +1+n)RE du
sin (S(z) In(z + n)) 4 sin (S(z) In(z + n))
L R e B
Moreover,

(17)

(18)
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Then we are left with

d .
/ ) (@)a oo (@)de + / P (@ ¢s<z>(fv)dﬂf: — [ R(2)a(n+ ) RO Ldy
R+ -

R+

+/R+ 2(n+2)7 (0 + 2+ 1)"*O 7 R(z) cos (3(z)~ln(n+z)f%(z)

wn

- / z(n+z) @ (n 4z + 1) REL C\‘y(z)
Rt .

+ /R+ z(n+ ) RO 424+ 1)"RE §R(z) cos (E‘y(z) ‘In(n+z) — S(z) -

+ /R+ z(n+z) RO 4z 4 1) RE) %(z) sin (%(z) ‘In(n+z) —(2) - In(n+ 2z + 1)) }

- R(2)x(n + x4+ 1) 72ROy,
R+

It is useful to simplify the notation in terms of zeta functions. As such, we take

v.(z) = A¢Z(£)
= 1. () —¢z($— 1)

:_Z +1+n ZJH—n

n+x+1) )}dm

in(c\‘s( )-ln(n+2x)—S(2) - In(n+x +

1))
1))

)
)
)

Jas
Jas

n= O n=0
For ease of derivation, we take cos(3(z) - In(n)) = — sin($(z ) n(n)) in Eq. (23), and we are left with
3
Zn N/ (@ (=) (@)dx + 7

Moreover, it can be seen that

d d d
o (p:(@) = 2 7x (@) — a7 (o )

d o 1 d —~ 1
__m%;:%(z+1+n)z+xﬁg(x+n)z

=z2((z+ 1,z +1) —z2((2 + 1, ).
Multiplying Eq. by ¢n (), we obtain

o(@)zzC(z+ 1,2+ 1) — . ()x2l(z + 1,2) =p.(z)[z2{(z + 1,2+ 1) — 22{(2 + 1, z)]
=-¢

z,x+ Dzz¢(z+ 1,2+ 1)
C(z,z+ Dazl(z+ 1, 2)

+(z,x)x2((z 4+ 1,2 + 1)

(
+¢(
(
(

—((z,@)xzC(z + 1, ).

From the RHS of Eq. 7 it can be seen that

~ /. C(zyx+Daz¢(z+ 1,z 4+ 1)dx = 5y 4.2
Zn1—2z
~ ((z,z)zz((z + 1, z)dx = % 1

and

C(z,z+ Dazl(z+ 1,2) + ((z,x)x2l(z + 1,2+ 1)dx

2(14+mn)t=22

_RJranZ [ B 42(_%)—22 mese(rz)T(=1/2+ z) 4 (
4 I'(z) 2z —1
. (n +2I(1—2) - 2F1(1,1 +FZ(’22__Z";7 1+ 1/”))},

z—1
1+ n)

(23)



where I'(2) is the gamma function, and the hypergeometric series is

DFi(1, 14 2,2 — 2,1+ 1/n) = i (12;(1t)%)j u +j1|/">j. (31)
j=0 J |

Now we find the “density”

V= [t

- / [ (@) — a2 — 1)]2da
- 2%(95 - 1)%( ) w (SC - 1)]

%\%\

= [(m+ax+1 —2n+x) F(nt+ax+1)"7+ (n+ ) *F|de
+
n=2% r4*(—1)= QZ\/%CSC(WZ)F(*l/2+Z) oF1(1,2,2—2,14+1/n)
4n* (1 = r—2) - el ’
2 [ T(z) Han* (14 )01 =) T2 z)
nl—?z (1+n)1—2z
+
2z -1 2z -1
n'=2* 4 (14+n)1=%  n=2%/mcsc(nz) 1\—22
_ : 42(_ 7) r(-1/2
1-2z + 2I'(z) [ n (=1/2+2)
_ Fi(1,2,2—2,1+1/n)
4 Z]. 1—2z . 2 ) ) ] 2
+an(1+n) V7 T2 : (32)
with the hypergeometric series
o
1+1/n)
2Fi(1,2,2—2,1+1/n) = Z 2 ST (33)
]:0
Then, Eq. can be rewritten exactly
nt=2 + (1 +n)1722  n=22/mcsc(nz) 1\ 22
n= |- -42(—f) T(—1/2
: { 1-22 2I'(z) ( n (=1/2+2)
_ Fi(1,2,2—2,1+1/n)\1~t _n'=22 4+ (1 +n)t=%
anZ(1 1—z . 2 )~y ) ):| . |:
(L4 ) T(2-2) 2(1 - 22)
R ( 47(—3) = Vmose(ma)l(=1/24+2) 4 (2 )z—l
4" I'(z2) 2z—1\1+4n
(1,14 22—-21+1/n) 3
(v L2 s
(n+er(1-2) T2 2) 3
1
= 51— i), (34)

for the gamma function I'(z).

Lemma 1.1. From FEjq. and FEq. , it can be seen that all of the nontrivial zeros of Eq. exist at R(z) = 1/2.
Proof. From taking the limit as %(z,) — 1/2 in Eq. (I5]), we obtain

1 d 1 d 3
1' —_— d 1 -— 23 — P d =
mznl)rgl/w/w ore) (@) ene (@)de + | n /R+ P32 (2)T P (o) (2)dr + 5
1 n 11
= T 41,V S(2y), Z, —1. 35
2 (n+1) 2 (n+1)+  IS(z)s el n# (35)

Hence, ¥V $(zy,), n € Z, n # —1,




n S(2) [ 3(2) Eq. absolute error

1 14.134725 14.134725 0. x 10°%

2 21.022039 21.022039 0. x 10733

3 25.010857 25.010857 0. x 107%7

4 30.424876 30.424876 0. x 1071

5 32.935061 32.935061 0. x 10715

6 37.586178 37.586178 0. x 107°

7 40.918719 40.918719 0. x 107°

100 236.524229 236.524229 insufficient memory

Table I: Imaginary Nontrivial Zeros of the Riemann Zeta Function

Upon imposing the boundary condition

oo

wn(o) = - Z 77,1"
n=1

I e
—- | dt
D(zn) Jo exp(tn) —1

=0, (37)

it can be seen that Eq. are the nontrivial zeros of Eq. , for z € C where z must belong to the discrete set of
zeros of Eq. . Consequently, for the boundary condition 1/(0) = 0, the n*" eigenstate of Eq. is

Up(x) = —C(zn,z + 1)
> 1
a nz:% (x+1+n)=’ (38)

where z, is given by Eq. . The Riemann hypothesis states [2] that the nontrivial zeros are located at f(z) = 1/2.

B. Domain of the Bender-Brody-Miiller Hamiltonian

Definition 1.1. Let JZ be a Hilbert space and

i= [a;az + aﬂ] (39)
be a Hermitian operator acting in 4, such that
(Hf.g)=(f Hg) ¥ f.g € 2(H), (40)
and the Schrédinger equation for His
—hgcp(a:, z) = Ho(z, 2) (41)
0z

where z € C, and x € RT.

For the BBM Hamiltonian operator as given by Eq. , the Hilbert space is /# = L*(R*,dx). Moreover, p and &
are self-adjoint operators that act in J#. In order to study the domain of the BBM Hamiltonian operator, we first
introduce an auxiliary operator O, such that

O =pp+ 2z, (42)

where pp = —V?2, and 23 = 2. The set of finite linear combinations of Hermite functions is a core of O, and therefore
the Schwartz space . is also a core of O.



Lemma 1.2. [6] If ¢ is in 2(0), then
IBpell® + 220> < Ol + cllo]*. (43)
Proof. [6] We estimate ¢ for a core of O via a double commutator to make the estimate [7],

OO = pppp + 2424 + ppid + 2app

> pppp + TTTE — 2n, (44)

Therefore, in Eq. c=2n. O
After rewriting Eq. @ as

[0 4+ Ozz]p = (1 — 22)¢, (45)

then pp = 20, and f(2) = d,x are self-adjoint operators acting in /% = L?(R*, dz). Setting
H =pp+ f(#), (46)
defined on
20) (2 (). (47)
If f(%) is local in 2, then Eq. is dense and Hermitian.

Theorem 2. The BBM Hamiltonian operator in Eq. (9) is essentially self-adjoint, given that |V f(&)| < a|&] + b.

The BBM Hamiltonian operator in Eq. is real-valued on the positive half line RT, after being reduced to Eq.
(45). From |V f(&)| < alZ| + b we have

1
F@)] < 52+ bl
<czi +d. (48)
Let us examine the uniqueness.

Proof. As shown in [0], if H is Hermitian, and O is a positive self-adjoint operator, then % is a core of O such that
€ C 2(H). As such,

16D + f(@)ell® < all(Bp + &2)¢ll* + bllell?, (49)
where ¢ € .7. Since (14 22)¢ € L2, f(#)gp € L2 Therefore, . C Z(H). Moreover, since f(2)% < ridid + s,
(@)l < rlldde)? + slel®. (50)

As such, from Eq. , Eq. is satisfied. If ¢ € ., then V(f(%)p) € L2 Since,

as quadratic forms on €, we thus have

< cO, (52)

for constant c.



C. Second Quantization

We begin with the Bender-Brody-Miiller (BBM) Schrédinger equation

hd PO .
—2u(w,2) = [ATapA + A paAv(a, 2), (53)
where A is given by Eq. @, 2==x,p=—ihd,, h=1,z € RT, and 2z € C. Furthermore, let

1/1n(l’) = 7C(Zn7517 + 1)

oo

1
_ - 54
7;0 (x +1+n)? ®9
be the solution of
(A1apA + A1 p2A )ihn(2) = Authn (@), (55)

where z, are the nontrivial zeros of the Riemann zeta function given by Eq. , An are the eigenvalues, R(z) > 1,
and R(x + 1) > 0. Letting

p(x,2) = [1 = exp(=0,)[¥(z, 2),
= Ay(z, 2), (56)
where Ay (x,z) = ¢(x, 2) — (z — 1, z), and

A =1-—exp(—0,), (57)

is a shift operator. Upon inserting Eq. into Eq. with p = —ihd,, h =1, and & = z, we obtain

d
—h£ga(x, z) = {xﬁm + azx} o(z, 2). (58)
Next, we write
p(,2) =D bu(2)pn(@). (59)
From Eq. we find
L () = Anba(2) (60)

We now find a Hamiltonian that yields Eq. as the equation of motion. Hence, we take

H= /R+ ©*(x, 2) [m@x + axas} o(z,2) dx (61)

as the expectation value. Upon substituting Eq. into Eq. and using Eq. we obtain the harmonic
oscillator

H =" \ub (2)bn(2). (62)

Taking b, (z) as an operator, and b (z) as the adjoint, we obtain the usual properties:



From the analogous Heisenberg equations of motion,

b = (b, ]
=" B (bbb — b, b
_ i E,, (5%13,,, — B Db — Bjni)mén)
_ - E,, (5nm13m + b8 by — Bjni)mén)
= Aby. (64)

The eigenvalues of H are
H=Y XNy, (65)

where N,, =0,1,2,3,...,00. Since, A\, = i(2z, — 1), we can rewrite Eq. as

H=i) (22, — 1)N,. (66)
However, from Eq. it can be seen that

4y, - i(22p, — 1)b (67)
As such,

d - i -

—bn = =220 — Dbn. (68)

Remark. Fq. can be solved using the Wirtinger derivatives.

D. PT-symmetric Bender-Brody-Miiller Hamiltonian
Theorem 3. The eigenvalues of the Hamiltonian
iH = ———(&p + pi)(1 — e™P) (69)
are imaginary, where p = —ih0,, h=1, and & = x.

Corollary 3.1. [1|] Solutions to the equation iH’iJJ = Ev are given by the Hurwitz zeta function

U, (x) = —((z,x+ 1)

- 1
— L Griter (70)

n=0

on the positive half line x € Rt with eigenvalues i(2z—1), and z € C, for the boundary condition 1,(0) = 0. Moreover,
R(z) > 1, and R(z + 1) > 0. As —1.(0) is the Riemann zeta function, i.e., Eq. (1)), this implies that z belongs to the
discrete set of zeros of the Riemann zeta function.

Proof. Let v be an eigenfunction of Eq. with an eigenvalue A = i(2z — 1):

iHp = M. (71)
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Then we have the relation
)

1_76_2-1;(33“]5 +pE) (1 — e Py = M. (72)

Letting

¢z(z) = [1 — exp(—0,)|Y=(z),
= Ay (2), (73)

where Az/)z () =, (x) =, (x—1), and inserting Eq. into Eq. with p = —ihd,, h =1, and & = x, we obtain
[0, + 020, (x) = A, (2). (74)

Then we have

[ ety outoe + [

R+

(Bpps(2)) s (@) = N /

o (x)p:(z)d. (75)
R+

As ¢, (z — 00) — 0, next we integrate the first term on the LHS of Eq. (75 by parts to obtain
* * * d
[awe@uptin = [ rlaeordo— [ e (ula))da, (76)
R+ R+ x
and the second term on the LHS of Eq. (75| by parts to obtain
* * d *
| se@e@de = [ plaei@e- [ g (@) ()
R+ R+ R+ £
Upon substituting Egs. (76) and (77)) into Eq. (75), we obtain
[ @ testaNdot [ puleog i)z = (3 + 2N, (79)
R+ z R+ z
where

N= [ ¢i(z)p:(x)dz. (79)
R+

Next, we split ¢, (z) into real and imaginary components, such that
@z(x) = PR(2) (x) + i¢%(z)(x)v (80)
and substitute Eq. into Eq. such that

*

d d A
/R+ @%(z)(x)xawﬁ)?(z)(x)dx + /R+ @s(z)(l’ﬂ%sﬁs(z) (v)dx + N = -5 (81)

Upon setting A =i(2z — 1), Eq. can be written
i(22 — 1)

d d
[ one @ goene @i+ [ eae @ pae (s + N = N (52)
R+ X R+ dx 2
It can be seen that all terms on the LHS of Eq. (81)) are real, thereby verifying Theorem O

III. CONCLUSION

In this study, we have discussed the domain and eigenvalues of the BBM Hamiltonian. Moreover, a second quan-
tization procedure was performed for the BBM Schriodinger analogue equation. Finally, a closed-form expression for
the nontrivial zeros of the Riemann zeta function was obtained, and a convergence test for the closed-form expression
was performed demonstrating that all of the nontrivial zeros of the Riemann zeta function are located at R(z) = 1/2.
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Appendix A: CONVERGENCE

For brevity, let us examine the convergence of the integral representation of the discrete nontrivial zeros of the
Riemann zeta function on the positive half line z € R*, z € C, R(z) > 1, and R(z + 1) > 0. From Eq. (25), the
integral representation of the discrete nontrivial zeros of the Riemann zeta function are given by

,zn:fi C(zyx+ Dazl(z+ 1,2+ 1)dx
N Jar
1
a C(z,x)x2((2 + 1, x)dx
—i—% C(z,:v+1)wz((z+1,x)—I—C(z,x)xz((z—i—l,x—i—l)dm—i—;, (A1)
R+
where
N = [(n+x+1)—22 —2(n+x)_z(n+x+1)_z—|—(n+x)_2z}dw. (A2)
R+

Lemma 3.1. From the first term on the RHS of Eq. , if

t
/ C(zy,x+Daz((z+ 1,z + 1)dx (A3)
0
exists for every number t > 0, then
oo t
/ C(zyx+ Dazl(z+ 1,z + 1)dx = tli)m / C(zyx+ Dazl(z+ 1,2+ 1)dx, (A4)
0 > Jo

provided this limit exists as a finite number.

Proof.

(n+1

(n+t+1)72((n+ D55y + D> —n—2tz — 1))
(22(22 — 1)) '

/tC(z,x + Daz((z+ 1,z + 1)dzx =
0
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From L’Hospital’s Rule, we have

(n+t+1)72((n+ D4y + D> —n -2tz — 1))
lim
t—00 (22(2z — 1))
. (n+t+ D) 2 ((n+ (g + D> —n—2tz2—1)) (n4t41)"2
oo (22(2z — 1)) (n+t+1)-22
“22(n+t+ 1) (gt + V¥ + (G + D —n—dtz +t - 1)
= lim . (A6)
t—o00 4(1 — 22)22(n+t 4+ 1)—22-1
Upon evaluating Eq. (A6 with a series expansion at t = oo, we obtain
(1 =n+t+ 1 +n) 1+ qgfm)* — 4t2)
lim
t—o0 (2(14+n+t)?2z(—1 4 22))
(n+t+1)72((n+ V(54 + D> —n+t(l—4z) - 1)) o
N (22(2z — 1)) ' (A7)

Hence, it can be seen that the first term on the RHS of Eq. (Al) is convergent, given that the limit seen in Eq. (A6
exists as a finite number as seen in Eq. (A7). Here, it should be pointed out that as t = —n, and R(z) = 1/2, Eq.
(A7) is of indeterminate form. As such, we apply L’Hopital’s rule to obtain

(n+t+1)"2(n+ 1) (i + 1) —n+t(1 —42) — 1))

(n+1)
(22(2z — 1))
B 2(n+1)(1 — (nil))@z) log(1 — y) +4n (A8)
N 82 —2 '
O
Lemma 3.2. From the second term on the RHS of Eq. , if
t
/ C(z,x)x2((2 + 1, x)dx (A9)
0
exists for every number t > 0, then
e} t
/0 C(z,x)xz((z + 1,2)dx = tlirrolo/o C(z,2)xz¢(z + 1, x)dx, (A10)
provided this limit exists as a finite number.
Proof.
2z
‘ (n+1) "2 (=n("E2™ 4 5+ 2t2))
C(z,x)x2((z + 1,2)dex = — n . (A11)
/0 (2(2z-1))
From L’Hospital’s Rule, we have
2z
oy (2 £)722 (—n(E™ 4 n 4 2t2))
== 20@z-1)
2z
t—o0 (2(2z - 1)) (n+1t)—22
t —dz(_((n+t)\22 2%
g HO TR T) T A 22 (A12)

t—00 212z = 1)(n+1t)=2*



13

Upon evaluating Eq. (A12]) with a series expansion at ¢ = oo, we obtain

(ki) )22 | 4 2t2))

n

((n+t)"*(-n

lim ’ (( n
52 ()2 (Dt 212)
(

(n+ )27 (—n({E)22 4 4 2¢2)

J— n

(2(2z-1))

(A13)

Hence, it can be seen that the second term on the RHS of Eq. (Al)) is convergent, given that the limit seen in Eq.
(A12)) exists as a finite number as seen in Eq. (A13). Here, it should be pointed out that as t = —n, and R(z) = 1/2,
Eq. (A13)) is undefined. O

Lemma 3.3. From the third term on the RHS of FEq. , if

t
/ C(zyx+ Daz(z+ 1,z) + ((z,z)zz{(z + 1,z + 1)dx (A14)
0
exists for every number t > 0, then

/OO C(zyz+ Dazl(z+ 1,2) + ((z,z)xz{(z + 1,z + 1)dx
0

t—o00

= lim /t C(z,x+ 1)xz¢(z+ 1,2) + ((2,x)z2¢(z + 1,z + 1)dx, (A15)
0

provided this limit exists as a finite number.

Proof. From the RHS of Eq. it can be seen that

¢
/ Czyz+ Dazl(z+ 1,2) + ((z,z)xz{(z + 1,z + 1)dx
0

((n+t)*(n+t+1)*((n+1t)F1(1,1 —22z,1 —z,n+t+1) —n — 2tz))
(22 —1)
((n)*n+1)*((n)2F1(1,1 =221 -2,n+1) —n))

- o) . (A16)

Since the second term on the RHS of Eq. (A16]) is independent of ¢, we are only concerned with the limit of the first
term on the RHS of Eq. (A16)). As such, we consider the limit

(n4+t)2F1(1,1 —=22,1—z,n+t+1) —n—2tz)

li A17
v (m+ )7 (n+t+1)2(22z—1) (AL7)
Here, it is useful to employ Gauss’ theorem, i.e.,
I'l1-2Ir(z-1)
oF1 (1,1 -2z,1—2zn+t+1)= (A18)
[(=2)I'(z)
where R(z) > 1, n = —t, and
I'(z) = / e dy (A19)
0
is the gamma function. Therefore, Eq. (A17)) can be written
- ((n+ t)% —n—2tz)
twoo (n+t)*(n+t+1)*(2z—1)
t)~~? t+1)~~* t
S ()l e B G 20 (A20)

t—00 (z— 1)
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Upon evaluating Eq. (A20]) with a series expansion at ¢ = oo, we obtain

g (P D2FI(1 1 =221 — 2 n4t41) —n—2t2)
t—o0 (n+t)*(n+t+1)*(2z - 1)

:(n+t)*Z(n+t+1)*Z[— (zil) - (Z(t_z)l)]. (A21)

Hence, it can be seen that the third term on the RHS of Eq. (Al)) is convergent, given that the limit seen in Eq.
(A17)) exists as a finite number as seen in Eq. (A21). Here, it should be pointed out that as t = —n, and R(z) = 1/2,
Eq. (A21)) is undefined. Moreover, the second term on the RHS of Eq. (A16]) is indeterminate at R(z). O

Finally, we must consider the convergence of the normalization factor N.

Lemma 3.4. From the first three terms on the RHS of Eq. , if

t
/ [(n Y1) 2nta) Pt t1l) 4 (nt z)*ﬂ dz (A22)
0
exists for every number t > 0, then

i [ (0 2+1)7% = 2(n+2) F(nta+1)77 + (n+2)"|de (A23)

t—o0 0

provided this limit exists as a finite number.

Proof.

(n+t+1)"2(n+ 1) (s + 1) —n—t—1))

= lim (nt1)
t—so0 (22 — 1)
() ()2 —1) 1)
+ lim L
t—o0 (22 —1)
+ lim 2(-n—t)*n+t)*n+t+ D12 (1 —2,2,2—2zn+t+1))
t—00 (z — 1)

en) ) 4 D R (- 5,2,2— 2,0+ 1))
-1 |

(A24)

where the last term on the RHS of Eq. (A24]) omits the limit, as it is independent of ¢. The limits seen on the RHS
of Eq. (A24)) can be evaluated in a similar manner to those seen in Eqs. (A7), (A13)), and (A17]), respectively. O
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