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In the year 2017 it was formally conjectured that if the Bender-Brody-Miiller (BBM) Hamiltonian
can be shown to be self-adjoint, then the Riemann hypothesis holds true. Herein we discuss the
domain and eigenvalues of the Bender-Brody-Miiller conjecture. Moreover, a second quantization
of the BBM Schrédinger equation is performed, and a closed-form solution for the nontrivial zeros
of the Riemann zeta function is obtained. Finally, it is shown that all of the nontrivial zeros are
located at R(z) = 1/2.

I. INTRODUCTION

It was recently shown in [I] that the eigenvalues of a Bender-Brody-Miiller (BBM) Hamiltonian operator correspond
to the nontrivial zeroes of the Riemann zeta function [2]. Although the BBM Hamiltonian is pseudo-Hermitian, it
is consistent with the Berry-Keating conjecture [3, 4]. The eigenvalues of the BBM Hamiltonian are taken to be the
imaginary parts of the nontrivial zeroes of the zeta function
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The idea that the imaginary parts of the zeroes of Eq. are given by a self-adjoint operator was conjectured by
Hilbert and Pélya [5]. Formally, Hilbert and Pélya determined that if the eigenfunctions of a self-adjoint operator
satisfy the boundary conditions ¢, (0) = 0 V n, then the eigenvalues are the nontrivial zeroes of Eq. . The BBM
Hamiltonian also satisfies the Berry-Keating conjecture, which states that when & and p commute, the Hamiltonian
reduces to the classical H = 2xp.
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Remark. If there are nontrivial roots of Eq. for which R(z) # 1/2, the corresponding eigenvalues and eigenstates
are degenerate [1].

II. BENDER-BRODY-MULLER HAMILTONIAN

Theorem 1. The eigenvalues of the Hamiltonian

are real, where p = —ihd,, h=1, and & = x.

Corollary 1.1. [1|] Solutions to the equation I;H/) = Ev are given by the Hurwitz zeta function

. (x) = —C(z,2+ 1)

= 1
:7;(m+1+n)z ¥

on the positive half line x € R™ with eigenvalues i(2z—1), and z € C, for the boundary condition 1,(0) = 0. Moreover,
R(z) > 1, and R(z + 1) > 0. As —1,(0) is the Riemann zeta function, i.e., Eq. , this implies that z belongs to the
discrete set of zeros of the Riemann zeta function.

Proof. Let v, (x) be an eigenfunction of Eq. with an eigenvalue A = i(2z — 1):

H. () = M. (2). (4)



Then we have the relation

Letting

where A, (z) = 1. (z) — . (z — 1), and

A =1-exp(—0,),

is a shift operator. Upon inserting Eq. @ into Eq. with p = —ih0,, h = 1, and & = x, we obtain

[—ix0, — i0,x]p. () = Ap,(x).

Then we have

| o) ertaldat [ @uap @) pahde = =ix [ gl

As p.(z = 00) — 0, next we integrate the first term on the LHS of Eq. @ by parts to obtain

(z)dx = — (x x)dr — *xxi x))dx
| e @pi@ie =~ [ s@p@io= [ @@

and the second term on the LHS of Eq. @D by parts to obtain
[ ety aspote = - [ et [
R+ R+ R+

Upon substituting Egs. and into Eq. @D, we obtain

| et@aite@nins [ e (ei@)is = @3 - 2N,

R+

where

N= [ ¢i(x)p.(r)de.
R+

Next, we split ¢, (z) into real and imaginary components, such that
©:(2) = Pr(z) (T) + iy (z) (),
and substitute Eq. into Eq. such that

d d 2N
4 d N L g (@)dz+ N = 2N
/R+ Pr(2) (2)T 7 Pn() (2) SH/]R+ P3(2)(2)T 93 (2)da + 5
Upon setting A = i(2z — 1), Eq. (15]) can be written
2z —1

d d
/ @%(z)(lf)fﬁd*We(z) (v)dx +/ 03(2) ()T =gy (x)de + N =
R+ X R+ d.’I;

It can be seen that all terms on the LHS of Eq. are real, thereby verifying Theorem [l Since
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we have

Q.E.D.

Remark. If the Riemann hypothesis is correct [Z], the the eigenvalues of Eq. (@ are degenerate [1J].

Given that
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For ease of derivation, we take pgi(.)(7) = pg(.)(x). Moreover, it can be seen that

2 (ps2))

Multiplying Eq. by ¢n(z), we obtain

p(@)az(z + L +1) — pu(2)a2((z + La) = pu(2)ezC(z + 1w+ 1) — 22((z + L, )

d d
x%"/&(x) - x%d’Z(m —-1)

ag o
Tz (x—&—l—i—n)zx

n=0

a
dx

o}

n=0

xzC(z+ 1, x4+ 1) —x2{(z+ 1, 2).

1

2 e

)

=—((z,z+ 1)zzl(z+ 1,z +1)
+¢(z,x 4+ Daz¢(z+ 1, 2)
+{(z,x)z2¢(2+ 1,2+ 1)
—((z,z)xz(z + 1, ).

From the RHS of Eq. , it can be seen that

and

R+

C(z,z)xzl(z + 1,z)dx =
R+

2z — 422
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2z — 422’
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where I'(2) is the gamma function, and the hypergeometric series is

oo

(1 +2); (1+1/n)
oFi(1,1422—21+1/n) = ]Z::o G-, i (27)
Now we find the “density”
N= [ ¢.(z)p.(z)de
R+
— [ 10al) - ulo - 1)
R+
= [ 2@) = 200 = Do) + 02— Do
—/ (h+241)2 —2n+2) " (n+z+1)" + (n+2)]de
R+
n2% 147 (=172 frese(m2)T(—1/2 + 2) oF1(1,2,2—2,1+1/n)
= n 4n*(1 =2 r(1—2) - o ’
2 [ T(z) HaAn* (14 n) 01 =) T2 z)
N nl—?z N (1+n)1—2z
2z -1 2z -1
nt=2 + (1 +n)1722  n=22/mesc(nz) 1\ 22
_ ar( = 2) (=12
1-2: TTTarg) o ( n) (=1/2+2)
_ Fi(1,2,2—2,1+1/n)
an?(1 1—2z . 2 ) <y ’ 2
+4n*(L4+n)' VT Neps (28)
with the hypergeometric series
- +1/n))
oF1(1,2,2 — 2,14 1/n) :Z 2 ST (29)
]:0
For simplicity, taking R(z) = S(z), Eq. can be rewritten exactly
n'=2% 4 (14+n)1=%  n=22/mcsc(nz) 1\ —22
[ (= 2) (=12
: [ 1-2z * 2I'(z) [ ( n) (=1/2+2)
_ Fi(1,2,2—2,1+1/n)77-! =2+ (1 +n)t"22
AnZ(1 1—2 . 2 )~y ) .
A (L4 )T T(2-2) H [ 2(1 - 22)
ERRNE G o G LD P R
4 I'(z) 2z—1\1+n
2F1(1,1+z,272,1+1/n) 3
X(””Fl* (2 —2) )+3
(1 — i), (30)

T2
for the gamma function I'(z).
Lemma 1.1. From FEjq. @) and Fq. (@/, it can be seen that all of the nontrivial zeros of Eq. exist at R(z) = 1/2.
Proof. Upon setting ®(z) = 1/2 on the RHS of Eq. (16]), we obtain

1 d 1 d
N | @m(z)(m)ﬂ?dxsﬁm(z) (z)dx N /]R+ sﬂd(z)(x)xdxwﬁ(z)(ﬂf)d% (31)



and
1 [ x " T n x x }d
— — — X
N Jr+ 20 +n+2x)?2 2n+2)32/T+n+x 2¢yn+z(14+n+2)32 2n+x)?
1 d
=-1- ~ /R+ cpgy(z)(x)xd 0z (T)dz
i 1 [t [ X n X n T €T }d
= 11im — — — X
t—oo N Jg 2(1+n+m)2 2(n+$>3/2\/l+n—|—x 2\/n+$(1+n+aj)3/2 2(n—|—x)2
-0 (32)
Hence,
=5 [ ese@e g eae @) (33)
=——= () ()T =g (T)dx.
N - P3(z) dw@\s(z)
Since
tim L [ pac @)L g (2)de = 1 (34)
tl}go N o @%(z) X xdaj@%(z) x)ar = )
we have
1=1 (35)
Q.E.D.
O
n S(z) [10] S(z) Eq. (30) absolute error
1 14.134725 14.134725 0. x 1078
2 21.022039 21.022039 0. x 107
3 25.010857 25.010857 0. x 107%7
4 30.424876 30.424876 0. x 1071
5 32.935061 32.935061 0. x 10715
6 37.586178 37.586178 0. x 107°
7 40.918719 40.918719 0. x 107°
100 236.524229 236.524229 insufficient memory
Table I: Imaginary Nontrivial Zeros of the Riemann Zeta Function
Upon imposing the boundary condition
=1
¥n(0) = — Z Zn
n=1 n
I e
. / dt
L(zn) Jo exp(tn) —1
=0, (36)

it can be seen that Eq. are the nontrivial zeros of Eq. , and for z € C where z must belong to the discrete set
of zeros of Eq. . Consequently, for the boundary condition +(0) = 0, the n'? eigenstate of Eq. is

Yn(z) = —((2n, 2 + 1)

= 1
:_Z(SCJr1+n)Z"7 37)

n=0

where z, is given by Eq. (30). The Riemann hypothesis states [2] that the nontrivial zeros are located at R(z) = 1/2.



A. Domain of the Bender-Brody-Miiller Hamiltonian

For the BBM Hamiltonian operator as given by Eq. , the Hilbert space is % = L?(R*, dx). Moreover, p and &
are self-adjoint operators that act in . In order to study the domain of the BBM Hamiltonian operator, we first
introduce an auxiliary operator O, such that

O = pp + 22, (38)
where pp = —V?, and 22 = 2. The set of finite linear combinations of Hermite functions is a core of O, and therefore
the Schwartz space .# is also a core of O.

Lemma 1.2. [6] If ¢ is in 2(0), then
IBpell® + 1220* < [Opll* + cll]|*. (39)

Proof. [6] We estimate ¢ for a core of O via a double commutator to make the estimate [7],

OO0 = pppp + 2423 + ppid + 2app

n

> pppp + 222E — 2n, (40)

Therefore, in Eq. c=2n. O
After rewriting Eq. as

(20, + Byl = (1 - 22)¢, (41)

then pp = 20, and f(2) = d,x are self-adjoint operators acting in /% = L?(R*, dz). Setting
H = pp+ f(2), (42)
defined on
20)(2(f()). (43)
If f(Z) is local in 42, then Eq. is dense and Hermitian.

Theorem 2. The BBM Hamiltonian operator in Eq. (9) is essentially self-adjoint, given that |V f(2)| < a|&| + b.

The BBM Hamiltonian operator in Eq. is real-valued on the positive half line RT, after being reduced to Eq.
(A1)). From |Vf(#)| < alZ| + b we have

N 1. N
@) < 5éd + bl
< cz +d. (44)
Let us examine the uniqueness.

Proof. As shown in [0], if H is Hermitian, and O is a positive self-adjoint operator, then % is a core of O such that
€ C 2(H). As such,

126+ f(@)ell* < all(pp + 22)l* + b, (45)
where ¢ € .. Since (1 + &2)p € L?, f(2)¢ € L. Therefore, . C 2(H). Moreover, since f(#)? < riéiii + s,
I @)el® < rllzzell* + slloll*. (46)
As such, from Eq. , Eq. is satisfied. If ¢ € .7, then V(f(2)p) € L?. Since,

+i[H,0] < cO (47)



as quadratic forms on %, we thus have

— (- V(@) + V(@) p)}

[N~}
—~
IS
[\v]
SN
=
_l’_
(o
N

for constant c.

B. Second Quantization

We begin with the Bender-Brody-Miiller (BBM) Schrodinger equation

—;@111(:6 2) = [A*lisz+A*1ﬁ£A (@, 2), (49)

where A is given by Eq. , ==z, p=—ihd,, h=1,z € RT, and z € C. Furthermore, let

z/}n( ) = 7<(Zn,£L' + 1)

Z z+1+4n)* 0
n= O
be the solution of
(A1apA + A p2A )thn(2) = Authn (@), (51)

where z, are the nontrivial zeros of the Riemann zeta function given by Eq. , An are the eigenvalues, R(z) > 1,
and R(z + 1) > 0. Letting

p(z,2) = [1 — exp(=0x)]¥(z, 2),
= Ai/)(z, z), (52)

where Aw(x, z) =¢(x,2) —Y(x —1,2), and
A=1— exp(—0y), (53)

is a shift operator. Upon inserting Eq. into Eq. with p = —ihd,, h =1, and & = z, we obtain

d
—haw(x, z) = {x@x + 89633} oz, 2). (54)
Next, we write
z) = an(z)%(x) (55)
From Eq. we find
d
—h@bn(z) Anbn(2). (56)

We now find a Hamiltonian that yields Eq. as the equation of motion. Hence, we take

H= /R+ ©*(z, 2) [x@m + Bmx} o(z,z) dx (57)
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as the expectation value. Upon substituting Eq. into Eq. and using Eq. we obtain the harmonic

oscillator

H = A\l (2)bn(2).

Taking b, (z) as an operator, and b, (z) as the adjoint, we obtain the usual properties:

The eigenvalues of H are
H= Z AN,
where N,, =0,1,2,3,...,00. Since, A\, = (22, — 1), we can rewrite Eq. as
H=i) (22, — 1)N,.

However, from Eq. it can be seen that

d . .
—h%bn =1i(2z, — 1)b,
As such,
d - i
—b, = —=(2z, — 1)b,
dz (2 1)

Remark. Fjg. can be solved using the Wirtinger derivatives.

C. PT-symmetric Bender-Brody-Miiller Hamiltonian

Theorem 3. The eigenvalues of the Hamiltonian

. A { IR —ip
i = — (& + pi)(1 — )
are imaginary, where p = —ih0,, h=1, and & = x.

Corollary 3.1. [1] Solutions to the equation z'f{w = Ev are given by the Hurwitz zeta function
Vz(z) = =((z, 2+ 1)

o0

1
=L it

n=0

(58)

(65)

(66)

on the positive half line x € RY with eigenvalues i(2z—1), and z € C, for the boundary condition 1,(0) = 0. Moreover,
R(z) > 1, and R(z + 1) > 0. As —1.(0) is the Riemann zeta function, i.e., Eq. (1)), this implies that = belongs to the

discrete set of zeros of the Riemann zeta function.



Proof. Let v be an eigenfunction of Eq. with an eigenvalue A = i(2z — 1):

iHy = M. (67)
Then we have the relation
i o
m(xp +p2)(1—e )Y = Ay (68)
Letting
@:(z) = [1 — exp(=0,)]¥. (),
where A, (z) = ¥, (x) — ¢, (x — 1), and inserting Eq. into Eq. with p = —ihd,, h = 1, and & = x, we obtain
[0, + 020, (x) = Ap.(T). (70)
Then we have
[ @@y eceidot [ @urpnla)) outoris =x [ pila)en(onde (71)
R+ R+ R+

As ¢, (x — 00) — 0, next we integrate the first term on the LHS of Eq. by parts to obtain

[ame@vpi@ie =~ [ p@g.@in- [ o@ai @) (72)

and the second term on the LHS of Eq. by parts to obtain

* * d *
| e @ae = [ plapi@e- [ g (@) (73)
R+ R+ R+ £
Upon substituting Egs. and into Eq. , we obtain
* d d * *
Pr(@)z(pa(@))de + | pa()z—(p:(z))dr = (A" + 2)N, (74)
R+ X R+ dl'
where
N= [ ¢iz)p.(x)d. (75)
R+
Next, we split o, (x) into real and imaginary components, such that
and substitute Eq. into Eq. such that
/ (x):ci (z)dx + / (w):z:i (x)dx + N = fEN (77)
- PR(2) dz PR(2) - P3(2) dx P3(z) - 9
Upon setting A = i(2z — 1), Eq. can be written
d d i(2z -1
/ sﬁm(z)(x)x*tpm(z)(x)dfwr/ P3(2) (T)T——P3(z) (2)dz + N = {z-ly (78)
R+ dx R+ dx 2

It can be seen that all terms on the LHS of Eq. are real, thereby verifying Theorem

Q.E.D.
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IIT. NUMERICAL VERIFICATION

Here, it is useful to point out some identities. First, from the Taylor series expansion around 0, the inverse of the
gamma function can be written

2 2
=z+722+(%—%)23+---, (79)

1
I'(z)

where 7 is the Euler-Mascheroni constant [§], and furthermore,

I(z—1/2) = 2(22;7_1/12)' (80)
T(1 - 2) = (—2)! (81)
2Fi(1,2,2 - 2,1+ 1/n) =1+ 2 (; irzl/”) Z(l(j_zl) .(1(;_12?)2
ot
F(L 1422 21+1/m) =14 LF 2)261; n) O ?2(2_;’2(;(1_;1/")2 (83)
e e
csc(mz) = % -7 7(37;%)3 T (85)
Using Eqs. (79), (80), (82), in Eq. (28), we find
S (1 T
(s (D)) o)
+4n*(1 +n) 2 /T {1 Lz (;ji/n) 2(1(;_21) .(1(;_127)1)2
Z(?;—Dz()?;—?)z()l(z/;n—t)l)g e H (86)
Using Eqs. (79), (80), (81), and (§4) in Eq. (26), we also find
/]R+ (20 + V)220 (z + 1,2) + C(z,0)22C (2 + 1,2+ Vda
A T ) (o (- B
' 2(22;_1/12)! 234_ 1 (1 Z n>2_1 ' (n +2(=2)! {1 + 2 2)261; -
B Ao ) )
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Hence, the nontrivial zeros can be written approximately

1-22 1-22 -2z 3
+ (14 1 7
~ [0 A+n) ™  n \/77.<7+E+ (72) o)

n 1—22 2 7z 6 360
N AW -2z 2(z— !

(e (G [o(- ) 22

+4n*(1 + n)l—zﬁ {1 + Z: (; i’i/”) 2(1(24'2)2) (1(;'127;)

2(z+1)(z+2)(1/n +1)3 -1 ni=2% 4 (14+n)l=%
2-2)3-2)(4-2) H] [ 2(1 — 22)

)
e (S T ) G (o)
2(z —1/2)! 4 n \*! 1+2)-(1+1/n 1+2)24+2)(1+1/n
. (22'—/1) 22—1(1—1—71) ~<n+z(fz)! [1+( . )2£z+ / )+( +()2(—J;)(?3(—J;)/)
z z z n)3
= ()2(2_2)(;(?:)(21(1_2)1/ ! +])]] +g
— i, (88)

2

where the hypergeometric functions can be approximated using the techniques found in Ref. [9].

n S(z) [10] S(z) Eq. (88) absolute error

1 14.134725 14.134725 4.420537 x 10=%°
2 21.022039 21.022039 2.974456 x 10743
3 25.010857 25.010857 1.839215 x 107!
4 30.424876 30.424876 2.28 x 10762

5 32.935061 32.935061 1 x 1079

6 37.586178 37.586178 1 x 1079

7 40.918719 40.918719 1 x 1079

100 236.524229 236.524229 1 x 1075

Table II: Imaginary Nontrivial Zeros of the Riemann Zeta Function

IV. CONCLUSION

In this study, we have discussed the domain and eigenvalues of the BBM Hamiltonian. Moreover, a second quan-
tization procedure was performed for the BBM Schrédinger analogue equation. Finally, a closed-form expression for
the nontrivial zeros of the Riemann zeta function was obtained, and a convergence test for the closed-form expression
was performed.
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Appendix A: CONVERGENCE

For brevity, let us examine the convergence of the integral representation of the discrete nontrivial zeros of the
Riemann zeta function on the positive half line z € R*, 2 € C, R(z) > 1, and R(z + 1) > 0. From Eq. (21)), the
integral representation of the discrete nontrivial zeros of the Riemann zeta function are given by

1
zn:——/ C(zy,x+ Dazl(z+ 1,2+ 1)dx
N Jus

_ %/}W C(z,x)x2((2 4+ 1, x)dx

1 3
+ N/ Clzyx+ Dazl(z+ 1,2) + ((z,2)xz{(z + 1,z + 1)dx + 2 (A1)
R+
where
N = [(n+x+ )72 —2(n+a) *(ntat+1)*+ (n—f—x)_zz}dﬂv. (A2)
R+
Lemma 3.1. From the first term on the RHS of Eq. , if
t
/ C(zyx+Dazf(z+ 1,2+ 1)dx (A3)
0
exists for every number t > 0, then
t
/ Czyx+ Daz{(z+ 1,z + 1)dx = hm C(z x4+ Dxz{(z+ 1,z + 1)dz, (A4)
provided this limit exists as a finite number.
Proof.
t (n+t+1)7*((n+ D5 + D* —n— 2tz — 1))
1 1 l)dz = - . A5
| et s+ 1ot e B (45)
From L’Hospital’s Rule, we have
i (n+t+ 172 ((n+ D4y + D% —n -2tz — 1))
oo (22(2z — 1))
L ) (04 Dy A )E =2 1) et 1)?
= lim .
t—o0 (2z(22 — 1)) (n+t+1)-2
—2z(n+t+ 1) ¥ Y n(—ts +1)%% + + 1) —n—4tz+1t-1
. ( ) (G + D* + (Gl + D> ). (A6)
t—00 4(1 —22)22(n+t+1)"2—1
Upon evaluating Eq. (A6) with a series expansion at t = 0o, we obtain
(—1=n+t+ @ +n)(1+ q5y)% — 4t2)
lim
t—o00 (2(14+n+t)?22(—1+ 22))
(n+t+ 1) ((n+ V(55 + D* —n+t(l—42) - 1)) A7)

(22(22 — 1))
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Hence, it can be seen that the first term on the RHS of Eq. (A1) is convergent, given that the limit seen in Eq. (A6
exists as a finite number as seen in Eq. (A7). Here, it should be pointed out that as ¢ = —n, and R(z) = 1/2, Eq.
(A7) is of indeterminate form. As such, we apply L’Hopital’s rule to obtain

(n+t+1)72((n+ D54y + D% —n+t(l—4z) - 1))
(22(2z — 1))
2(n+1)(1 - ﬁ)(zz) log(1 — y) +4n
82 —2

(A8)

Lemma 3.2. From the second term on the RHS of Eq. , if

t

C(z,x)x2((2 4+ 1, x)dx (A9)
0

exists for every number t > 0, then

oo t
/ C(z,x)x2((2z 4+ 1,2)dx = lim / C(z,2)x2¢(z + 1, x)dx, (A10)
0 t—oo Jq

provided this limit exists as a finite number.

Proof.

(n+ )72 (—n(ZE0™ 4 4 912))

(2(2z-1))

/0 C(z,2)x2((z + 1,2)dx = — . (A11)

From L’Hospital’s Rule, we have
2z
()72 (—n (T 4 4 2t2)
— lim
t—c0 (2(2z-1))

2z
()72 (T o 2t2)) (n4)2
= — lim .
t—>00 (2(2z - 1)) (n+1t)=22
() B ()2 o 2t)
= — lim
t—00 22z —1)(n+1t)~22

(A12)

Upon evaluating Eq. (A12]) with a series expansion at ¢ = 0o, we obtain

(n+t) )22+ + 2t2))

(=n(=

o ()72 (=
t%oo((n + t)—Qz( n((n:t))u +n4+ 2tz))
()2 ()25 4y 2t2)
= 201 . (A13)

Hence, it can be seen that the second term on the RHS of Eq. (Al]) is convergent, given that the limit seen in Eq.

(A12) exists as a finite number as seen in Eq. (A13]). Here, it should be pointed out that as t = —n, and R(z) = 1/2,
Eq. (A13)) is undefined. O

Lemma 3.3. From the third term on the RHS of Eq. , if

t
/ C(zyx+ Daz(z+ 1, z) + ((z,z)zz{(z + 1,z + 1)dx (A14)
0
exists for every number t > 0, then

/00 Clzyx+1DazC(z+1,2) + {(z,z)x2((z + 1,z + 1)dz
0

t—o0

¢
= lim / C(z,x 4+ Dazf(z+ 1,2) + {(z,z)x2((z + 1,z + 1)dz, (A15)
0

provided this limit exists as a finite number.
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Proof. From the RHS of Eq. it can be seen that

¢
/ Clzyz+ Dazl(z+ 1,2) + ((z,z)xz{(z + 1,z + 1)dx
0

(n+t)*(n+t+1)*((n+t)F1(1,1 — 22,1 —z,n+t+1) —n—2tz))
(22 —-1)
((n)*(n+1)"*((n)2F1(1,1 - 22,1 —z,n+1) —n))

- o) . (A16)

Since the second term on the RHS of Eq. (A16]) is independent of ¢, we are only concerned with the limit of the first
term on the RHS of Eq. (A16)). As such, we consider the limit

(n+t)2F1 (1,1 —=22,1—z,n+t+1) —n—2tz)

li . A17
v M+t (n+t+1)2(2z—1) (AL7)
Here, it is useful to employ Gauss’ theorem, i.e.,
Il-2Ir(z-1)
oF1 (1,1 -2z,1—2zn+t+1)= (A18)
[(=2)I'(z)
where R(z) > 1, n = —t, and
I'(z) = / e dx (A19)
0
is the gamma function. Therefore, Eq. (A17)) can be written
- ((n+ t)% —n—2tz)
twoo (n+t)*(n+t+1)*(2z—1)
—F 1)=* t
—  lim (n+t)*(n+t+1)"*(n+ z). (A20)
t—00 (z — 1)
Upon evaluating Eq. (A20) with a series expansion at ¢t = 0o, we obtain
t)oF1(1,1 —22,1— t+1)—n—2t t
g (D21 =221 —zn+t4]) —n=26z) (n+t)*z(n+t+1)*z[— n___(&) } (A21)
t—o00 (n+t)*(n+t+1)*(2z—1) (z—=1) (2-1)

Hence, it can be seen that the third term on the RHS of Eq. (Al]) is convergent, given that the limit seen in Eq.

(A17) exists as a finite number as seen in Eq. (A21]). Here, it should be pointed out that as t = —n, and R(z) = 1/2,
Eq. (A21]) is undefined. Moreover, the second term on the RHS of Eq. (Al6)) is indeterminate at R(z). O

Finally, we must consider the convergence of the normalization factor V.

Lemma 3.4. From the first three terms on the RHS of Eq. , if

t
/ [(n +x+1)" —2n+2) Fn+x+1)"7+ (n+ x)_QZ] dx (A22)
0
exists for every number t > 0, then

/OOO {(n+x+ )% —2(n+az) *(n+x+1)%+ (n+x)*22]dx

= lim [(n +r+1)"2 -2n+x) Fnt+ar+1)7+ (n+ x)_2z} dx (A23)
0

t—o0

provided this limit exists as a finite number.
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Proof.

/OOO [(n b1 —2nta) Ptz 1)+ (n+ x)ﬁz]dz

(n+t+1)"2(n+ 1) (s + 1) —n—t—1))

= lim (nt1)
t—00 (22 —1)
() ()2 —1) 1)
+tli>nolo (22 —1)
. 2=n—tyFn+t)Fn+t+ 1) o (1 —2,2,2—2z,n+t+1))
+ i, CE)
2=t 1)1(: il -sm2zsntl) (A24)

where the last term on the RHS of Eq. (A24]) omits the limit, as it is independent of ¢. The limits seen on the RHS
of Eq. (A24)) can be evaluated in a similar manner to those seen in Eqs. (A7), (A13)), and (A17]), respectively. O
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