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Closed-Form Solution for the Nontrivial Zeros of the Riemann Zeta Function

Frederick Ira Moxley III
(Dated: April 9, 2017)

In the year 2017 it was formally conjectured that if the Bender-Brody-Müller (BBM) Hamiltonian
can be shown to be self-adjoint, then the Riemann hypothesis holds true. Herein we discuss the
domain and eigenvalues of the Bender-Brody-Müller conjecture.

I. INTRODUCTION

It was recently shown in [1] that the eigenvalues of a Bender-Brody-Müller (BBM) Hamiltonian operator correspond
to the nontrivial zeroes of the Riemann zeta function [2]. Although the BBM Hamiltonian is pseudo-Hermitian, it is
consistent with the Berry-Keating conjecture [3, 4]. The eigenvalues of the BBM Hamiltonian are conjectured to be
the imaginary parts of the nontrivial zeroes of the zeta function

ζ(z) =
∞
∑

k=1

1

kz

=
1

Γ(z)

∫ ∞

0

tz−1

exp(t)− 1
dt. (1)

The idea that the imaginary parts of the zeroes of Eq. (1) are given by a self-adjoint operator was conjectured by
Hilbert and Pólya [5]. Formally, Hilbert and Pólya conjectured that if the eigenfunctions of a self-adjoint operator
satisfy the boundary conditions ψn(0) = 0 ∀ n, then the eigenvalues are the nontrivial zeroes of Eq. (1). The BBM
Hamiltonian also satisfies the Berry-Keating conjecture, which states that when x̂ and p̂ commute, the Hamiltonian
reduces to the classical H = 2xp.

Remark. If there are nontrivial roots of Eq. (1) for which ℜ(z) 6= 1/2, the corresponding eigenvalues and eigenstates
are degenerate [1].

II. STATEMENT OF PROBLEM

A. Bender-Brody-Müller Hamiltonian

Theorem 1. The eigenvalues of the Hamiltonian

Ĥ =
1

1− e−ip̂
(x̂p̂+ p̂x̂)(1− e−ip̂) (2)

are real, where p̂ = −i~∂x, ~ = 1, and x̂ = x.

Corollary 1.1. [1] Solutions to the equation Ĥψ = Eψ are given by the Hurwitz zeta function

ψz(x) = −ζ(z, x+ 1)

= −

∞
∑

n=0

1

(x+ 1 + n)z
(3)

on the positive half line x ∈ R+ with eigenvalues i(2z−1), and z ∈ C, for the boundary condition ψz(0) = 0. Moreover,
ℜ(z) > 1, and ℜ(x + 1) > 0. As −ψz(0) is the Riemann zeta function, i.e., Eq. (1), this implies that z belongs to the
discrete set of zeros of the Riemann zeta function.

Proof. Let ψz(x) be an eigenfunction of Eq. (2) with an eigenvalue λ = i(2z − 1):

Ĥψz(x) = λψz(x). (4)

Then we have the relation

1

1− e−ip̂
(x̂p̂+ p̂x̂)(1 − e−ip̂)ψz(x) = λψz(x). (5)
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Letting

ϕz(x) = [1− exp(−∂x)]ψz(x),

= ∆̂ψz(x), (6)

where ∆̂ψz(x) = ψz(x)− ψz(x − 1), and

∆̂ ≡ 1− exp(−∂x), (7)

is a shift operator. Upon inserting Eq. (6) into Eq. (5) with p̂ = −i~∂x, ~ = 1, and x̂ = x, we obtain

[−ix∂x − i∂xx]ϕz(x) = λϕz(x). (8)

Then we have
∫

R+

(x∂xϕz(x))
∗ϕz(x)dx +

∫

R+

(∂xxϕz(x))
∗ϕz(x)dx = −iλ∗

∫

R+

ϕ∗
z(x)ϕz(x)dx. (9)

Now we integrate the first term on the LHS of Eq. (9) by parts to obtain

∫

R+

xϕz(x)∂xϕ
∗
z(x)dx = −

∫

R+

ϕ∗
z(x)ϕz(x)dx −

∫

R+

ϕ∗
z(x)x

d

dx
(ϕz(x))dx, (10)

and the second term on the LHS of Eq. (9) by parts to obtain

∫

R+

xϕz(x)
∗∂xϕz(x)dx = −

∫

R+

ϕz(x)ϕ
∗
z(x)dx −

∫

R+

ϕz(x)x
d

dx
(ϕ∗

z(x))dx. (11)

Upon substituting Eqs. (10) and (11) into Eq. (9), we obtain

∫

R+

ϕ∗
z(x)x

d

dx
(ϕz(x))dx +

∫

R+

ϕz(x)x
d

dx
(ϕ∗

z(x))dx = (iλ∗ − 2)N, (12)

where

N =

∫

R+

ϕ∗
z(x)ϕz(x)dx. (13)

Next, we split ϕz(x) into real and imaginary components, such that

ϕ = ℜ(ϕz(x)) + iℑ(ϕz(x)), (14)

and substitute Eq. (14) into Eq. (12) such that

∫

R+

ℜ(ϕz(x))x
d

dx
ℜ(ϕz(x))dx+

∫

R+

ℑ(ϕz(x))x
d

dx
ℑ(ϕz(x))dx+N =

iλ∗

2
N. (15)

Upon setting λ = i(2z − 1), Eq. (15) can be written

∫

R+

ℜ(ϕz(x))x
d

dx
ℜ(ϕz(x))dx+

∫

R+

ℑ(ϕz(x))x
d

dx
ℑ(ϕz(x))dx+N =

1− 2z

2
N. (16)

It can be seen that all terms on the LHS of Eq. (15) are real, thereby verifying Theorem 1.

Q.E.D.

Remark. If the Riemann hypothesis is correct [2], the the eigenvalues of Eq. (2) are degenerate [1].

Lemma 1.1. Under the boundary condition ψ(0) = 0, the nth eigenstate of Eq. (2) is Eq. (3), and the nontrivial
zeros of the Riemann zeta function are given by

zn =
1

N

∫

R+

ℜ(ϕn(x))x
d

dx
ℜ(ϕn(x))dx+

1

N

∫

R+

ℑ(ϕn(x))x
d

dx
ℑ(ϕn(x))dx+

3

2
. (17)
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Proof. Given that

ψn(x) = ∆̂ψn(x)

= ψn(x)− ψn(x− 1)

= −

∞
∑

n=0

1

(x+ 1 + n)z
+

∞
∑

n=0

1

(x+ n)z
, (18)

the second term on the RHS of Eq. (17) goes to zero, as ℑ(ϕn(x)) = 0. Hence, we are left with

zn =
1

N

∫

R+

ϕn(x)x
d

dx
ϕn(x)dx +

3

2
. (19)

Moreover, it can be seen that

x
d

dx
(ϕn(x)) = x

d

dx
ψn(x)− x

d

dx
ψn(x− 1)

= −x
d

dx

∞
∑

n=0

1

(x+ 1 + n)z
+ x

d

dx

∞
∑

n=0

1

(x+ n)z

= xzζ(z + 1, x+ 1)− xzζ(z + 1, x). (20)

Multiplying Eq. (20) by ϕn(x), we obtain

ϕn(x)xzζ(z + 1, x+ 1)− ϕn(x)xzζ(z + 1, x) = ϕn(x)[xzζ(z + 1, x+ 1)− xzζ(z + 1, x)]

= −ζ(z, x+ 1)xzζ(z + 1, x+ 1)

+ ζ(z, x+ 1)xzζ(z + 1, x)

+ ζ(z, x)xzζ(z + 1, x+ 1)

− ζ(z, x)xzζ(z + 1, x). (21)

From the RHS of Eq. (21), it can be seen that

−

∫

R+

ζ(z, x+ 1)xzζ(z + 1, x+ 1)dx =

∞
∑

n=0

(n+ x+ 1)−2z(n+ 2xz + 1)

2(2z − 1)
+ const (22)

−

∫

R+

ζ(z, x)xzζ(z + 1, x)dx =

∞
∑

n=0

(n+ x)−2z(n+ 2xz)

2z(2z − 1)
+ const (23)

and
∫

R+

ζ(z, x+ 1)xzζ(z + 1, x) + ζ(z, x)xzζ(z + 1, x+ 1)dx

=
∞
∑

n=0

((n+ x)−z(n+ x+ 1)−z((n+ x)2F1(1, 1− 2z, 1− z, n+ x+ 1)− n− 2xz))

(2z − 1)
+ const, (24)

where the hypergeometric function is

2F1(1, 1− 2z, 1− z, n+ x+ 1) =

∞
∑

n=0

(1)n(1− 2z)n
(1 − z)n

(n+ x+ 1)n

n!
. (25)
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Since

N =

∫

R+

ϕ∗
n(x)ϕn(x)dx

=

∫

R+

[ψn(x)− ψn(x− 1)]2dx

=

∫

R+

[ψ2
n(x)− 2ψn(x− 1)ψn(x) + ψ2

n(x− 1)]dx

=
∞
∑

n=0

∫

R+

[(n+ x+ 1)−2z − 2(n+ x)−z(n+ x+ 1)−z + (n+ x)−2z ]dx

=
ζ(2z − 1, x)

(1− 2z)
+

∞
∑

n=0

2(−n− x)z(n+ x)−z(n+ x+ 1)1−z
2F1(1 − z, z, 2− z, n+ x+ 1)

z − 1

+
∞
∑

n=0

(n+ x+ 1)1−2z

(1− 2z)
, ℜ(z) > 1, (26)

with the hypergeometric function

2F1(1− z, z, 2− z, n+ x+ 1) =

∞
∑

n=0

(1− z)n(z)n
(2− z)n

(n+ x+ 1)n

n!
, (27)

Eq. (19) can be rewritten

zn =
[ (1 − 2z)

ζ(2z − 1, x)
+

∞
∑

n=0

z − 1

2(−n− x)z(n+ x)−z(n+ x+ 1)1−z
2F1(1− z, z, 2− z, n+ x+ 1)

+

∞
∑

n=0

(1− 2z)

(n+ x+ 1)1−2z

][

∞
∑

n=0

(n+ x+ 1)−2z(n+ 2xz + 1)

2(2z − 1)
+

∞
∑

n=0

(n+ x)−2z(n+ 2xz)

2z(2z − 1)

+

∞
∑

n=0

((n+ x)−z(n+ x+ 1)−z((n+ x)2F1(1, 1− 2z, 1− z, n+ x+ 1)− n− 2xz))

(2z − 1)

]

+
3

2
, (28)

for ℜ(z) > 1, and ℜ(x+ 1) > 0. Upon imposing the boundary condition

ψn(0) = −
∞
∑

n=1

1

nz

= −
1

Γ(z)

∫ ∞

0

tz−1

exp(t)− 1
, (29)

Eq. (28) are the nontrivial zeros of Eq. (1).

B. Convergence

For brevity, let us examine the convergence of the integral representation of the discrete nontrivial zeros of the
Riemann zeta function on the positive half line x ∈ R+, z ∈ C, ℜ(z) > 1, and ℜ(x + 1) > 0. From Eq. (19), the
integral representation of the discrete nontrivial zeros of the Riemann zeta function are given by

zn =−
1

N

∫

R+

ζ(z, x+ 1)xzζ(z + 1, x+ 1)dx

−
1

N

∫

R+

ζ(z, x)xzζ(z + 1, x)dx

+
1

N

∫

R+

ζ(z, x+ 1)xzζ(z + 1, x) + ζ(z, x)xzζ(z + 1, x+ 1)dx+
3

2
, (30)



5

where

N =

∫

R+

[

(n+ x+ 1)−2z − 2(n+ x)−z(n+ x+ 1)−z + (n+ x)−2z
]

dx. (31)

Lemma 1.2. From the first term on the RHS of Eq. (30), if

∫ t

0

ζ(z, x+ 1)xzζ(z + 1, x+ 1)dx (32)

exists for every number t ≥ 0, then

∫ ∞

0

ζ(z, x+ 1)xzζ(z + 1, x+ 1)dx = lim
t→∞

∫ t

0

ζ(z, x+ 1)xzζ(z + 1, x+ 1)dx, (33)

provided this limit exists as a finite number.

Proof.

∫ t

0

ζ(z, x+ 1)xzζ(z + 1, x+ 1)dx =
((n+ t+ 1)−2z((n+ 1)( t

(n+1) + 1)2z − n− 2tz − 1))

(2z(2z − 1))
(34)

From L’Hospital’s Rule, we have

lim
t→∞

((n+ t+ 1)−2z((n+ 1)( t
(n+1) + 1)2z − n− 2tz − 1))

(2z(2z − 1))

= lim
t→∞

((n+ t+ 1)−2z((n+ 1)( t
(n+1) + 1)2z − n− 2tz − 1))

(2z(2z − 1))
·
(n+ t+ 1)−2z

(n+ t+ 1)−2z

= lim
t→∞

−2z(n+ t+ 1)−4z−1(n( t
(n+1) + 1)2z + ( t

(n+1) + 1)2z − n− 4tz + t− 1)

4(1− 2z)z2(n+ t+ 1)−2z−1
. (35)

Upon evaluating Eq. (35) with a series expansion at t = ∞, we obtain

lim
t→∞

(−1− n+ t+ (1 + n)(1 + t
(1+n) )

2z − 4tz)

(2(1 + n+ t)2zz(−1 + 2z))

=
((n+ t+ 1)−2z((n+ 1)( t

(n+1) + 1)2z − n+ t(1− 4z)− 1))

(2z(2z − 1))
. (36)

Hence, it can be seen that the first term on the RHS of Eq. (30) is convergent, given that the limit seen in Eq. (35)
exists as a finite number as seen in Eq. (36).

Lemma 1.3. From the second term on the RHS of Eq. (30), if

∫ t

0

ζ(z, x)xzζ(z + 1, x)dx (37)

exists for every number t ≥ 0, then

∫ ∞

0

ζ(z, x)xzζ(z + 1, x)dx = lim
t→∞

∫ t

0

ζ(z, x)xzζ(z + 1, x)dx, (38)

provided this limit exists as a finite number.

Proof.

∫ t

0

ζ(z, x)xzζ(z + 1, x)dx = −
((n+ t)−2z(−n( (n+t)

n

2z
+ n+ 2tz))

(2(2z − 1))
(39)
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From L’Hospital’s Rule, we have

− lim
t→∞

((n+ t)−2z(−n( (n+t)
n

2z
+ n+ 2tz))

(2(2z − 1))

=− lim
t→∞

((n+ t)−2z(−n( (n+t)
n

2z
+ n+ 2tz))

(2(2z − 1))
·
(n+ t)−2z

(n+ t)−2z

=− lim
t→∞

(n+ t)−4z(−n( (n+t)
n

)2z + n+ 2tz)

2(2z − 1)(n+ t)−2z
(40)

Upon evaluating Eq. (40) with a series expansion at t = ∞, we obtain

lim
t→∞

((n+ t)−2z(−n( (n+t)
n

)2z + n+ 2tz))

((n+ t)−2z(−n( (n+t)
n

)2z + n+ 2tz))

=
((n+ t)−2z(−n( (n+t)

n
)2z + n+ 2tz))

(2(2z − 1))
. (41)

Hence, it can be seen that the second term on the RHS of Eq. (30) is convergent, given that the limit seen in Eq.
(40) exists as a finite number as seen in Eq. (41).

Lemma 1.4. From the third term on the RHS of Eq. (30), if

∫ t

0

ζ(z, x+ 1)xzζ(z + 1, x) + ζ(z, x)xzζ(z + 1, x+ 1)dx (42)

exists for every number t ≥ 0, then

∫ ∞

0

ζ(z, x+ 1)xzζ(z + 1, x) + ζ(z, x)xzζ(z + 1, x+ 1)dx

= lim
t→∞

∫ t

0

ζ(z, x+ 1)xzζ(z + 1, x) + ζ(z, x)xzζ(z + 1, x+ 1)dx, (43)

provided this limit exists as a finite number.

Proof. From the RHS of Eq. (24) it can be seen that

∫ t

0

ζ(z, x+ 1)xzζ(z + 1, x) + ζ(z, x)xzζ(z + 1, x+ 1)dx

=
((n+ t)−z(n+ t+ 1)−z((n+ t)2F1(1, 1− 2z, 1− z, n+ t+ 1)− n− 2tz))

(2z − 1)

−
((n)−z(n+ 1)−z((n)2F1(1, 1− 2z, 1− z, n+ 1)− n))

(2z − 1)
. (44)

Since the second term on the RHS of Eq. (44) is independent of t, we are only concerned with the limit of the first
term on the RHS of Eq. (44). As such, we consider the limit

lim
t→∞

((n+ t)2F1(1, 1− 2z, 1− z, n+ t+ 1)− n− 2tz)

(n+ t)z(n+ t+ 1)z(2z − 1)
. (45)

Here, it is useful to employ Gauss’ theorem, i.e.,

2F1(1, 1− 2z, 1− z, n+ t+ 1) =
Γ(1− z)Γ(z − 1)

Γ(−z)Γ(z)
(46)

where ℜ(z) > 1, n = −t, and

Γ(z) =

∫ ∞

0

xz−1e−xdx (47)
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is the gamma function. Therefore, Eq. (45) can be written

lim
t→∞

((n+ t)Γ(1−z)Γ(z−1)
Γ(−z)Γ(z) − n− 2tz)

(n+ t)z(n+ t+ 1)z(2z − 1)

=− lim
t→∞

(n+ t)−z(n+ t+ 1)−z(n+ tz)

(z − 1)
. (48)

Upon evaluating Eq. (48) with a series expansion at t = ∞, we obtain

lim
t→∞

((n+ t)2F1(1, 1− 2z, 1− z, n+ t+ 1)− n− 2tz)

(n+ t)z(n+ t+ 1)z(2z − 1)
= (n+ t)−z(n+ t+ 1)−z

[

−
n

(z − 1)
−

(tz)

(z − 1)

]

. (49)

Hence, it can be seen that the third term on the RHS of Eq. (30) is convergent, given that the limit seen in Eq. (45)
exists as a finite number as seen in Eq. (49).

Finally, we must consider the convergence of the normalization factor N .

Lemma 1.5. From the first three terms on the RHS of Eq. (30), if

∫ t

0

[

(n+ x+ 1)−2z − 2(n+ x)−z(n+ x+ 1)−z + (n+ x)−2z
]

dx (50)

exists for every number t ≥ 0, then

∫ ∞

0

[

(n+ x+ 1)−2z − 2(n+ x)−z(n+ x+ 1)−z + (n+ x)−2z
]

dx

= lim
t→∞

∫ t

0

[

(n+ x+ 1)−2z − 2(n+ x)−z(n+ x+ 1)−z + (n+ x)−2z
]

dx. (51)

provided this limit exists as a finite number.

Proof.

∫ ∞

0

[

(n+ x+ 1)−2z − 2(n+ x)−z(n+ x+ 1)−z + (n+ x)−2z
]

dx

= lim
t→∞

((n+ t+ 1)−2z((n+ 1)( t
(n+1) + 1)2z − n− t− 1))

(2z − 1)

+ lim
t→∞

((n+ t)−2z(n(( (n+t)
n

)2z − 1)− t))

(2z − 1)

+ lim
t→∞

(2(−n− t)z(n+ t)−z(n+ t+ 1)1−z
2F1(1 − z, z, 2− z, n+ t+ 1))

(z − 1)

−
(2(−n)z(n)−z(n+ 1)1−z

2F1(1− z, z, 2− z, n+ 1))

(z − 1)
, (52)

where the last term on the RHS of Eq. (52) omits the limit, as it is independent of t. The limits seen on the RHS of
Eq. (52) can be evaluated in a similar manner to those seen in Eqs. (36), (41), and (45), respectively.

C. Domain of the Bender-Brody-Müller Hamiltonian

For the BBM Hamiltonian operator as given by Eq. (2), the Hilbert space is H = L2(R+, dx). Moreover, p̂ and x̂
are self-adjoint operators that act in H . In order to study the domain of the BBM Hamiltonian operator, we first
introduce an auxiliary operator Ô, such that

Ô = p̂p̂+ x̂x̂, (53)

where p̂p̂ = −∇2, and x̂x̂ = x2. The set of finite linear combinations of Hermite functions is a core of Ô, and therefore
the Schwartz space S is also a core of Ô.
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Lemma 1.6. [6] If ϕ is in D(Ô), then

‖p̂p̂ϕ‖2 + ‖x̂x̂ϕ‖2 ≤ ‖Ôϕ‖2 + c‖ϕ‖2. (54)

Proof. [6] We estimate ϕ for a core of Ô via a double commutator to make the estimate [7],

ÔÔ = p̂p̂p̂p̂+ x̂x̂x̂x̂+ p̂p̂x̂x̂+ x̂x̂p̂p̂

= p̂p̂p̂p̂+ x̂x̂x̂x̂+ 2

n
∑

i=1

[

x̂ip̂p̂x̂i + [x̂i, [x̂i, p̂p̂]]
]

≥ p̂p̂p̂p̂+ x̂x̂x̂x̂− 2n, (55)

Therefore, in Eq. (54) c = 2n.

After rewriting Eq. (8) as

[x∂x + ∂xx]ϕ = (1 − 2z)ϕ, (56)

then p̂p̂ = x∂x and f(x̂) = ∂xx are self-adjoint operators acting in H = L2(R+, dx). Setting

Ĥ = p̂p̂+ f(x̂), (57)

defined on

p̂p̂ : X
⋂

f(x̂) : Y. (58)

If f(x̂) is local in H , then Eq. (57) is dense and Hermitian.

Theorem 2. The BBM Hamiltonian operator in Eq. (2) is essentially self-adjoint, given that |∇f(x̂)| ≤ a|x̂|+ b.

The BBM Hamiltonian operator in Eq. (2) is real-valued on the positive half line R+, after being reduced to Eq.
(56). From |∇f(x̂)| ≤ a|x̂|+ b we have

|f(x̂)| ≤
1

2
x̂x̂+ b|x̂|

≤ cx̂x̂+ d. (59)

Let us examine the uniqueness.

Proof. As shown in [6], if Ĥ is Hermitian, and Ô is a positive self-adjoint operator, then C is a core of Ô such that

C ⊂ D(Ĥ). As such,

‖(p̂p̂+ f(x̂))ϕ‖2 ≤ a‖(p̂p̂+ x̂x̂)ϕ‖2 + b‖ϕ‖2, (60)

where ϕ ∈ S . Since (1 + x̂x̂)ϕ ∈ L2, f(x̂)ϕ ∈ L2. Therefore, S ⊂ D(Ĥ). Moreover, since f(x̂)2 ≤ rx̂x̂x̂x̂+ s,

‖f(x̂)ϕ‖2 ≤ r‖x̂x̂ϕ‖2 + s‖ϕ‖2. (61)

As such, from Eq. (54), Eq. (60) is satisfied. If ϕ ∈ S , then ∇(f(x̂)ϕ) ∈ L2. Since,

±i[Ĥ, Ô] ≤ cÔ (62)

as quadratic forms on C , we thus have

±i[Ĥ, Ô] = ±i{[p̂p̂, x̂x̂] + [f(x̂), p̂p̂]}

= ±{2(p̂ · x̂+ x̂ · p̂)− (p̂ · ∇f(x̂) +∇f(x̂) · p̂)}

≤ 2(p̂p̂+ x̂x̂) + p̂p̂+ (∇f(x̂))2

≤ 2(p̂p̂+ x̂x̂) + p̂p̂+ 2(a2x̂x̂+ b2)

≤ cÔ, (63)

for constant c.
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D. Second Quantization

We begin with the Bender-Brody-Müller (BBM) Schrödinger equation

−
~

i

∂

∂z
= ∆̂−1x̂p̂∆̂ψ(x, z) + ∆̂p̂x̂∆̂−1ψ(x, z), (64)

where ∆̂ is given by Eq. (7), x̂ = x, p̂ = −i~∂x, ~ = 1, x ∈ R+, and z ∈ C. Furthermore, let

ψn(x) = −ζ(zn, x+ 1)

= −

∞
∑

n=0

1

(x + 1 + n)z
(65)

be the solution of
(

∆̂−1x̂p̂∆̂ + ∆̂p̂x̂∆̂−1
)

ψn(x) = Enψn(x), (66)

where zn are the nontrivial zeros of the Riemann zeta function given by Eq. (28), ℜ(z) > 1, and ℜ(x+ 1) > 0. Next,
we write

ψ(x, z) =
∑

n

bn(z)ψn(x). (67)

From Eq. (64) we find

d

dz
bn = −

i

~
Enbn. (68)

We now find a Hamiltonian that yields Eq. (68) as the equation of motion. Hence, we take

Ĥ =

∫

R+

ψ∗(x, z)
[

∆̂−1x̂p̂∆̂ + ∆̂p̂x̂∆̂−1
]

ψ(x, z) dx (69)

as the expectation value. Upon substituting Eq. (67) into Eq. (69) and using Eq. (66) we obtain the harmonic
oscillator

Ĥ =
∑

n

Enb
∗
nbn. (70)

Taking bn as an operator, and b∗n as the adjoint, we obtain the usual properties:

[b̂n, b̂m] = [b̂†n, b̂
†
m] = 0,

[b̂n, b̂
†
m] = δnm. (71)

From the analogous Heisenberg equations of motion,

−
~

i

d

dz
b̂n = [b̂n, Ĥ ]−

=
∑

m

Em

(

b̂nb̂
†
mb̂m − b̂†mb̂mb̂n

)

=
∑

m

Em

(

δnmb̂m − b̂†mb̂nb̂m − b̂†mb̂mb̂n

)

=
∑

m

Em

(

δnmb̂m + b̂†mb̂mb̂n − b̂†mb̂mb̂n

)

= Enb̂n. (72)

The eigenvalues of Ĥ are

Ĥ =
∑

n

EnNn, (73)
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where Nn = 0, 1, 2, 3, . . . ,∞. Since, En = i(2zn − 1), we can rewrite Eq. (73) as

Ĥ = i
∑

n

(2zn − 1)Nn. (74)

However, from Eq. (72) it can be seen that

−
~

i

d

dz
b̂n = i(2zn − 1)b̂n. (75)

As such,

d

dz
b̂n =

1

~
(2zn − 1)b̂n. (76)

E. PT -symmetric Bender-Brody-Müller Hamiltonian

Theorem 3. The eigenvalues of the Hamiltonian

iĤ =
i

1− e−ip̂
(x̂p̂+ p̂x̂)(1 − e−ip̂) (77)

are imaginary, where p̂ = −i~∂x, ~ = 1, and x̂ = x.

Corollary 3.1. [1] Solutions to the equation iĤψ = Eψ are given by the Hurwitz zeta function

ψz(x) = −ζ(z, x+ 1)

= −

∞
∑

n=0

1

(x+ 1 + n)z
(78)

on the positive half line R+ with eigenvalues i(2z − 1).

Proof. Let ψ be an eigenfunction of Eq. (77) with an eigenvalue λ = i(2z − 1):

iĤψ = λψ. (79)

Then we have the relation

i

1− e−ip̂
(x̂p̂+ p̂x̂)(1− e−ip̂)ψ = λψ. (80)

Letting

ϕ = [1− exp(−∂x)]ψ, (81)

and inserting Eq. (81) into Eq. (80) with p̂ = −i~∂x, ~ = 1, and x̂ = x, we obtain

[x∂x + ∂xx]ϕ = λϕ. (82)

Then we have
∫

(x∂xϕ)
∗ϕdx +

∫

(∂xxϕ)
∗ϕdx = λ∗

∫

ϕ∗ϕdx. (83)

Now we integrate the first term on the LHS of Eq. (83) by parts to obtain
∫

xϕ∂xϕ
∗dx = −

∫

ϕ∗ϕdx−

∫

ϕ∗x
d

dx
(ϕ)dx, (84)

and the second term on the LHS of Eq. (83) by parts to obtain
∫

xϕ∗∂xϕdx = −

∫

ϕϕ∗dx−

∫

ϕx
d

dx
(ϕ∗)dx. (85)
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Upon substituting Eqs. (84) and (85) into Eq. (83), we obtain

∫

ϕ∗x
d

dx
(ϕ)dx +

∫

ϕx
d

dx
(ϕ∗)dx = −(λ∗ + 2)N, (86)

where

N =

∫

ϕ∗ϕdx. (87)

Next, we split ϕ into real and imaginary components, such that

ϕ = ϕℜ + iϕℑ, (88)

and substitute Eq. (88) into Eq. (86) such that

∫

ϕℜx
d

dx
ϕℜdx+

∫

ϕℑx
d

dx
ϕℑdx+N = −

λ∗

2
. (89)

Upon setting λ = i(2z − 1), Eq. (89) can be written

∫

ϕℜx
d

dx
ϕℜdx+

∫

ϕℑx
d

dx
ϕℑdx+N =

i(1− 2z)

2
. (90)

It can be seen that all terms on the LHS of Eq. (89) are real, thereby verifying Theorem 3.

Q.E.D.

III. CONCLUSION

In this note, we have discussed the domain and eigenvalues of the BBM Hamiltonian.
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