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Frederick Ira Moxley III
(Dated: April 8, 2017)

Recently it was conjectured that if the Bender-Brody-Miiller (BBM) Hamiltonian can be shown
to be self-adjoint, then the Riemann hypothesis holds true. Herein we discuss the domain and
eigenvalues of the Bender-Brody-Miiller conjecture.

I. INTRODUCTION

It was recently shown in [I] that the eigenvalues of a Bender-Brody-Miiller (BBM) Hamiltonian operator correspond
to the nontrivial zeroes of the Riemann zeta function [2]. Although the BBM Hamiltonian is pseudo-Hermitian, it is
consistent with the Berry-Keating conjecture [3| 4]. The eigenvalues of the BBM Hamiltonian are conjectured to be
the imaginary parts of the nontrivial zeroes of the zeta function
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The idea that the imaginary parts of the zeroes of Eq. are given by a self-adjoint operator was conjectured by
Hilbert and Pélya [5]. Formally, Hilbert and Pélya conjectured that if the eigenfunctions of a self-adjoint operator
satisfy the boundary conditions ¢, (0) = 0 V n, then the eigenvalues are the nontrivial zeroes of Eq. . The BBM
Hamiltonian also satisfies the Berry-Keating conjecture, which states that when # and p commute, the Hamiltonian
reduces to the classical H = 2xp.
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Remark. If there are nontrivial roots of Fq. for which R(2) # 1/2, the corresponding eigenvalues and eigenstates
are degenerate [1)].

II. STATEMENT OF PROBLEM
A. Bender-Brody-Miiller Hamiltonian

Theorem 1. The eigenvalues of the Hamiltonian
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are real, where p = —ihd,, h=1, and & = x.

Corollary 1.1. [1] Solutions to the equation fhp = FvY are given by the Hurwitz zeta function
Y, (x) = —C(z,2+ 1)

> 1
:7Z(w+1+n)z ®)

n=0

on the positive half line x € RY with eigenvalues i(2z—1), and z € C, for the boundary condition 1, (0) = 0. Moreover,
R(z) > 1, and R(z + 1) > 0. As —1.(0) is the Riemann zeta function, i.e., Eq. (1)), this implies that z belongs to the
discrete set of zeros of the Riemann zeta function.

Proof. Let v, (x) be an eigenfunction of Eq. with an eigenvalue A\ = i(2z — 1):

I;h/&(x) = A\, (). (4)
Then we have the relation
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Letting
p2(2) = [1 — exp(—0z)]¢: (),
= Ay, (2), (6)
where A, () = 1. () — 9. (v — 1), and
A=1-exp(-0,), (7)
is a shift operator. Upon inserting Eq. (6] into Eq. with p = —ihd,, h =1, and & = z, we obtain
[—i20; — i0:x]p. () = Ap2(2). (8)

Then we have
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Now we integrate the first term on the LHS of Eq. @[) by parts to obtain

* * * d
| wo-@oupi@is = [ p@enade - [ e (en@)is, (10)
R+ R+ R+ Z
and the second term on the LHS of Eq. @[) by parts to obtain
* * d *
[ ety ospis = - [ e@pi@is- [ oo (el (1)
R+ R+ R+ €z
Upon substituting Egs. and into Eq. @, we obtain
. d d ., -
| et et + [ @ (l@)ds = (X - 2N, (12)
R+ €L R+ €T
where
N= [ ¢i(z)p.(z)d. (13)
R+

Next, we split ¢, (z) into real and imaginary components, such that

¢ = R(p:(x)) +iS(p:(2)), (14)
and substitute Eq. into Eq. such that

d d i\
R(pz(2))z——R(p(2))dz +/ (= ()7~ S(p=(w))dw + N = Z-N. (15)
R+ dx R+ dz 2
Upon setting A = i(2z — 1), Eq. can be written
d d 1-2z
Rl (o) Rigo(@)dn + | (eula)o (o) + N = = 2N, (16)
R+ dx R+ dz 2

It can be seen that all terms on the LHS of Eq. are real, thereby verifying Theorem

Q.E.D.

Remark. If the Riemann hypothesis is correct [Z], the the eigenvalues of Eq. (@ are degenerate [1J].

Lemma 1.1. Under the boundary condition 1(0) = 0, the n'* eigenstate of Eq. (@ is Eq. (@, and the nontrivial
zeros of the Riemann zeta function are given by
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Proof. Given that

Un(@) = Aty ()
= n(z) — Yn(z — 1)
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the second term on the RHS of Eq. goes to zero, as (pn(x)) = 0. Hence, we are left with
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Moreover, it can be seen that
2 (on(2) = 21a@) = o — 1)

d 1 d ~—~ 1
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=z20(z+ 1L,z +1) —zz((z+ 1,x).
Multiplying Eq. by ¢n(z), we obtain

on(@)xzl(z+ 1,z + 1) — pp(x)x2((2z + 1,2) = pp(x)[z2(z + 1L,z + 1) — z2{(2 + 1, x)]
=—((z,z+ Dzz¢(z+ 1,2+ 1)

+(z,z + Dazl(z+ 1, 2)

+((z,2)xz((z+ 1,2+ 1)

—((z,x)xzC(z + 1, ).

From the RHS of Eq. 7 it can be seen that

(n+z+1)"22(n+2z22+1)
202z — 1)

+ const

_/ ((z,z+1)zz((z + 1,2+ 1)do = i
R+

n=0

- /]R+ C(z,2)22(2 + 1,2)dx = n;) (n+ 2(22:(? ;; 222) + const

and

/ C(zyx+ Dazl(z+ 1,2) + ((z,2)x2{(z + 1,2 + 1)dx
R+

(n+z)*(n+z+1)"*((n+z)Fi(1,1—-22,1—zn+z+1) —n—2zz
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n=0
where the hypergeometric function is
i n(l=22), (n+2+1)"

l—z n!

o1 (1,1 -22,1—2z,n+2x+1)=
n=0
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Since
V= [ ei@ene)s

- / [ (2) = (= 1)]?da
R+
= [ @) = 20 = (o) + v = 1)

:Z/H{+[(n+x+1)_ F2n+x)F(n+ax+1)"" + (n+x)"F]de
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with the hypergeometric function
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Eq. can be rewritten
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_'_i (1—22) Hi(n—i—m—&—l)‘”(n—l—?xz—l—l)+i(n+m)_22(n+2mz)

= (ntax+ 1) 2(2z-1) = 22(2z - 1)
(n+z)*(n+z+1)*((n+x)F1 (1,1 -22,1—zn+z+1) —n—2xz2)) 3
Z + o (28)
. (22— 1) 2
for ®(z) > 1, and R(xz + 1) > 0. Upon imposing the boundary condition
s
n=1 n*
1 [e] tzfl
_ 29
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Eq. are the nontrivial zeros of Eq. .
O

B. Convergence

For brevity, let us examine the convergence of the integral representation of the discrete nontrivial zeros of the
Riemann zeta function on the positive half line z € R*, z € C, ®(z) > 1, and R(z + 1) > 0. From Eq. (19), the
integral representation of the discrete nontrivial zeros of the Riemann zeta function are given by

2n=—— [ ((z,x+1)r2((z+ 1,2+ 1)dw
N Jus

1
% L C(z,x)xz((2 4+ 1, x)dx
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where

N = (n+z+1)"% -2n+2)*(n+a+1)"%+ (n+2) **]de. (31)
R+

Lemma 1.2. From the first term on the RHS of Fq. @), if

t
/ C(zyx+Daz((z+ 1,2+ 1)dx (32)
0
exists for every number t > 0, then
e8] t
/ Czyz+ Daz{(z+ 1,z + 1)dx = tlim / C(z, x4+ 1)xz((z+ 1,z + 1)dz, (33)
0 —>Jo

provided this limit exists as a finite number.

Proof.
t (n+t+1)72((n+ V(55 + D% —n— 2tz — 1))
n+1)
1 1 1)dx = 4
/o C(zyz+1)azf(z+ 1,2+ 1)dx 52022 - 1) (34)
From L’Hospital’s Rule, we have
(n+t+1)72*((n+ V(g4 + D% —n -2tz — 1))
lim
t—o0 (2z(2z — 1))
y (n+t+ 1) 2 ((n+ 1) (G + D> —n—2tz = 1)) (n4t41)2
T i (22(22 — 1)) nttr1)2=
“22(n+t+ 1) (i + V¥ + (G + )P —n—dtz +t - 1)
= lim —— . (35)
t—00 4(1 —22)22(n+t+1)"2—1
Upon evaluating Eq. with a series expansion at t = oo, we obtain
i (—1—n+t+(1+n)(1+t/(1+n))* —4tz)
t—o0 (2(14+n+t)?22(—1 4 22))
(n+t+ 1) ((n+ V(54 + D% —n+t(l—4z) - 1)) (36)

(22(22 — 1))

Hence, it can be seen that the first term on the RHS of Eq. is convergent, given that the limit seen in Eq. (35)
exists as a finite number as seen in Eq. . O

Lemma 1.3. From the second term on the RHS of Eq. (@), if

t
/ C(z,2)x2((2 + 1, z)dx (37)
0
exists for every number t > 0, then
o t
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0 > Jo

provided this limit exists as a finite number.
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From L’Hospital’s Rule, we have
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Upon evaluating Eq. with a series expansion at t = 0o, we obtain

(0 )7 (nl(n + 1)/n)* + 0+ 202))
t=oo ((n+ 8)=22(—n((n +t) /)2 +n + 2tz))
((n+ )72 (—n(")2 4 n 4 2t2))
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Hence, it can be seen that the second term on the RHS of Eq. is convergent, given that the limit seen in Eq.
(40) exists as a finite number as seen in Eq. . O

Lemma 1.4. From the third term on the RHS of Fq. (@, if

t
/ Clzyz+1azC(z+ 1,2) + ((z,2)z2((z + 1,2 + 1)dz (42)
0
exists for every number t > 0, then

/OO C(z,z+ 1zz¢(z+ 1,2) + ((z,2)z2((z + 1,z + 1)dx
0

t—o0

¢
= lim / C(z,x+1Daz((z+1,2) + ((z,z)x2((2 + 1,z + 1)dz, (43)
0

provided this limit exists as a finite number.

Proof. From the RHS of Eq. it can be seen that

Czyx+ Dazl(z+ 1,2) + ((z,2)xz{(z + 1,z + 1)dx
0

(n+t)#n+t+1)*((n+1t)F1(1,1 —22,1 —z,n+t+1) —n— 2tz))
(22 —-1)
(n)*(n+1)"*((n)2F1 (1,1 = 22,1 —2,n+1) —n))

- (22 —1) : (44)

Since the second term on the RHS of Eq. is independent of ¢, we are only concerned with the limit of the first
term on the RHS of Eq. . As such,

((n+1t)F1 (1,1 —22,1—2zn+t+1)—n—2tz)

i
1o (n+ D) (n+t+1)7(2z — 1)
. (n+t)2F1 (1,1 —=22,1—2zn+t+1)—n—2tz) 2F(1,1-22,1—zn+t+1)
= lim .
t—00 (n+t)*(n+t+1)%(22 — 1) oF1 (1,1 —=22,1—2z,n+t+1)

oF1 (1,1 =221 —zn+t+1)(noF1 (1,1 —22,1—z,n+t+ 1)+t F (1,1 —22,1—2z,n+t+1) —n—2tz)
m
t—oo 2z(n+t)*(n+t+1)? 2 F (1,1 —-22,1—2zn+t+1)—(n+t)?(n+t+1)? 2F1 (1,1 22,1 —zn+t+1)
(45)
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C. Domain of the Bender-Brody-Miiller Hamiltonian

For the BBM Hamiltonian operator as given by Eq. , the Hilbert space is % = L?(R*, dx). Moreover, p and &
are self-adjoint operators that act in . In order to study the domain of the BBM Hamiltonian operator, we first
introduce an auxiliary operator O, such that

O = pp + 22, (46)
where pp = —V?, and 22 = 2. The set of finite linear combinations of Hermite functions is a core of O, and therefore
the Schwartz space .# is also a core of O.

Lemma 1.5. [6] If ¢ is in 2(0), then
IBpell® + 1220* < [Opll* + cll]|*. (47)

Proof. [6] We estimate ¢ for a core of O via a double commutator to make a double commutator estimate [,

OO0 = pppp + 2423 + ppid + 2app

n

> pppp + 222E — 2n, (48)

Therefore, in Eq. c=2n. O
After rewriting Eq. as

(20, + Dyl = (1 - 22)¢, (49)

then pp = 20, and f(2) = d,x are self-adjoint operators acting in /% = L?(R*, dz). Setting
H =pp+ f(#), (50)
defined on
pp: X () f(&):Y. (51)
If f(Z) is local in 42, then Eq. is dense and Hermitian.

Theorem 2. The BBM Hamiltonian operator in Eq. (9) is essentially self-adjoint, given that |V f(2)| < a|&| + b.

The BBM Hamiltonian operator in Eq. is real-valued on the positive half line RT, after being reduced to Eq.
(49). From |V f(Z)| < alZ| + b we have

N 1. N
@) < 5éd + bl
< cit +d. (52)
Let us examine the uniqueness.

Proof. As shown in [0], if H is Hermitian, and O is a positive self-adjoint operator, then % is a core of O such that
€ C 2(H). As such,

126+ f(@)ell* < all(pp + 22)l* + b, (53)
where ¢ € .. Since (1 + &2)p € L?, f(2)¢ € L. Therefore, . C 2(H). Moreover, since f(#)? < riéiii + s,
I @)el® < rllzzell* + slloll*. (54)
As such, from Eq. , Eq. is satisfied. If ¢ € .7, then V(f(2)p) € L?. Since,

+i[H,0] < cO (55)



as quadratic forms on %, we thus have

+i[H,0] = +i{[pp, &3] + [f(2), pp]}

=+{20p-2+2-p) - (- V[f(&)+V[f(@) p)}

<2(pp + &%) + pp + (Vf(2))?
< 2(pp + &2) + pp + 2(a*23 + b*)
< CO,

for constant c.

D. PT-symmetric Bender-Brody-Miiller Hamiltonian

Theorem 3. The eigenvalues of the Hamiltonian

are imaginary, where p = —ih0,, h=1, and & = x.

Corollary 3.1. [1|] Solutions to the equation iﬁz{z = Ev are given by the Hurwitz zeta function

Y, (x) = —((z,x+ 1)

- 1
"l Griar

n=0

on the positive half line RY with eigenvalues i(2z — 1).

Proof. Let 1 be an eigenfunction of Eq. with an eigenvalue A = i(2z — 1):
iHp = \ip.

Then we have the relation

7
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Letting
p = [1 —exp(—0a)]¢,
and inserting Eq. into Eq. with p = —ihd,, h =1, and & = z, we obtain
[0: + Ozx]p = M.
Then we have

/ (2020)" pdx + / (Ozzp)*pdr = \* / P pdz.

Now we integrate the first term on the LHS of Eq. by parts to obtain

d
/wazso*dw = —/w*wdw—/w*md*(w)dm,
x
and the second term on the LHS of Eq. (63]) by parts to obtain

* * d *
/xga Oppdx = f/apgp dxf/gox%(go )dx.

(57)

(64)

(65)



Upon substituting Egs. and into Eq. , we obtain
/ 5 (Vo +/ 2L (M)dz = —(\ + 2N (66)
g \$ pr ¥ = )
where
N = /cp*gadx. (67)
Next, we split ¢ into real and imaginary components, such that

© = PR + ips, (68)

and substitute Eq. into Eq. such that
d d A*
/wmw@mdw + /@%wﬁwgdfc +N = 5 (69)

Upon setting A = i(2z — 1), Eq. can be written

d d i(1 —2z)
—_— ST/ P N=——+>.
/QO;R.’L'deO%d.'IT—F /@dexw\ydx+ 5 (70)
It can be seen that all terms on the LHS of Eq. are real, thereby verifying Theorem
Q.E.D.
O

III. CONCLUSION

In this note, we have discussed the domain and eigenvalues of the BBM Hamiltonian.
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