An Elementary Proof of Goldbach's Conjecture

Chongxi Yu

Techfields Inc.

1679 S Dupont HYW, Dover, Delaware, USA

Abstract

Prime numbers are the basic numbers and are crucial important. There are many conjectures concerning primes are challenging mathematicians for hundreds of years. Goldbach's conjecture is one of the oldest and best-known unsolved problems in number theory and in all of mathematics. A kaleidoscope can produce an endless variety of colorful patterns and it looks like a magic, but when you open it, it contains only very simple, loose, colored objects such as beads or pebbles and bits of glass. Human is very easily cheated by 2 words, infinite and anything, because we never see infinite and anything, so we always make simple thing complex. Goldbach's conjecture is about all very simple numbers, the pattern of prime numbers likes a "kaleidoscope" of numbers, we divided any even numbers into 5 groups and primes into 4 groups, Goldbach's conjecture becomes much simpler. Here we give a clear proof for Goldbach's conjecture based on the fundamental theorem of arithmetic, the prime number theorem, and Euclid's proof that the set of prime numbers is endless.

Key words: Goldbach's conjecture, fundamental theorem of arithmetic, Euclid's proof of infinite primes, the prime number theorem

Introduction

Prime numbers¹ are the basic numbers and are crucial important. There are many conjectures concerning primes are challenging mathematicians for hundreds of years and many "advanced mathematics tools" are used to solve them, but they are still unsolved.

I believe that prime numbers are "basic building blocks" of the natural numbers and they must follow some very simple basic rules and do not need "advanced mathematics tools" to solve them. Two of the basic rules are the "fundamental theorem of arithmetic" and Euclid's proof of endless prime numbers.

Fundamental theorem of arithmetic:

The crucial importance of prime numbers to number theory and mathematics in general stems from the fundamental theorem of arithmetic, ^[1] which states that every integer larger than 1 can be written as a product of one or more primes in a way that is unique except for the order of the prime factors. ^[2] Primes can thus be considered the "basic building blocks" of the natural numbers.

Euclid's proof^[2] that the set of prime numbers is endless

The proof works by showing that if we assume that there is a biggest prime number, then there is a contradiction.

We can number all the primes in ascending order, so that $P_1 = 2$, $P_2 = 3$, $P_3 = 5$ and so on. If we assume that there are just **n** primes, then the biggest prime will be labeled P_n . Now we can form the number Q by multiplying together all these primes and adding 1, so

$$\mathbf{Q} = (\mathbf{P}_1 \times \mathbf{P}_2 \times \mathbf{P}_3 \times \mathbf{P}_4 ... \times \mathbf{P}_n) + 1$$

Now we can see that if we divide Q by any of our n primes there is always a remainder of 1, so Q is not divisible by any of the primes, but we know that all positive integers are either primes or can be decomposed into a product of primes. This means that either Q must be a prime or Q must be divisible by primes that are larger than P_n .

Our assumption that P_n is the biggest prime has led us to a contradiction, so this assumption must be false, so there is no biggest prime and the set of prime numbers is endless.

Discussions

Goldbach's conjecture is one of the oldest and best-known unsolved problems in number theory and in all of mathematics. It states:

Every even integer greater than 2 can be expressed as the sum of two primes.

A kaleidoscope can produce an endless variety of colorful patterns and it looks like a magic, but when you open it, it contains only very simple, loose, colored objects such as beads or pebbles and bits of glass. Goldbach's conjecture is about all numbers, the pattern of prime numbers likes a "kaleidoscope" of numbers, if we divide all even numbers into 5 groups and primes into 4 groups, Goldbach's conjecture will be much simpler.

If a large number N is not divisible by 3 or any prime which is smaller or equal to N/3, it must be a prime. 1/3 of all numbers that are divisible by 7 can be divisible by 3, 1/3 of all numbers that are divisible by 11 can be divisible by 3 and 1/7 of all numbers that are divisible by 13 can be divisible 3, 1/7 of all numbers that are divisible by 13 can be divisible by 7, and 1/11 of all numbers that are divisible by 13 can be divisible by 11, so on, so we have terms: 1/3, 1/7x2/3, 1/11x2/3x6/7, 1/13x2/3x6/7x10/11...

```
Let N_o represent any odd number, the chance of N_o to be a non-prime is: [(1/3) + (1/7x2/3) + (1/11x2/3x6/7) + (1/13x2/3x6/7x10/11) + (1/17x2/3x6/7x10/11x12/13) + (1/19x2/3x6/7x10/11x12/13x16/17) + (1/23x2/3x6/7x10/11x12/13x16/17x18/19) + (1/29x2/3x6/7x10/11x12/13x16/17x18/19x22/23) + (1/31x2/3x6/7x10/11x12/13x16/17x18/19x22/23x28/29x30/31) + (1/31x2/3x6/7x10/11x12/13x16/17x18/19x22/23x28/29x30/31) + (1/41x2/3x6/7x10/11x12/13x16/17x18/19x22/23x28/29x30/31x36/37) + (1/43x2/3x6/7x10/11x12/13x16/17x18/19x22/23x28/29x30/31x36/37x40/41) + (1/47x2/3x6/7x10/11x12/13x16/17x18/19x22/23x28/29x30/31x36/37x40/41x42/43) + (1/53x2/3x6/7x10/11x12/13x16/17x18/19x22/23x28/29x30/31x36/37x40/41x42/43x46/47) + (1/59x2/3x6/7x10/11x12/13x16/17x18/19x22/23x28/29x30/31x36/37x40/41x42/43x46/47x52/53) + (1/61x2/3x6/7x10/11x12/13x16/17x18/19x22/23x28/29x30/31x36/37x40/41x42/43x46/47x52/53x58/59x60/61) + (1/71x2/3x6/7x10/11x12/13x16/17x18/19x22/23x28/29x30/31x36/37x40/41x42/43x46/47x52/53x58/59x60/61x66/67) + (1/73x2/3x6/7x10/11x12/13x16/17x18/19x22/23x28/29x30/31x36/37x40/41x42/43x46/47x52/53x58/59x60/61x66/67x70/71) + (1/79x2/3x6/7x10/11x12/13x16/17x18/19x22/23x28/29x30/31x36/37x40/41x42/43x46/47x52/53x58/59x60/61x66/67x70/71x72/73) + ...] --------Formula 1
```

Any odd number cannot be divisible by 2 and any odd number with 5 as its last digit is not a prime except 5.

Let \sum represent the sum of the infinite terms and $\Delta=1-\sum$, according to Euclid's proof^[2] that the set of prime numbers is endless. Δ is the chance of any odd number to be a prime. \sum may be very close to 1 when N is growing to ∞ , but always less than 1. Let $\Delta=1-\sum$,

when N is growing to ∞ , Δ may be very close to 0, but always more than 0 according to Euclid's proof that the set of prime numbers is endless. If Δ is 0, then there is no prime, that is not true.

```
The sum of first 20 terms = [(1/3) + (1/7x2/3) + (1/11x2/3x6/7) + (1/13x2/3x6/7x10/11) + (1/17x2/3x6/7x10/11x12/13)
+(1/19x2/3x6/7x10/11x12/13x16/17) + (1/23x2/3x6/7x10/11x12/13x16/17x18/19) + (1/29x2/3x6/7x10/11x12/13x16/17x18/19x22/23)
+(1/31x2/3x6/7x10/11x12/13x16/17x18/19x22/23x28/29) + (1/37x2/3x6/7x10/11x12/13x16/17x18/19x22/23x28/29x30/31) +
+(1/41x2/3x6/7x10/11x12/13x16/17x18/19x22/23x28/29x30/31x36/37) +
+(1/43x2/3x6/7x10/11x12/13x16/17x18/19x22/23x28/29x30/31x36/37x40/41) +
+(1/47x2/3x6/7x10/11x12/13x16/17x18/19x22/23x28/29x30/31x36/37x40/41x42/43) +
+(1/53x2/3x6/7x10/11x12/13x16/17x18/19x22/23x28/29x30/31x36/37x40/41x42/43x46/47) +
+(1/59x2/3x6/7x10/11x12/13x16/17x18/19x22/23x28/29x30/31x36/37x40/41x42/43x46/47x52/53) +
+(1/61x2/3x6/7x10/11x12/13x16/17x18/19x22/23x28/29x30/31x36/37x40/41x42/43x46/47x52/53x58/59) +
+(1/67x2/3x6/7x10/11x12/13x16/17x18/19x22/23x28/29x30/31x36/37x40/41x42/43x46/47x52/53x58/59x60/61) +
+(1/71x2/3x6/7x10/11x12/13x16/17x18/19x22/23x28/29x30/31x36/37x40/41x42/43x46/47x52/53x58/59x60/61x66/67) +
+(1/73x2/3x6/7x10/11x12/13x16/17x18/19x22/23x28/29x30/31x36/37x40/41x42/43x46/47x52/53x58/59x60/61x66/67x70/71) +
+(1/79x2/3x6/7x10/11x12/13x16/17x18/19x22/23x28/29x30/31x36/37x40/41x42/43x46/47x52/53x58/59x60/61x66/67x70/71) +
+(1/79x2/3x6/7x10/11x12/13x16/17x18/19x22/23x28/29x30/31x36/37x40/41x42/43x46/47x52/53x58/59x60/61x66/67x70/71x72/73)
=[0.333333 + 0.095238 + 0.051948 + 0.039960 + 0.028207 + 0.023753 + 0.018590 + 0.014102 + 0.012738 + 0.010328 + 0.009069 +
+0.008436 + 0.007538 + 0.006543 + 0.005766 + 0.005483 + 0.004910 + 0.004564 + 0.004377 + 0.003989] = 0.688872
```

For the first 20 term: $\Sigma = 0.688872$, $\Delta = 1 - \Sigma = 0.311128$

```
The chance of N_o to be a prime is: \Delta = 1 - [(1/3) + (1/7x2/3) + (1/11x2/3x6/7) + (1/13x2/3x6/7x10/11) + (1/17x2/3x6/7x10/11x12/13) + (1/19x2/3x6/7x10/11x12/13x16/17) + (1/23x2/3x6/7x10/11x12/13x16/17x18/19) + (1/29x2/3x6/7x10/11x12/13x16/17x18/19x22/23) + (1/31x2/3x6/7x10/11x12/13x16/17x18/19x22/23x28/29) + (1/37x2/3x6/7x10/11x12/13x16/17x18/19x22/23x28/29x30/31) + (1/41x2/3x6/7x10/11x12/13x16/17x18/19x22/23x28/29x30/31x36/37) + (1/43x2/3x6/7x10/11x12/13x16/17x18/19x22/23x28/29x30/31x36/37x40/41) + (1/47x2/3x6/7x10/11x12/13x16/17x18/19x22/23x28/29x30/31x36/37x40/41x42/43) + (1/53x2/3x6/7x10/11x12/13x16/17x18/19x22/23x28/29x30/31x36/37x40/41x42/43x46/47) + (1/59x2/3x6/7x10/11x12/13x16/17x18/19x22/23x28/29x30/31x36/37x40/41x42/43x46/47) + (1/59x2/3x6/7x10/11x12/13x16/17x18/19x22/23x28/29x30/31x36/37x40/41x42/43x46/47) + (1/59x2/3x6/7x10/11x12/13x16/17x18/19x22/23x28/29x30/31x36/37x40/41x42/43x46/47) + (1/59x2/3x6/7x10/11x12/13x16/17x18/19x22/23x28/29x30/31x36/37x40/41x42/43x46/47) + (1/59x2/3x6/7x10/11x12/13x16/17x18/19x22/23x28/29x30/31x36/37x40/41x42/43x46/47) + (1/59x2/3x6/7x10/11x12/13x16/17x18/19x22/23x28/29x30/31x36/37x40/41x42/43x46/47x52/53) + (1/53x2/3x6/7x10/11x12/13x16/17x18/19x22/23x28/29x30/31x36/37x40/41x42/43x46/47x52/53) + (1/53x2/3x6/7x10/11x12/13x16/17x18/19x22/23x28/29x10/11x12/13x16/17x18/1
```

Let \$1 represents a prime with 1 as its last digit, such as 11, 31, 41, 61, 71, 101, 131, 151, 181, 191,...; \$3 represents a prime with 3 as its last digit, such as 3, 13, 23, 43, 53, 73, 83, 103, 113, 163, 193....; \$7 represents a prime with 7 as its last digit, such as, 7, 17, 37, 47, 67, 97, 107, 127, 137, 157, 167, 197...; and \$9 represents a prime with 9 as its last digit, such as 19, 29, 59, 79, 89, 109, 139, 149, 179, 199.....

Let O1 represents an odd number with 1 as its last digit, such as 11, 21, 31, 41, 51, 61, 71,...; O3 represents an odd number with 3 as its last digit, such as 3, 13, 23, 33, 43, 53, 63, 73,....; O7 represents an odd number with 7 as its last digit, such as, 7, 17, 27, 37, 47, 57, 67, 77...; and O9 represents an odd number with 9 as its last digit, such as 9, 19, 29, 39, 49, 59, 69, 79,....

Fundamental theorem of arithmetic states that every integer larger than 1 can be written as a product of one or more primes in a way that is unique except for the order of the prime factors.

Every odd number (O1) with 1 as its last digit is a product of unlimited terms, such as, \$1x\$1, \$3x\$7, \$9x\$9, \$1x\$1x\$1, ..., \$1x\$3x\$7, ..., \$3x\$3x\$3x\$3x\$3x\$3x\$3, ..., \$7x\$7x\$7x\$7x\$7..., but we can only consider \$1, \$7, and \$9 because they decide how large other \$1, \$3, \$7, and \$9 can be. Let the number 600 as the example. For \$1x\$1, the smallest \$1 is 11 which decides that another \$1 should not be more than \$1 (11 x\$41=\$451<\$600, but \$11x\$61=\$671>\$600 and \$11x\$11 x 11=\$1331>\$600); for \$3x\$7, the smallest \$7 is 7 which decided \$3 should not be more than \$3 (7x\$83=\$581<\$600, 7x3x31=\$651>\$600),...; for \$9x\$9, the smallest \$9 is \$9(3x3) which decides that another \$9 should not be more than \$9(3x3x\$9=\$531<\$600), so the smallest \$1, \$7, and \$9 decide the possible largest \$1, \$3, \$7, and \$9 for any O1.

The chance of any odd number O1 to be a prime is: $\Delta_1 = 1 - \sum_1 = 1 - [(1/3) + (1/11x2/3x6/7) + (1/13x2/3x6/7x10/11) + (1/19x2/3x6/7x10/11x12/13x16/17) + (1/23x2/3x6/7x10/11x12/13x16/17x18/19) + (1/29x2/3x6/7x10/11x12/13x16/17x18/19x22/23) + (1/31x2/3x6/7x10/11x12/13x16/17x18/19x22/23x28/29) + (1/41x2/3x6/7x10/11x12/13x16/17x18/19x22/23x28/29x30/31x36/37) + (1/31x2/3x6/7x10/11x12/13x16/17x18/19x22/23x28/29x30/31x36/37) + (1/31x2/3x6/7x10/11x12/13x16/17x18/19x22/23x28/29x30/31x36/3x10/11x12/13x16/17x18/19x22/23x28/29x30/31x36/3x10/11x12/13x16/17x18/19x22/23x28/29x30/31x36/3x10/11x12/13x16/17x18/19x22/23x28/29x30/31x36/3x10/11x12/13x16/17x18/19x22/23x28/29x30/31x36/3x10/11x12/13x16/17x18/19x22/23x28/29x30/31x36/3x10/11x12/13x16/17x18/19x22/23x28/29x30/11x12/13x16/17x18/19x22/23x28/29x30/11x12/13x16/17x18/19x22/23x28/29x30/11x12/13x16/17x18/19x22/23x28/29x30/11x12/13x16/17x18/19x22/23x28/29x30/11x12/13x16/17x18/19x22/23x28/29x30/11x12/13x16/17x18/19x22/23x28/29x30/11x12/13x16/17x18/19x22/23x28/29x30/11x12/12x2/22x24/29x20/12x24/29x20/12x24/29x20/12x24/29x24/29x20/12x24/29x20/12x24/20x24/20x24/20x24/20x24/20x24/20x24/20x$

For N=600, the number of primes with 1 as its last digit= $600/10 -600/10 [(1/3) + (1/11x2/3x6/7) + (1/13x2/3x6/7x10/11) + (1/19x2/3x6/7x10/11x12/13x16/17) + (1/23x2/3x6/7x10/11x12/13x16/17x18/19) + (1/29x2/3x6/7x10/11x12/13x16/17x18/19x22/23) + (1/31x2/3x6/7x10/11x12/13x16/17x18/19x22/23x28/29) + (1/41x2/3x6/7x10/11x12/13x16/17x18/19x22/23x28/29x30/31x36/37) + (1/43x2/3x6/7x10/11x12/13x16/17x18/19x22/23x28/29x30/31x36/37x40/41) + (1/53x2/3x6/7x10/11x12/13x16/17x18/19x22/23x28/29x30/31x36/37x40/41) + (1/59x2/3x6/7x10/11x12/13x16/17x18/19x22/23x28/29x30/31x36/37x40/41x42/43x46/47) + (1/59x2/3x6/7x10/11x12/13x16/17x18/19x22/23x28/29x30/31x36/37x40/41x42/43x46/47x52/53) + (1/73x2/3x6/7x10/11x12/13x16/17x18/19x22/23x28/29x30/31x36/37x40/41x42/43x46/47x52/53x58/59x60/61x66/67x70/71) + (1/83x2/3x6/7x10/11x12/13x16/17x18/19x22/23x28/29x30/31x36/37x40/41x42/43x46/47x52/53x58/59x60/61x66/67x70/71) + (1/83x2/3x6/7x10/11x12/13x16/17x18/19x22/23x28/29x30/31x36/37x40/41x42/43x46/47x52/53x58/59x60/61x66/67x70/71x72/73x78/79)]=60-60[0.333333 + 0.051948 + 0.039960 + 0.023753 + 0.018590 + 0.014102 + 0.012738 + 0.009069 + 0.008436 + 0.006543 + 0.005766 + 0.004377 + 0.003597] =60-60x0.532212=28. There are 25 primes with 1 as its last digit, if we count 1, the difference between real number and the calculated number is only 2. The distribution of primes is not uniform and 600 is not a big number, so the difference is reasonable, when the number N becomes lager, the difference will be <math>\leq 1$.

Every odd number with 3 as its last digit is a product of unlimited terms, such as, \$3x\$1, \$7x\$9, \$3x\$1, \$1x\$1, ..., \$7x\$3, \$3x\$1, \$7x\$9, \$3x\$1, \$1x\$1, ..., \$7x\$3, the smallest \$1 is 11 which decides that \$3 should not be more than 53 (11 x53=483<600, but 11x11x13=1573>600 and 3x3x3x3x13=1053>600); for \$7x\$9, the smallest \$9 is \$9(3x3) which decided \$7 should not be more than 47 (3x3x47=423<600, but 3x3x67=603>600, 19x37=703>600),...; so the smallest \$1 and \$9 decide the possible largest \$1, \$3, \$7, and \$9 for any O3.

The chance of any odd number O3 to be a prime is: $\Delta_3=1-\sum_3=1-[(1/3) + (1/7x2/3) + (1/13x2/3x6/7x10/11) + (1/17x2/3x6/7x10/11x12/13) + (1/23x2/3x6/7x10/11x12/13x16/17x18/19) +$

```
(1/37x2/3x6/7x10/11x12/13x16/17x18/19x22/23x28/29x30/31) +
    (1/43x2/3x6/7x10/11x12/13x16/17x18/19x22/23x28/29x30/31x36/37x40/41) +
    (1/47x2/3x6/7x10/11x12/13x16/17x18/19x22/23x28/29x30/31x36/37x40/41x42/43) +
    (1/53x2/3x6/7x10/11x12/13x16/17x18/19x22/23x28/29x30/31x36/37x40/41x42/43x46/47) +
    (1/67x2/3x6/7x10/11x12/13x16/17x18/19x22/23x28/29x30/31x36/37x40/41x42/43x46/47x52/53x58/59x60/61) + (1/67x2/3x6/7x10/11x12/13x16/17x18/19x22/23x28/29x30/31x36/37x40/41x42/43x46/47x52/53x58/59x60/61) + (1/67x2/3x6/7x10/11x12/13x16/17x18/19x22/23x28/29x30/31x36/37x40/41x42/43x46/47x52/53x58/59x60/61) + (1/67x2/3x6/7x10/11x12/13x16/17x18/19x22/23x28/29x30/31x36/37x40/41x42/43x46/47x52/53x58/59x60/61) + (1/67x2/3x6/37x40/41x42/43x46/47x52/53x58/59x60/61) + (1/67x2/3x6/3x60/61) + (1/67x2/3x60/61) + (1/67x2/3x60/61)
    (1/73x2/3x6/7x10/11x12/13x16/17x18/19x22/23x28/29x30/31x36/37x40/41x42/43x46/47x52/53x58/59x60/61x66/67x70/71) + \dots] - (1/73x2/3x6/7x10/11x12/13x16/17x18/19x22/23x28/29x30/31x36/37x40/41x42/43x46/47x52/53x58/59x60/61x66/67x70/71) + \dots] - (1/73x2/3x6/7x10/11x12/13x16/17x18/19x22/23x28/29x30/31x36/37x40/41x42/43x46/47x52/53x58/59x60/61x66/67x70/71) + \dots] - (1/73x2/3x6/7x10/11x12/13x16/17x18/19x22/23x28/29x30/31x36/37x40/41x42/43x46/47x52/53x58/59x60/61x66/67x70/71) + \dots] - (1/73x2/3x6/37x40/41x42/43x46/47x52/53x58/59x60/61x66/67x70/71) + \dots] - (1/73x2/3x6/3x6/3x60/61x66/67x70/71) + \dots] - (1/73x2/3x6/3x60/61x66/67x70/71) + \dots] - (1/73x2/3x60/61x66/67x70/71) + \dots] - (1/73x2/3x60/61x66/67x70/71) + \dots] - (1/73x2/3x60/61x60/61x66/67x70/71) + \dots] - (1/73x2/3x60/61x60/61x60/61x60/61x60/61x60/61x60/61x60/61x60/61x60/61x60/61x60/61x60/61x60/61x60/61x60/61x60/61x60/61x60/61x60/61x60/61x60/61x60/61x60/61x60/61x60/61x60/61x60/61x60/61x60/61x60/61x60/61x60/61x60/61x60/61x60/61x60/61x60/61x60/61x60/61x60/61x60/61x60/61x60/61x60/61x60/61x60/61x60/61x60/61x60/61x60/61x60/61x60/61x60/61x60/61x60/61x60/61x60/61x60/61x60/61x60/61x60/61x60/61x60/61x60/61x60/61x60/61x60/61x60/61x60/61x60/61x60/61x60/61x60/61x60/61x60/61x60/61x60/61x60/61x60/61x60/61x60/61x60/61x60/61x60/61x60/61x60/61x60/61x60/61x60/61x60/61x60/61x60/61x60/61x60/61x60/61x60/61x60/61x60/61x60/61x60/61x60/61x60/61x60/61x60/61x60/61x
     -----Formula 4
For N=600, the number of primes with 3 as its last digit=600/10 - 600/10 [(1/3) + (1/7x2/3) + (1/13x2/3x6/7x10/11) + (1/13x2/3x6/7x10/11)]
(1/17x2/3x6/7x10/11x12/13) + (1/23x2/3x6/7x10/11x12/13x16/17x18/19)
(1/37x2/3x6/7x10/11x12/13x16/17x18/19x22/23x28/29x30/31) +
(1/43x2/3x6/7x10/11x12/13x16/17x18/19x22/23x28/29x30/31x36/37x40/41) +
(1/47x2/3x6/7x10/11x12/13x16/17x18/19x22/23x28/29x30/31x36/37x40/41x42/43) +
(1/53x2/3x6/7x10/11x12/13x16/17x18/19x22/23x28/29x30/31x36/37x40/41x42/43x46/47) +
(1/67x2/3x6/7x10/11x12/13x16/17x18/19x22/23x28/29x30/31x36/37x40/41x42/43x46/47x52/53x58/59x60/61) + (1/67x2/3x6/7x10/11x12/13x16/17x18/19x22/23x28/29x30/31x36/37x40/41x42/43x46/47x52/53x58/59x60/61) + (1/67x2/3x6/7x10/11x12/13x16/17x18/19x22/23x28/29x30/31x36/37x40/41x42/43x46/47x52/53x58/59x60/61) + (1/67x2/3x6/7x10/11x12/13x16/17x18/19x22/23x28/29x30/31x36/37x40/41x42/43x46/47x52/53x58/59x60/61) + (1/67x2/3x6/37x40/41x42/43x46/47x52/53x58/59x60/61) + (1/67x2/3x6/3x60/61) + (1/67x2/3x60/61) + (1/67x2/3x60/61)
60[0.333333 + 0.095238 + 0.039960 + 0.028207 + 0.018590 + 0.010328 + 0.008436 + 0.007538 + 0.006543 + 0.004910 + 0.004377]
=60-60x0.55746=26.6. There are 26 primes with 3 as its last digit, the difference between real number and the calculated number is
0.6 < 1.
```

Every odd number with 7 as its last digit is a product of unlimited terms, such as, \$7x\$1, \$3x\$9, \$3x\$9x\$1, \$7x\$1x\$1,..., \$3x\$3x\$3,..., \$1x\$3 x \$9,.... but we can only consider \$1 and \$9. Let the number 600 as the example. For \$1x\$7, the smallest \$1 is 11 which decides that \$7 should not be more than 47 (11x47=517<600, but 11x11x7=847>600, 3x3x3x31=837>600, and 3x19x11=627>600); for \$3x\$9, the smallest \$9 is 9(3x3) which decided \$3 should not be more than 53 (3x3x53=477<600, but 7x3x3x19=1197>600),...; so the smallest \$1 and \$9 decide the possible largest \$1, \$3, \$7, and \$9 for any O7.

```
The chance of any odd number O7 to be a prime is: \Delta_7 = 1 - \sum_7 = 1 - [(1/3) + (1/7x2/3) + (1/13x2/3x6/7x10/11) + (1/17x2/3x6/7x10/11x12/13) + (1/23x2/3x6/7x10/11x12/13x16/17x18/19) + (1/37x2/3x6/7x10/11x12/13x16/17x18/19x22/23x28/29x30/31) + (1/43x2/3x6/7x10/11x12/13x16/17x18/19x22/23x28/29x30/31x36/37x40/41) +
```

```
 (1/47x2/3x6/7x10/11x12/13x16/17x18/19x22/23x28/29x30/31x36/37x40/41x42/43) + \\ (1/53x2/3x6/7x10/11x12/13x16/17x18/19x22/23x28/29x30/31x36/37x40/41x42/43x46/47) + \\ (1/67x2/3x6/7x10/11x12/13x16/17x18/19x22/23x28/29x30/31x36/37x40/41x42/43x46/47x52/53x58/59x60/61) + \\ (1/73x2/3x6/7x10/11x12/13x16/17x18/19x22/23x28/29x30/31x36/37x40/41x42/43x46/47x52/53x58/59x60/61x66/67x70/71) + ...] - \\ ------Formula 4 \\ For N=600, the number of primes with 7 as its last digit=<math>600/10 -600/10 [(1/3) + (1/7x2/3) + (1/13x2/3x6/7x10/11) + (1/17x2/3x6/7x10/11x12/13) + (1/23x2/3x6/7x10/11x12/13) + (1/23x2/3x6/7x10/11x12/13x16/17x18/19x22/23x28/29x30/31) + (1/43x2/3x6/7x10/11x12/13x16/17x18/19x22/23x28/29x30/31x36/37x40/41) + (1/47x2/3x6/7x10/11x12/13x16/17x18/19x22/23x28/29x30/31x36/37x40/41) + (1/47x2/3x6/7x10/11x12/13x16/17x18/19x22/23x28/29x30/31x36/37x40/41x42/43) + (1/53x2/3x6/7x10/11x12/13x16/17x18/19x22/23x28/29x30/31x36/37x40/41x42/43) + (1/53x2/3x6/7x10/11x12/13x16/17x18/19x22/23x28/29x30/31x36/37x40/41x42/43) + (1/53x2/3x6/7x10/11x12/13x16/17x18/19x22/23x28/29x30/31x36/37x40/41x42/43x46/47) = (1/43x2/3x6/7x10/11x12/13x16/17x18/19x22/23x28/29x30/31x36/37x40/41x42/43) + (1/53x2/3x6/7x10/11x12/13x16/17x18/19x22/23x28/29x30/31x36/37x40/41x42/43x46/47) = (1/43x2/3x6/7x10/11x12/13x16/17x18/19x22/23x28/29x30/31x36/37x40/41x42/43) + (1/43x2/3x6/7x10/11x12/13x16/17x18/19x22/23x28/29x30/31x36/37x40/41x42/43x46/47) = (1/43x2/3x6/7x10/11x12/13x16/17x18/19x22/23x28/29x30/31x36/37x40/41x42/43x46/47)
```

Every odd number (O9) with 9 as its last digit is a product of unlimited terms, such as, \$1x\$9, \$7 x \$7, \$3 x \$3, \$1 x \$1 x \$9, ..., \$1 x \$7 x \$7,..., \$3 x \$3 x \$1,..., \$3x\$3x\$3x\$7..., but we can only consider \$1, \$7, and \$3 because they decide how large other \$1, \$3, \$7, and \$9 can be. Let the number 600 as the example. For \$1x\$9, the smallest \$1 is 11 which decides that another \$1 should not be more than 29 (11x29=319<600, but 11x59=649>600 and 11x11x 3x3=1089>600); for \$7x\$7, the smallest \$7 is 7 which decided another \$7 should not be more than 67 (7x67=469<600, but 7x97=679>600),...; for \$3x\$3, the smallest \$3 is 3 which decides that \$9 should not be more than 193 (3x193=579<600), so the smallest \$9, \$7, and \$3 decide the possible largest \$1, \$3, \$7, and \$9 for any O9.

```
The chance of any odd number O9 to be a prime is: \Delta_9=1-\sum_9=1[(1/3) + (1/7x2/3) + (1/13x2/3x6/7x10/11) + (1/17x2/3x6/7x10/11x12/13) + (1/19x2/3x6/7x10/11x12/13x16/17) + (1/23x2/3x6/7x10/11x12/13x16/17x18/19) + (1/29x2/3x6/7x10/11x12/13x16/17x18/19x22/23) + (1/37x2/3x6/7x10/11x12/13x16/17x18/19x22/23x28/29x30/31) + (1/43x2/3x6/7x10/11x12/13x16/17x18/19x22/23x28/29x30/31x36/37x40/41) + (1/47x2/3x6/7x10/11x12/13x16/17x18/19x22/23x28/29x30/31x36/37x40/41x42/43) + (1/53x2/3x6/7x10/11x12/13x16/17x18/19x22/23x28/29x30/31x36/37x40/41x42/43x46/47) + (1/59x2/3x6/7x10/11x12/13x16/17x18/19x22/23x28/29x30/31x36/37x40/41x42/43x46/47x52/53) + (1/67x2/3x6/7x10/11x12/13x16/17x18/19x22/23x28/29x30/31x36/37x40/41x42/43x46/47x52/53) + (1/67x2/3x6/7x10/11x12/13x16/17x18/19x22/23x28/29x30/31x36/37x40/41x42/43x46/47x52/53x58/59x60/61) + (1/67x
```

digit, the difference between real number and the calculated number is $0.9 \le 1$.

For N=600, the number of primes with 9 as its last digit=600/10 - 600/10[(1/3) + (1/7x2/3) + (1/13x2/3x6/7x10/11) + (1/17x2/3x6/7x10/11x12/13) + (1/19x2/3x6/7x10/11x12/13x16/17) + (1/23x2/3x6/7x10/11x12/13x16/17x18/19) + (1/29x2/3x6/7x10/11x12/13x16/17x18/19x22/23) + (1/37x2/3x6/7x10/11x12/13x16/17x18/19x22/23x28/29x30/31) + (1/43x2/3x6/7x10/11x12/13x16/17x18/19x22/23x28/29x30/31x36/37x40/41) + (1/47x2/3x6/7x10/11x12/13x16/17x18/19x22/23x28/29x30/31x36/37x40/41x42/43) + (1/53x2/3x6/7x10/11x12/13x16/17x18/19x22/23x28/29x30/31x36/37x40/41x42/43x46/47) + (1/67x2/3x6/7x10/11x12/13x16/17x18/19x22/23x28/29x30/31x36/37x40/41x42/43x46/47x52/53x58/59x60/61) + (1/73x2/3x6/7x10/11x12/13x16/17x18/19x22/23x28/29x30/31x36/37x40/41x42/43x46/47x52/53x58/59x60/61x66/67x70/71) + (1/83x2/3x6/7x10/11x12/13x16/17x22/23x30/31x36/37x40/41x42/43x46/47x52/53x58/59x60/61x66/67x70/71) + (1/103x2/3x6/7x10/11x12/13x16/17x22/23x30/31x36/37x40/41x42/43x46/47x52/53x60/61x66/67x70/71x72/73) + (1/103x2/3x6/7x10/11x12/13x16/17x22/23x30/31x36/37x40/41x42/43x46/47x52/53x60/61x66/67x70/71x72/73x82/83x96/97x100/10 1) +

(1/113x2/3x6/7x10/11x12/13x16/17x22/23x30/31x36/37x40/41x42/43x46/47x52/53x60/61x66/67x70/71x72/73x82/83x96/97x100/101x106/107) + (1/113x2/3x6/7x10/11x12/13x16/17x22/23x30/31x36/37x40/41x42/43x46/47x52/53x60/61x66/67x70/71x72/73x82/83x96/97x100/101x106/107) + (1/113x2/3x6/7x10/11x12/13x16/17x22/23x30/31x36/37x40/41x42/43x46/47x52/53x60/61x66/67x70/71x72/73x82/83x96/97x100/101x106/107) + (1/113x2/3x6/37x40/41x42/43x46/47x52/53x60/61x66/67x70/71x72/73x82/83x96/97x100/101x106/107) + (1/113x2/3x6/37x40/41x42/43x46/47x52/53x60/61x66/67x70/71x72/73x82/83x96/97x100/101x106/107x100/101x106/107x106/107x100/101x106/107x100/101x106/101x1

(1/163x2/3x6/7x10/11x12/13x16/17x22/23x30/31x36/37x40/41x42/43x46/47x52/53x60/61x66/67x70/71x72/73x82/83x96/97x100/101x106/107x112/113x126/127x130/131x136/137x150/151x156/157) +

 $(1/193x2/3x6/7x10/11x12/13x16/17x22/23x30/31x36/37x40/41x42/43x46/47x52/53x60/61x66/67x70/71x72/73x82/83x96/97x100/101x106/107x112/113x126/127x130/131x136/137x150/151x156/157x162/163x166/167x172/173x180/181x190/191)] = 60-60[0.333333 + 0.095238 + 0.039960 + 0.028207 + 0.023753 + 0.018590 + 0.014102 + 0.010328 + 0.008436 + 0.007538 + 0.006543 + 0.004910 + 0.004377 + 0.004222 + 0.003294 + 0.002974 + 0.001972 + 0.001618] = 60-60x0.609395 = 23.4, there are 25 primes with 9 as its last digit, the difference is 2.6, when N become larger, the difference will be <math>\leq 1$.

Above results show there are almost equal number of \$1, \$3, \$7, and \$9, ~1/4 of all primes are \$1, ~1/4 of all primes are \$3, ~1/4 of all primes are \$7, and ~1/4 of all primes are \$9. Euclid proved primes are endless, an infinite number x1/4 is still infinite, so \$1, \$3, \$7, and \$9 are endless. We can also prove \$1, \$3, \$7, and \$9 are endless with Euclid's proof: We can number all the primes in ascending order (exclude 2 and 5), so that $P_{11} = 11$, $P_{12} = 31$, $P_{13} = 41$, $P_{21} = 3$, $P_{22} = 13$, $P_{23} = 23$, $P_{31} = 7$, $P_{32} = 27$, $P_{33} = 47$, $P_{41} = 19$, $P_{42} = 29$, $P_{43} = 59$, and so on. If we assume that there are just **n** primes with 1 as their last digit, **n** primes with 3 as their last digit,

n primes with 7 as their last digit, and **n** primes with 9 as their last digit, then the biggest primes with 1, 3, 7 or 9 as its last digit will be labeled P_{1n} , P_{2n} , P_{3n} , and P_{4n} . Now we can form the number Q by multiplying together all these primes and adding 10(the difference between primes with 1, 3, 7, or 9 as its last digit is at least 10), so

$$Q = (P_{11} \times P_{21} \times P_{31} \times P_{41}... \times P_{1n} \times P_{2n} \times P_{3n} \times P_{4n}) + 10$$

Now we can see that if we divide Q by any of our n primes there is always a remainder of 10, so Q is not divisible by any of the primes, but we know that all positive integers are either primes or can be decomposed into a product of primes. This means that either Q must be a prime or Q must be divisible by primes that are larger than P_{1n} , P_{2n} , P_{3n} , or P_{4n} .

Our assumption that P_{1n} , P_{2n} , P_{3n} , or P_{4n} is the biggest prime with 1, 3, 7, or 9 as its last digit has led us to a contradiction, so this assumption must be false, so there is no biggest prime with 1, 3, 7, or 9 as its last digit and the set of prime numbers with 1, 3, 7, or 9 as its last digit is endless.

1. When any even integer (N) has 0 as its last digit, such as 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120,...,

N-\$3= O7, if we can prove at least one of these O7 is \$7, then N is the sum of 2 primes; or N-\$7= O3, if we can prove at least one of these O3 is \$3, then N is the sum of 2 primes as table 1.

Table 1.

\$7	 137	127	107	97	67	47	37	17	7
N-\$7	 N-137	N-127	N-107	N-97	N-67	N-47	N-37	N-17	N-7
\$3	 113	103	83	73	53	43	23	13	3

N-\$3	 N-113	N-103	N-83	N-73	N-53	N-43	N-23	N-13	N-3

From Formula 3, 4, 5, and 6, we know there are similar numbers of primes with 1, 3, 7, or 9 as their last digit.

According to the prime number theorem, the number of prime numbers less than N is approximately given by $N/\ln(N)$, so for any number N, there is approximately $N/[4x\ln(N)]$ of primes with 7 as their last digit(the first line of table 1, 4 x is due to there are only $\frac{1}{4}$ of total primes with 7 as its last digit), correspondingly, we have $N/[4x\ln(N)]$ of O3(N-\$7), the second line of table 1) in which there should be approximately $\{N/[4x\ln(N)]\}/\ln\{N/[4x\ln(N)]\}$. For any number N>100, $\{N/[4x\ln(N)]\}/\ln\{N/[4x\ln(N)]\}>4$, so for any number N>200, there are more than 4 pairs of primes in which one prime (\$7) has 7 as its last digit and another prime (N-\$7) has 3 as its last digit. When N with 0 as its last digit, we have proved Goldbach's Conjecture is true if the prime number theorem is true. For \$3 and N-\$3 pairs (the bottom 2 lines of table 1) is also true.

Table 2.

\$1	 151	131	101	71	61	41	31	11
N-\$1	 N-151	N-131	N-101	N-71	N-61	N-41	N-31	N-11
\$9	 149	139	109	89	79	59	29	19
N-\$9	 N-149	N-139	N-109	N-89	N-79	N-59	N-29	N-19

According to the prime number theorem, the number of prime numbers less than N is approximately given by $N/\ln(N)$, so for any number N, there is approximately $N/[4x\ln(N)]$ of primes with 1 as their last digit (the first line of table 2), correspondingly, we have $N/[4x\ln(N)]$ of O9(N-\$1, the second line of table 2) in which there should be approximately $\{N/[4x\ln(N)]\}/\ln\{N/[4x\ln(N)]\}$. For any number N>200, $\{N/[4x\ln(N)]\}/\ln\{N/[4x\ln(N)]\}$, so for any number N, there are more than 4 pairs of primes in which one prime (\$1) has 1 as its last digit and another prime (N-\$1) has 9 as its last digit. When N with 0 as its last digit, we have proved Goldbach's Conjecture is true if the prime number theorem is true. For \$9 and N-\$9 pairs (the bottom 2 lines of table 2) is also true.

For N = 600 (see table 3), $\{N/[4x\ln(N)]\}/[n\{N/[4x\ln(N)]\}]=\{600/[4x\ln(600)]\}/[n\{600/[4x\ln(600)]\}]=23.449/[n(23.449)]=23.449/[n(23.$

Table 3.

7	17	27	37	47	57	67	77	87	97	107	117	127	137	147	157	167	177	187
Prime	Prime	3x9	Prime	prime	3x19	Prime	7x11	3x29	Prime	prime	3x3x13	Prime	prime	3x7x7	prime	prime	3x59	11x17
593	583	573	563	553	543	533	523	513	503	493	483	473	463	453	443	433	423	413
Prime	11x53	3x191	Prime	7x79	3x181	13x41	prime	3x3x3x1 9	Prime	17x29	3x7x23	11x43	prime	3x151	Prime	prime	3x3x4 7	7x59
223	233	243	253	263	273	283	293	303	313	323	333	343	353	363	373	383	393	403
prime	prime	3x3x3 x3x3	11x23	prime	3x7x13	prime	prime	3x101	Prime	17x19	3x111	7x7x7	Prime	3x11x 11	Prime	Prime	3x131	13x31
377	367	357	347	337	327	317	307	297	287	277	267	257	247	237	227	217	207	197
13x29	prime	3x7x1 7	prime	prime	3x109	Prime	prime	3x3x33	7x41	Prime	3x89	Prime	13x19	3x79	Prime	7x31	3x3x2 3	Prime

387	397	407	417	427	437	447	457	467	477	487	497	507	517	527	537	547	557	567
3x3x43	prime	11x37	3x139	7x61	23x19	3x149	prime	prime	3x3x5 3	prime	7x71	3x13x 13	11x47	17x31	3x179	prime	prime	3x3x3 x3x7
213	203	193	183	173	163	153	143	133	123	113	103	93	83	73	63	53	43	33
3x71	7x29	prime	3x61	Prime	prime	3x3x1 7	11x13	7x19	3x41	3x3x1 3	prime	3 x31	prime	7x11	3x3x7	prime	prime	3x11
																3	13	23
																Prime	Prime	prime
																597	587	577
																3x199	prime	prime
589	579	569	559	549	539	529	519	509	499	489	479	469	459	449	439	429	419	409
19x31	3x193	Prime	13x43	3x3x6 1	7x7x11	23x23	3x178	Prime	Prime	3x163	Prime	7x67	3x3x3 x17	Prime	Prime	3x11x 13	Prime	Prime
11	21	31	41	51	61	71	81	91	101	111	121	131	141	151	161	171	181	191
Prime	3x7	Prime	Prime	3x17	Prime	Prime	3x3x3	7x13	Prime	3x37	11x11	Prime	3x47	Prime	7x23	3x3x1 9	Prime	Prime
381	371	361	351	341	331	321	311	301	291	281	271	261	251	241	231	221	211	201
3x127	7x53	19x19	3x3x3 x13	11x31	Prime	3x107	Prime	7x43	3x97	Prime	Prime	3x3x2 9	Prime	Prime	3x7x1 1	13x17	Prime	3x67
219	229	239	249	259	269	279	289	299	309	319	329	339	349	359	369	379	389	399
3x73	Prime	Prime	3x83	7x37	Prime	3x3x3 1	17x17	13x23	3x103	11x29	7x47	3x113	Prime	Prime	3x3x4 1	prime	Prime	3x7x1 9

209	199	189	179	169	159	149	139	129	119	109	99	89	79	69	59	49	39	29
11x19	Prime	3x3x7	Prime	13x13	3x53	Prime	Prime	3x43	7x17	Prime	3x3x11	Prime	Prime	3x23	Prime	7x7	3x13	Prime
391	401	411	421	431	441	451	461	471	481	491	501	511	521	531	541	551	561	571
17x23	Prime	3x137	Prime	Prime	3x3x7x 7	11x41	Prime	3x157	13x37	Prime	3x167	7x73	Prime	3x3x5 9	Prime	19x29	3x11x 17	Prime
																	591	581
																	3x197	7x83
																	9	19
																	3x3	Prime

 $2. \quad \text{When any even integer (N) has 2 as its last digit, such as } 12, 22, 32, 42, 52, 62, 72, 82, 92, 102, 112, 122, \ldots, \\$

Table 4.

\$3	 103	83	73	53	43	23	13	3
N-\$3	 N-103	N-83	N-73	N-53	N-43	N-23	N-13	N-3
\$9	 149	139	109	89	79	59	29	19

N-\$9		N-149	N-139	N-109	N-89	N-79	N-59	N-29	N-19
-------	--	-------	-------	-------	------	------	------	------	------

According to the prime number theorem, the number of prime numbers less than N is approximately given by $N/\ln(N)$, so for any number N, there is approximately $N/[4x\ln(N)]$ of primes with 3 as their last digit (the first line of table 4), correspondingly, we have $N/[4x\ln(N)]$ of O9(N-\$3, the second line of table 4) in which there should be approximately $\{N/[4x\ln(N)]\}/\ln\{N/[4x\ln(N)]\}$, For any number N>100, $\{N/[4x\ln(N)]\}/\ln\{N/[4x\ln(N)]\}>4$, so for any number N, there are more than 4 pair of primes in which one prime (\$3) has 3 as its last digit and another prime (N-\\$3) has 9 as its last digit. When N with 2 as its last digit, we have proved Goldbach's Conjecture is true if the prime number theorem is true. For \\$9 and N-\\$9 pairs (the bottom 2 lines of table 4) is also true.

Table 5.

\$1	 151	131	101	71	61	41	31	11
N-\$1	 N-151	N-131	N-101	N-71	N-61	N-41	N-31	N-11

According to the prime number theorem, the number of prime numbers less than N is approximately given by $N/\ln(N)$, so for any number N, there is approximately $N/[4x\ln(N)]$ of primes with 1 as their last digit (the first line of table 5), correspondingly, we have $N/[4x\ln(N)]$ of O1(N-\$1, the second line of table 5) in which there should be approximately $\{N/[4x\ln(N)]\}/\ln\{N/[4x\ln(N)]\}$, For any number N>200, $\{N/[4x\ln(N)]\}/\ln\{N/[4x\ln(N)]\}>4$, so for any number N, there are more than 4 pairs of primes in which one prime (\$1) has 1 as its last digit and another prime (N-\\$3) has 1 as its last digit. When N with 2 as its last digit, we have proved Goldbach's Conjecture is true if the prime number theorem is true.

3. When any even integer (N) has 4 as its last digit, such as 14, 24, 34, 44, 54, 64, 74, 84, 94, 104, 114,....

Table 6.

\$7	 127	107	97	67	47	37	17	7
N-\$7	 N-127	N-107	N-97	N-67	N-47	N-37	N-17	N-7

According to the prime number theorem, the number of prime numbers less than N is approximately given by $N/\ln(N)$, so for any number N, there is approximately $N/[4x\ln(N)]$ of primes with 7 as their last digit (the first line of table 6), correspondingly, we have $N/[4x\ln(N)]$ of O7(N-\$7), the second line of table 6) in which there should be approximately $\{N/[4x\ln(N)]\}/\ln\{N/[4x\ln(N)]\}$, For any number N>200, $\{N/[4x\ln(N)]\}/\ln\{N/[4x\ln(N)]\}$ >4, so for any number N, there are more than 4 pairs of primes in which one prime (\$7) has 7 as its last digit and another prime (N-\\$7) has 7 as its last digit. When N with 4 as its last digit, we have proved Goldbach's Conjecture is true if the prime number theorem is true.

Table 7.

\$3	 153	113	103	83	53	43	23	13	3
N-\$3	 N-153	N-113	N-103	N-83	N-53	N-43	N-23	N-13	N-3
\$1	 181	151	131	101	71	61	41	31	11

N-\$1	 N-181	N-151	N-131	N-101	N-71	N-61	N-41	N-31	N-11

According to the prime number theorem, the number of prime numbers less than N is approximately given by $N/\ln(N)$, so for any number N, there is approximately $N/[4x\ln(N)]$ of primes with 3 as their last digit (the first line of table 7), correspondingly, we have $N/[4x\ln(N)]$ of O1(N-\$3), the second line of table 7) in which there should be approximately $\{N/[4x\ln(N)]\}/\ln\{N/[4x\ln(N)]\}$, For any number N>200, $\{N/[4x\ln(N)]\}/\ln\{N/[4x\ln(N)]\}>4$, so for any number N, there are more than 4 pairs of primes in which one prime (\$3) has 3 as its last digit and another prime (N-\$3) has 1 as its last digit. When N with 4 as its last digit, we have proved Goldbach's Conjecture is true if the prime number theorem is true. For \$1 and N-\$1 pairs (the bottom 2 lines of table 7) is also true.

- 3. When any even integer (N) has 6 as its last digit, such as 6,
- 4. 16, 26, 36, 46, 56, 66, 76, 86, 96, 106, 116,....

Table 8.

\$3	 153	113	103	83	73	53	43	23	13	3
N-\$3	 N-153	N-113	N-103	N-83	N-73	N-53	N-43	N-23	N-13	N-3

According to the prime number theorem, the number of prime numbers less than N is approximately given by $N/\ln(N)$, so for any number N, there is approximately $N/[4x\ln(N)]$ of primes with 3 as their last digit (the first line of table 8), correspondingly, we have $N/[4x\ln(N)]$ of O3(N-\$3), the second line of table 8) in which there should be approximately $\{N/[4x\ln(N)]\}/\ln\{N/[4x\ln(N)]\}$, For any number N>200, $\{N/[4x\ln(N)]\}/\ln\{N/[4x\ln(N)]\}$, so for any number N, there are more than 4 pairs of primes in which one prime (\$3)

has 3 as its last digit and another prime (N-\$3) has 3 as its last digit. When N with 6 as its last digit, we have proved Goldbach's Conjecture is true if the prime number theorem is true.

Table 9.

\$9	 149	139	109	89	79	59	29	19
N-\$9	 N-149	N-139	N-109	N-89	N-79	N-59	N-29	N-19
\$7	 127	107	97	67	47	37	17	7
N-\$7	 N-127	N-107	N-97	N-67	N-47	N-37	N-17	N-7

According to the prime number theorem, the number of prime numbers less than N is approximately given by $N/\ln(N)$, so for any number N, there is approximately $N/[4x\ln(N)]$ of primes with 9 as their last digit (the first line of table 9), correspondingly, we have $N/[4x\ln(N)]$ of O7(N-\$9), the second line of table 9) in which there should be approximately $\{N/[4x\ln(N)]\}/\ln\{N/[4x\ln(N)]\}$, For any number N>200, $\{N/[4x\ln(N)]\}/\ln\{N/[4x\ln(N)]\}>4$, so for any number N, there are more than 4 pairs of primes in which one prime (\$9) has 9 as its last digit and another prime (N-\$9) has 7 as its last digit. When N with 6 as its last digit, we have proved Goldbach's Conjecture is true if the prime number theorem is true. For \$7 and N-\$7 pairs (the bottom 2 lines of table 9) is also true.

5. When any even integer (N) has 8 as its last digit, such as 8, 18, 28, 38, 48, 58, 68, 78, 88, 98,108, 118,....

Table 10.

\$9	 149	139	109	89	79	59	29	19
N-\$9	 N-149	N-139	N-109	N-89	N-79	N-59	N-29	N-19

According to the prime number theorem, the number of prime numbers less than N is approximately given by $N/\ln(N)$, so for any number N, there is approximately $N/[4x\ln(N)]$ of primes with 9 as their last digit (the first line of table 10), correspondingly, we have $N/[4x\ln(N)]$ of O9(N-\$9), the second line of table 10) in which there should be approximately $\{N/[4x\ln(N)]\}/\ln\{N/[4x\ln(N)]\}$, For any number N>200, $\{N/[4x\ln(N)]\}/\ln\{N/[4x\ln(N)]\}>4$, so for any number N, there are more than 4 pairs of primes in which one prime (\$9) has 9 as its last digit and another prime (N-\$9) has 9 as its last digit. When N with 8 as its last digit, we have proved Goldbach's Conjecture is true if the prime number theorem is true.

Table 11.

\$7		127	107	97	67	47	37	17	7
N-\$7		N-127	N-107	N-97	N-67	N-47	N-37	N-17	N-7

\$1	 151	131	101	71	61	41	31	11
N-\$1	 N-151	N-131	N-101	N-71	N-61	N-41	N-31	N-11

According to the prime number theorem, the number of prime numbers less than N is approximately given by $N/\ln(N)$, so for any number N, there is approximately $N/[4x\ln(N)]$ of primes with 7 as their last digit (the first line of table 11), correspondingly, we have $N/[4x\ln(N)]$ of O1(N-\$7), the second line of table 11) in which there should be approximately $\{N/[4x\ln(N)]\}/\ln\{N/[4x\ln(N)]\}$, For any number N>200, $\{N/[4x\ln(N)]\}/\ln\{N/[4x\ln(N)]\}$ >4, so for any number N, there are more than 4 pairs of primes in which one prime (\$7) has 7 as its last digit and another prime (N-\$7) has 1 as its last digit. When N with 8 as its last digit, we have proved Goldbach's Conjecture is true if the prime number theorem is true. For \$1 and N-\$1 pairs (the bottom 2 lines of table 11) is also true.

So we have proved that Goldbach's Conjecture is true if the prime number theorem is true for any even number N and N is bigger, the number of pairs of primes whose sum is N is more.

When N is infinity (∞), do we have infinity pairs of primes in which their sum is N? Let's re-organize table 1 to table 12:

Table 12.

\$7		The first \$7>N/9		137	127	107	97	67	47	37	17	7	
-----	--	-------------------	--	-----	-----	-----	----	----	----	----	----	---	--

N-\$7	 N- The first \$7>N/9	 N-137	N-127	N-107	N-97	N-67	N-47	N-37	N-17	N-7
\$3	 The first \$7>N/9	 113	103	83	73	53	43	23	13	3
N-\$3	 N- The first \$7>N/9	N-113	N-103	N-83	N-73	N-53	N-43	N-23	N-13	N-3

In the first 2 lines in table 12, when \$7>N/9, N-\$7 cannot be dividable by \$7>N/9 (because of the smallest \$9 is 9(3x3), so \$9 x \$7(>N/9)>N). Let \$7₁, \$7₂, \$7₃,... \$7_n, represent the primes >N/9 in the order.

```
The chance for N-$7 (O3 or $3) to be a prime is: \Delta_3=1-\sum_3=\Delta_3=1-[(1/3)+(1/7x2/3)+(1/13x2/3x6/7x10/11)+(1/17x2/3x6/7x10/11x12/13)+(1/23x2/3x6/7x10/11x12/13x16/17x18/19)+(1/37x2/3x6/7x10/11x12/13x16/17x18/19x22/23x28/29x30/31)+(1/43x2/3x6/7x10/11x12/13x16/17x18/19x22/23x28/29x30/31x36/37x40/41)+(1/47x2/3x6/7x10/11x12/13x16/17x18/19x22/23x28/29x30/31x36/37x40/41)+(1/47x2/3x6/7x10/11x12/13x16/17x18/19x22/23x28/29x30/31x36/37x40/41x42/43)+(1/53x2/3x6/7x10/11x12/13x16/17x18/19x22/23x28/29x30/31x36/37x40/41x42/43x46/47)+(1/67x2/3x6/7x10/11x12/13x16/17x18/19x22/23x28/29x30/31x36/37x40/41x42/43x46/47x52/53x58/59x60/61)+(1/73x2/3x6/7x10/11x12/13x16/17x18/19x22/23x28/29x30/31x36/37x40/41x42/43x46/47x52/53x58/59x60/61x66/67x70/71)+...] - [1/$7_1+1/$7_2+1/$7_3, ....+1/$7_n]} Let assume the pair, $7_x$, (is the largest prime which is less than N/9), N-$7x is the biggest pair of primes whose sum is N, when N is infinite, $7 is infinite, when the number $7 > N/9 is more than $7_1$, [1/$7_1+1/$7_2+1/$7_3, ....+1/$7_n]>1, one more pair of primes larger than $7_x$, N-$7_x will be produced. Our assumption that $7_x$, N-$7_x is the biggest prime has led us to a contradiction, so this assumption must be false, so there is no biggest pair of primes ($7_x$, N-$7_x) and the pair of
```

primes $\$7_x$, N- $\$7_x$ is endless when N is infinite. For other groups, we can prove they are true easily. We proved not only that every even integer greater than 2 can be expressed as the sum of two primes, but also proved that bigger even integer (N) have more prime pairs that their sums equal to the even integer (N), if N is an infinite even integer, then there are infinite prime pairs that their sums equal to the even integer (N).

References:

- 1. Dudley, Underwood (1978), Elementary number theory(2nd ed.), W. H. Freeman and Co., Section 2, Theorem 2.(https://en.wikipedia.org/wiki/Prime_number)
- 2. Dudley, Underwood (1978), Elementary number theory(2nd ed.), W. H. Freeman and Co., Section 2, Lemma 5.(https://en.wikipedia.org/wiki/Prime_number)