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Abstract: The Sagnac effect has been shown in inertial frames as well as rotating frames. We solve 

the problem of the generalized Sagnac effect in the standard synchronization of clocks. The speed of a 

light beam that traverses an optical fiber loop is measured with respect to the proper time of the light 

detector, and is shown to be other than the constant c, though it appears to be c if measured by the time 

standard-synchronized. The fiber loop, which can have an arbitrary shape, is described by an infinite 

number of straight lines such that it can be handled by the general framework of Mansouri and Sexl 

(MS). For a complete analysis of the Sagnac effect, the motion of the laboratory should be taken into 

account. The MS framework is introduced to deal with its motion relative to a preferred reference 

frame. Though the one-way speed of light is other than c, its two-way speed is shown to be c with 

respect to the proper time. The theoretical analysis of the generalized Sagnac effect corresponds to the 

experimental results, and shows the usefulness of the standard synchronization. The introduction of 

the standard synchrony can make mathematical manipulation easy and can allow us to deal with 

relative motions between inertial frames without information on their velocities relative to the 

preferred frame. 
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1. Introduction 

The Sagnac effect is a phenomenon of interference by two light beams propagating along a closed 

loop in opposite directions. It had usually been recognized to occur in circular motion which 

accompanies acceleration, before observed in the experiments [1, 2] that involve uniform linear 

motion as well. The Sagnac effect may still be a conundrum to the theory of relativity which is based 

on the constancy of the speed of light. Even the speeds of the counter-propagating light beams in the 

rotating frame are not clearly known, though there are various explanations and analyses available in 

the literature [e.g., 3–5 and references therein]. As for the generalized Sagnac effect that involves 

linear motion as well as circular motion, on the contrary, few expositions or analyses can be found [6]. 

The generalized Sagnac effect may be a more puzzling problem to the theory of relativity. 

Recently, presupposing a preferred reference system S  the space-time space of which is isotropic 

so that the speed of light is constant irrespective of its propagation direction, a coordinate 

transformation between S  and a rotating system [7], called the transformation under the constant 

light speed (TCL), has been presented. TCL not only holds the constancy of the two-way speed of 

light in the rotating system but also is consistent with the transformation for inertial systems, which is 

derived from the former in the limit to inertial motion. The generalized Sagnac effect can be analyzed 

through TCL. Though the analytic results via TCL correspond to the experimental results, the analysis 

has been made under the constraints that the laboratory frame is assumed to be identical with the 

isotropic system S  and the optical fiber loop which the counter-propagating light beams traverse has 

a simple shape composed of circular and linear paths only. 

In this paper, the problem of the generalized Sagnac effect is, without the constraints, solved based 

on the test theory of Mansouri and Sexl (MS) [8]. The MS test theory also presumes a preferred 

reference frame S . The motion of the laboratory should be considered for a complete analysis of the 

Sagnac effect. We introduce the general framework to deal with its motion relative to S , not with the 

problem of clock synchronization. The standard synchronization is adopted within the framework so 

that the speed of light appears to be constant with respect to the time standard-synchronized, which 

will be referred to as adjusted time (AT). We analyze the speeds of light beams traveling around an 

optical fiber loop which rotates at a constant speed relative to the laboratory frame, measuring them 

with respect to the proper time (PT). The fiber loop can have an arbitrary shape, and is described by an 

infinite number of differential lines such that the MS framework can handle it, regarding each 

differential line as an inertial frame. The analysis results correspond with the results of the 

experiments including the cases where the motions of the light beams and the fiber loop are non-

collinear. 
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2. General Framework for Transformation 

Consider an inertial frame S   that is in rectilinear motion at a normalized velocity  c/v  

relative to S  where the speed of light is a constant c  regardless of its propagation direction. The 

MS test theory [8] provides a general framework for the transformation between S   and the isotropic 

frame S . The space-time coordinate vector of S   is represented as TT ],[ xp    where 

tic   with 2/1)1(i , x   is a spatial vector, and T  stands for the transpose. The coordinate 

vector of S  is similarly represented without primes. For a vector q , we denote its normalized vector 

by q̂ , i.e., ||||/ˆ qqq  , and its magnitude by q , i.e., |||| qq , where ||||   designates the 

Euclidean norm. In the MS framework, the coordinates of S  are transformed into S   as follows [8–

10]: 

xx Tigia                             (1a) 

))ˆ(ˆ()ˆ(ˆ xxxx TT dbib                        (1b) 

where   

 Tbag                                  (2) 

 ddb T  ˆ)ˆ)((                             (3) 

and   is determined by a synchronization scheme in S  . The transformation coefficients a  and 

b  are associated with time dilation and length contraction, respectively. The general transformation 

can be represented in matrix form as  

pTp G                                   (4) 

where GT  can be expressed as a partitioned matrix [9]: 











)(


M
T

ib

ig T

G                               (5) 

where 

IM ddb T   ˆˆ)()(                            (6) 

with I  an identity matrix.  

  Given    and x , one can obtain   and x  from them by using the inverse of GT . From (1), 

  and x  are related to    and x  by [9, 10] 

)(
1

x Ti
a

                              (7a) 

 )(
1ˆ)ˆ)(

11
(

1
xxxx  TT i

adbd
 .                  (7b) 
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The transformation (7) is rewritten in matrix form as 

pTp  1
G                                  (8) 

where 



















)(1

11
1




M
T

ia

iaa T

G                            (9) 

IM
dadb

TT 11ˆˆ)
11

()(   .                     (10) 

Let us find the transformation between arbitrary inertial frames, say iS  and jS , by using the 

general transformation. An inertial frame kS , jik , , is in uniform linear motion at a normalized 

velocity k  relative to S  and its coordinate vector is denoted as ],,,[ )()()()()( kkkkk zyxp . The 

coordinate vector of kS  is related to that of S , according to (4), by pTp )()( kGk   where the 

dependence of the transformation on the velocity is explicitly expressed as two or more inertial frames 

are involved. The dependency of transformation coefficients on velocities such as )( ka   is also 

expressed explicitly. The transformation between )( jp  and )(ip  is then written as [9] 

)()( ),( iijGj pTp                              (11) 

where 

)()(),( 1
iGjGijG   TTT .                         (12) 

It is straightforward to calculate ),( ijG T  by using (5), (9), and (12): 












 



)()())((

)()(
),( 11

11

ij
T
ijjiijjji

i
T
j

T
iiji

T
jji

ijG babia

iaigga





MMM

M
T         (13) 

where k
T
kkkk bag   and kkkk

T
kkkk ddb   ˆ)ˆ)((  with )( kk aa  , )( kk bb  , 

and )( kk dd  . Given i  and j , the velocity ji  in iS  of an object jO  which is at rest in 

jS  is given by [10] 

)])ˆ(ˆ[])ˆ(ˆ[(
),(

1
j

T
iijiij

T
iii

jij
ji db

a



 


            (14) 

where 

)])ˆ(ˆ[(]))ˆ(ˆ[(),( j
T
iij

T
i

j

i
ij

T
ii

T
i

j

i

j

i
ji a

d

a

b

a

a   .        (15) 

It is worth noting that the direction of ji  is independent of the synchronization vector, though its 
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magnitude is dependent. One can easily see from (14) that ji  is reduced to j  when 0i  so 

that 1 iii dba  and 0i . 

 

3. Analysis of Generalized Sagnac Effect 

In the experiments of the generalized Sagnac effect, two light beams which left an emitting source 

at the same time traverse an optical fiber loop in opposite directions. We investigate the speeds of the 

light beams and the difference between their arrival times, assuming that the Laboratory frame is 

isotropic in Subsection 3.1 and considering its motion relative to the isotropic preferred frame S  in 

Subsection 3.2. In [7], using TCL, the generalized Sagnac effect has been dealt with under the 

conditions described in Subsection 3.1.  

 

3.1. Under the Assumption of Isotropic Laboratory Frame 

We assume that the laboratory frame is isotopic so that the speed of light is c  in every direction, 

which allows us to denote it by S . First consider a simple shape of the optical fiber loop as shown in 

Fig. 1(a) (in Subsection 3.2, a loop of arbitrary shape is dealt with). The fiber loop rotates at a speed of 

v . The emitting source of light is placed at 0P  in Fig. 1(a). Two counter-propagating light beams 

travel around the loop and are received by a detector O  located at 5P , which is the same place as 

0P . We denote the co- and counter-rotating light beams by b  and b , respectively. The loop can be 

divided into two parts: the circular and linear paths as in Fig. 1(b). For convenience, the two half-

circles are connected to each other, so are the linear paths. Both ends of the straight line in Fig. 1(b) 

are at the same place, though they are separated. Equivalently the light beams can be considered to 

traverse one circle and one straight line. Then the difference Lt  between the arrival times of b  

and b , as seen from S , can be expressed as 

)1(

)(2
2






c

ll
t sc

L                                 (16) 

where cv /  and cl  and sl  are the lengths of the circular and linear, respectively, paths in S .  

  The velocities of b  and b  in the linear path can be found by using (4). In special relativity, the 

transformation coefficients in (4) are given by 

1 a , b , 1d                             (17) 

where 2/12 )1(   . One of the most important concerns in the test theory is to find the vector 

parameter   which reflects physical reality. However, we do not deal with the matter of clock 

synchronization, and employ the standard synchronization. When the standard synchronization is used, 
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the synchronization vector becomes   . Then g  and   are expressed as g  and 

  . With these coefficients and parameters, ITT G
T

G . It is convenient to introduce a 

partitioned matrix which will be used in place of transformation matrices: 











2221

1211

AA

A
A

A
                               (18)    

where 11A  is a scalar quantity. Let GTA  , and then x  is rewritten as 

xAAx 2221   .                              (19) 

  We can consider two methods in measuring the elapsed time when a light beam travels along the 

linear path. One is to measure it with respect to AT, the standard-synchronized time, along the path in 

the forward or reverse direction, and the other is to employ PT of the detector O . Hereafter we use a 

subscript ‘ ’ in PT, say   , to distinguish it from AT. It is well known that the differential time  d  

is related to d  by  


 d

d  .                                 (20) 

The PT interval, which is measured at the same place, is regarded as absolute as its value is invariant 

in every inertial frame irrespective of  . However, the AT interval, which is the time difference 

between different places, depends on  . These facts imply that the PT would be appropriate for the 

measurement of the speeds. 

The line segments 10PP  and 54PP  in Fig. 1(a) belong to the same inertial frame, which is 

different from that of 32PP  because the directions of the velocities are different though the speeds are 

equal. Suppose that they belong to the same inertial frame S  . The difference in direction is 

considered in Subsection 3.2. To derive the speed of light with respect to PT in S  , we calculate xd , 

which is written from (19) as 

)( 2221  cAAx  dd                             (21) 

where  dd /xc  . The velocity of a light beam with respect to    in S   is expressed from (20) 

and (21) as 

)( 2221 




cAA

xx









 d

d

d

d

d

d
.                       (22)  

According to (5) and (6), 21A  and 22A  are independent of  . It should be noted that the velocity 

with respect to PT is independent of  . The squared norm of xd  is given by 

)2(|||| 222222212121
22

 cAAccAAAAx TTTTdd  .                (23) 
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Since IAA T , it follows that 

2
112121 1 AT AA , 12112221 AAA AT  , 12122222 AAIAA TT  .            (24) 

From (23) and (24), we have 

])(2)1[(|||| 12121211
2
11

22
 cAAIccAx TTAAdd  .             (25) 

For a light signal, cdtd /|||| x  and thus 1|||| 2 c . Recall that 0|||| xd . Substituting 

1|||| 2 c , 11A , and Ti 12A  into (25) and taking the square root of both sides yield 

)(  cTidld                              (26) 

where |||| xdld  . Then the speed of light, tdldc  / , is obtained as  

)ˆ1(2 cTc
d

d

d

ld
icc 




 



 

                         (27) 

where ict /   . Note that we have derived (27) in the standard synchronization. The propagation 

directions of b  and b  are parallel and antiparallel, respectively, to v , as seen in S . The speeds 

of b  in S   are given by )(2 vcc  , respectively, which correspond to those derived from 

TCL in [7]. 

The speed of light in S   is other than c , and becomes c  if measured with respect to t  rather 

than t . It can be easily seen by using (26) and )(  cTidid  , which results from 

xA1211   A , that ctdld  / . If the speeds of b  were really c , there would be no time 

difference and thus no Sagnac interference. As can be seen from Fig. 1(a), it is obvious that the actual 

times taken during the travels of b  along the loop are the times measured by the clock of O . The 

correct speeds must be measured with respect to PT, not AT. 

 

3.2. Under the Consideration of Motion of Laboratory 

In reality, as our Earth and Solar System move, the laboratory frame is not at rest and is different 

from the isotropic frame S . Though Earth rotates, we can consider that it belongs to an inertial frame 

during the very short test. We denote the laboratory frame by iS  and an arbitrary inertial frame by 

jS . The normalized velocity of kS , jik , , is ckk /v  relative to S . The fiber loop that the 

light beams traverse is of arbitrary shape, as shown in Fig. 2. A curve can be approximated by many 

line segments. In Fig. 2, the loop is approximated by n  line segments, each of which is in linear 

motion at a constant speed of jv  relative to S . As n  tends to infinity, the linearized shape 

approaches the original one. Generally the line segments belong to different frames since their 

directions of motion are different, though their speeds are the same.  



 7

Using (13) and (15), we have the )1,1( -entry of ),( ijG T , which is written as  

),(|),( 11 ijijG  T                           (28) 

where mn|A , 2,1, nm , denotes the ),( nm -entry of a partitioned matrix A , i.e., mnmn AA | . 

The entry 21|),( ijG T  is given by [9] 

ijijijG i  ),(|),( 21 T .                        (29) 

Let ),( ijG TA  . Given 11A , the entry 21A  must be ijiA 11 , as explained in the following. 

The differential coordinate vector of an object iO  which is at rest in iS  is represented as 

TT
ii dd ],[ )()( 0p . The differential vector in jS  corresponding to the )( idp  is calculated as 

)()( ij dd pAp  , which results in TT
ij Add ],[ 2111)()( Ap  . The velocity in jS  of iO  is written as 

)()( / jjij did x , where 11)()( Add ij    and 21)()( Ax ij dd  , which leads to ijiA 1121 A . 

One can also clearly see this relationship from the first column of (9) where   is the velocity in S  

of an object O  which is at rest in S  . The quantity 11A  corresponds to the time dilation factor and 

the PT of iO  is related to )( j  by 

 
11

)(
)( A

j
i


  .                                (30) 

Suppose that the standard synchronization is employed in kS , jik , , so that kk   . For 

simplicity, we use k  and ji  instead of 2/12 )1(  k  and ),( ij  , respectively. Then ij  is 

expressed, from (14) with subscripts i  and j  interchanged, as 

)]ˆ(ˆ))ˆ(ˆ([1
i

T
jjiji

T
jjjjiiij     .               (31) 

In the standard synchrony, )()( 1
kGk

T
G  TT , which leads to ),(),( 1

ijGij
T

G   TT . Recall 

that ),( ijG TA  . The differential spatial vector in jS  is written from (11) as 

)(22)(21)( iij ddd xAAx   .                          (32) 

Note that 0|||| 2
)(

2
)(  ii dd x  since the speeds of b  with respect to the AT, )(it , are c  in iS . As 

IAA T , (24) can be used. To use (24), it is necessary to discover 12A . Interchanging i  and j  in 

(29) yields the relationship of jiijjiG i  21|),(T . Since T
jiG AT ),(  , it follows that  

jiijjiG
T i   2112 |),(TA                          (33) 

ijji   .                                 (34) 
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From IAA T , 12121
2
11  AATA . Using this relationship, (28), and (29), we have 1)1( 22  ijji  , 

which leads to  

2/12 )1(  ijji  .                             (35) 

From (34) and (35), ijji   . Though the magnitudes of ji  and ij  are identical, generally 

jiij   . In case i  and j  are parallel or antiparallel, however, it is readily seen from (31) that 

jiij   . Using (33) and similarly following the computational procedure to find c  above, we 

have 

)()(  i
T
jiijij iddl c                            (36) 

where |||| )( jj ddl x  and )()( / iii dd  xc  .  

The relationship (30) is valid even if i  and j  are interchanged. The speed of light with respect to 

ict jj /)()(    is given by 

)ˆ1(2

)(
i

T
jiji

j

j
j c

dt

dl
c c 



.                         (37) 

The speed of light is other than c . Though the one-way speed is not c , the two-way speed is c  

regardless of the propagation direction. Equation (11) is a different representation of )( jp  which 

equals (4) with )( jpp   and j  . It is well known that the two-way speed in (4) is independent 

of  . The two-way speed of light is c  with respect to PT when the transformation coefficients are 

equal to (6). One can see similarities between (26) and (36) and between (27) and (37), which imply 

that actual physical quantities can be found through the standard synchronization that makes the 

laboratory frame iS  appear isotropic as the preferred one S . 

  The jth segment of the loop in Fig. 2 is at rest in jS . From (37), the speeds of b  in jS  are 

written as )ˆ1(2
  i

T
jijij cc c  where ic  are the velocities of b  with respect to AT in iS . The 

elapsed times during the travels of b  in jS  are calculated as  

)ˆ1(2)(


 


i
T
jiji

j

j

j
j c

dl

c

dl
dt

c                         (38) 

where )( jdt  are the elapsed PTs when b  traverse the respective paths. Since b  and b  travel 

in the opposite directions,   ii cc . The time difference in jS  is given by  

))ˆ(1(

ˆ2
22)()(




 


i
T
jiji

i
T
jij

jjj c

dl
dtdtt

c

c





  .                   (39) 
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As the direction of ic  is identical with that of ji , jii
T
ji ĉ  and the denominator in (39) is 

reduced to c . The differential segments that compose the fiber loop move at the same speed of v , 

and thus all ji  are equal. Then 

c

dl
t j

j




2
                                (40) 

where ji  . As a result of it, the overall time difference Ft  observed at the detector is given by 

c

l
tt F

n

j
j

n
F

 2
lim

1

 



                          (41) 

where  


n

j j
n

F dll
1

lim  is the rest length of the fiber loop. The time difference (41) corresponds to 

the experimental results [1, 2].  

As  /)()( ij dd  , the time difference observed in iS  is given by FL tt    where Lt  is 

the time difference with respect to AT. The length of the fiber loop as seen in iS  is related to the rest 

length Fl  by /FL ll   according to the well-known length contraction. It is seen by substituting 

 /LF tt   and LF ll   into (41) that the resultant Lt  corresponds to (16), which represents 

the difference in AT. The detector in the experiment of the general Sagnac effect [1, 2] moves with the 

fiber loop and the effect of Ft  is measured.  

So far we have analyzed the generalized Sagnac effect when ic  has the same direction as ji . 

Now it is time to examine a case where their directions are different. If the angle between ic  and 

ji  is   so that  cosˆ jii
T
ji c , (39) can be written as cdlt jijj /cos2    within a first-

order approximation, and then (41) is given by clt FF /cos2   . As far as the time difference is 

concerned, the effective length of the fiber loop reduces to cosFl , as observed in the experiment [1], 

when the propagation direction of the light beam b  has an angle   with respect to the direction of 

motion of the fiber loop.  

 

4. Conclusion 

The theoretical analysis, which corresponds to the experimental results, shows that the speeds of the 

counter-propagating light beams are different from c . In the global positioning system (GPS) also, 

the speed of light has been shown to be other than c  [11]. Accurate information on positioning can 

be obtained from GPS signals through the so called Sagnac correction. It is required because of the 

anisotropy of the light speed in the Earth frame. If it is really c , the Sagnac effect cannot occur. The 
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generalized Sagnac effect shows the anisotropy in inertial frames as well as in rotating frames. One 

can make the light speed appear isotropic by applying the standard synchronization, for example, 

along the closed path 0P  through 5P  in Fig. 1(a). However, it is impossible to apply the clock 

synchronization to a closed path because the problem of time gap that multiple times, depending on 

paths, are defined at the same place [3, 4, 11] is caused. Moreover the standard synchrony cannot be 

set up for both the paths of b  and b  at the same time because their ATs are different. Even if it is 

carried out, the actual speed of light, which is measured with respect to PT, is different from c . The 

actual time elapsed during the travel is the time by the clock of the detector O . 

The anisotropy does not imply that the standard synchronization cannot be employed to discover 

physical quantities. On the contrary, the presupposition of the isotropy of inertial frames, but with its 

exact meaning, can allow us to readily approach the problems of physics, as shown in this paper. We 

approached the generalized Sagnac effect, viewing inertial frames as if they were isotropic. The 

standard synchrony leads to the property of ),(),( 1
ijGij

T
G  TT , which makes the 

mathematical manipulation easy. Moreover it can allow us to deal with relative motions between 

inertial frames without information on their velocities relative to S , as has usually been done. Clearly 

the speed of an object with respect to AT depends on the scheme of clock synchronization. When the 

useful standard synchrony is utilized, there is one important fact that PT is the correct time, and so the 

actual speed should be measured with respect to PT, not AT. With this fact, we have shown that 

physical quantities can be effectively found by regrading inertial frames as if they were isotropic in the 

standard synchronization. 
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Fig. 1. (a) Optical fiber loop of simple shape. (b) Circular and linear paths.  
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Fig. 2. Optical fiber loop of arbitrary shape. 

 


