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The paper presents the uniform technique for constructing SUSY ladders of rational canonical 

Sturm-Liouville equations (RCSLEs) conditionally exactly quantized by Gauss-seed (GS) Heine 

polynomials.  Each ladder starts from the RCSLE exactly quantized by classical Jacobi, 

generalized Laguerre or Romanovski-Routh polynomials.  We then use its nodeless almost 

everywhere holomorphic (AEH) solutions formed by the appropriate set of non-orthogonal 

polynomials to construct multi-step rational SUSY partners of the given Liouville potential on 

the line.  It was proven that eigenfunctions of each RCSLE in the ladder have an AEH form, 

namely, each eigenfunction can be represented as a weighted polynomial fraction  (PFrs), with 

both numerator and denominator remaining finite at the common singular points of all the 

RCSLEs  in the given ladder. As a result both polynomials satisfy the second-order differential 

equations of Heine type. 
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1. Introduction 

In our recent study [1] referred to below as Part I we presented the general analysis of SUSY 

partners of the 1D rational canonical Sturm-Liouville equation (RCSLE) with the second-order 

poles using almost-everywhere holomorphic (AEH) solutions as factorization functions for the 

corresponding canonical Liouville-Darboux transformations (CLDTs) defined as the three-step 

operations including  

i) the Liouville  transformation of the given RCSLE,  

ii) the Darboux transformation of the resultant Liouville potential,  

iii) the inverse Liouville  transformation back to the original  RCSLE.   

For the RCSLEs with the singularity at the finite end of the quantization interval we additionally 

require that CLDTs in question do not change the zero-energy exponent difference for this 

singular point which assures that the Liouville transformation necessarily converts the given 

RCSLE into the Schrödinger equation on the line.   (SUSY ladders of radial Liouville potentials 

will be covered in a separate publication [2].)    

The purpose of this paper is to apply the aforementioned formalism to the ladders of multi-

step SUSU partners of the Gauss-reference (GRef) potentials [3-5] exactly quantized by classical 

Jacobi, generalized Laguerre or Romanovski [6, 7] (‘Romanovski-Routh’ in our terms [5]) 

polynomials and referred to below as the r-, c-,and i-GRef potentials accordingly.  Contrary to 

the r- and c-GRef potentials broadly cited in the literature [8-27], the i-GRef potential, having 

the Kepler problem in spherical coordinates [28-33] and Gendenshtein [34-36] potential 

(‘trigonometric Rosen-Morse’ and ‘Scarf II’ potentials, respectively, in the Cooper-Khare-

Sukhatme  [37-39] classification scheme) as their shape-invariant [31, 34] limiting cases, 

attracted relatively little attention.  In this paper we consider only symmetric-tangent-polynomial 

(sym-TP) reduction of this potential thoroughly studied by Milson [4] and referred to for this 

reason as ‘Milson potential’ [5]. The main reason for focusing on this reduction is that (as proven 

in [5]) each eigenfunction formed by the Romanovski-Routh polynomial of order v is 

accompanied by an irregular almost-everywhere holomorphic (AEH) solution formed by another 

Routh polynomial of the same order.  If the second Routh polynomial does not have real roots 

then the latter (irregular at ±∞) AEH solution can be used as the factorization function (FF) for 

the single-step CLDT. In particular, one can construct the SUSY ladder of rational SUSY 

partners of the nearly-symmetric Milson potential which are conditionally exactly quantized by 
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‘Routh seed’ (RS) Heine polynomials [5, 1]. It is worth emphasizing the nearly-symmetric 

Milson potential represents the only exception when we consider irregular-at-both-endpoints 

solutions as seed functions for the DT.   

For both r- and c-GRef potentials we use only seed functions regular at one end which are 

gathered in our recent survey [40, 41].  It is worth mentioning that the sets of regular Gauss-seed 

(GS) solutions for these potentials -- referred to as Jacobi-seed’ (JS) [40] and ‘Laguerre seed’ 

(LS) [41], correspondingly -- generally include nodeless solutions formed by polynomials of the 

order either larger or equal to the number of bound energy levels.  For two shape-invariant 

potentials on the line – the Rosen-Morse potential [42] and Morse oscillator [43] – these are the 

only GS solutions lying below the ground energy levels, as initially demonstrated by Quesne [44, 

45].  This is indeed the common feature of all shape-invariant potentials as it has been pointed to 

by Odake and Susaki [46] who refer to these solutions as ‘overshoot eigenfunctions’.  

It has been proven by us [1, 40, 41] that each eigenfunction generally belongs to the quartet 

of GS solutions of four distinct types formed by polynomials of the same order. Some of these 

quartets necessarily include nodeless solutions regular at either -∞ or +∞.  However all regular 

solutions disappear in the limit of the constant tangent polynomial (const-TP) corresponding to 

the mentioned shape-invariant potentials on the line, contrary to  ‘overshoot eigenfunctions’. 

The most important observation made by the author is the CLDT using the so-called ‘Jacobi-

seed’ (JS) [40],  ‘Laguerre seed’ (LS) [41],  or ‘Routh seed’ (RS) [5] solutions as seed functions 

converts each seed solution into the AEH solution having form of a weighted polynomial fraction 

(PFr).  This remarkable feature of the SUSY ladders of rational Liouville potentials generated by 

the above CLDTs is reminiscent of the technique utilized by Odake and Sasaki [46, 47] in the 

particular case of the shape-invariant GRef potentials.  However the crucial element of our 

approach is that we require that power exponents appearing the weight function coincide with one 

of two characteristic exponents (ChExps) at each finite regular singular point of the resultant 

RCSLE.  

We then take advantage of the fact that each single-step CLDT does not change exponents 

differences (ExpDiffs) at the intrinsic singularities (finite ends of the quantization interval for          

r- and c-GRef potentials or ±i for the Milson potential) for any GRef potential on the line, except 

[5, 1] the Gendenstein potential which will  be covered in a separate publication.  Indeed, since  
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the PFr forming the given AEH solution must  generally remain finite at all the singular point it 

may not have zero at any of the intrinsic singularities.  Based on the fact that this assertion holds 

for each single-step CLDT using a regular FF as well as for the seed solutions themselves we can 

use mathematical induction to prove both numerator and denominator of the PFr in question 

remain finite at each intrinsic singularity and therefore satisfy the second-order differential 

equation of Heine type at the origin.  

 For this proof to be valid, the mentioned FFs must remain nodeless at each step and this why 

we did not include into our analysis multi-step SUSY partners [47, 48] constructed using pairs of 

juxtaposed eigenfunctions [49-51].  We also prefer not to use GS solutions irregular at both ends 

[46, 47] until it is proven that the appropriate FFs are nodeless at each step. 

It is also worth mentioning that the CLDTs do change ExpDiffs at the origin for any radial 

potential and this is the main reason of why we restricted the current analysis solely to multi-step 

SUSY partners of GRef potentials on the line. 

The progress outlined above was to a large extend made due to use of Krein determinants 

[52], instead of Crum Wroskians [53], in following Bagrov and Samsonov’s cutting-edge 

suggestion [49-51, 54] which (to our knowledge) was mostly ignored in the literature. Though 

potential use of Krein determinant, instead of Crum Wroskian, was recently mentioned by 

Grandati [55], that the main advantage of the former representation – the fact that it contains 

only first derivatives of seed functions which significantly simplifies an analysis of its behavior 

near singularities -- has not  been fully appreciated. 

In Appendix A we derive explicit formulas for zero-free energy term in the generic canonical  

Sturm-Liouville equation transformed by a multi-step Darboux deformation of the Liouville 

potential.  We express solutions of this equation in terms of both Crum Wroskians and Krein 

determinants. We traced the representation of solutions in terms of ratios of Crum Wroskians to 

Schulze-Halberg’s paper [56] who uses a different terminology: ‘foreign auxiliary equation’ (see 

also [57]) for the Sturm-Liouville equation and ‘generalized Darboux transformation’ for the 

CLDT.  (Remember that we changed the term ‘generalized Darboux transformation’(GDT)  

introduced in the scattering theory [58-64] for ‘Liouville-Darboux transformation‘ because the 

latter expression was repeatedly used by various authors in completely different sense [1].) 
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2. Multi-step SUSY partners of GRef potentials and related GS Bose invariants  

Let us consider the CLDT of the GRef potential 
KV[ | ]

 G   ( = 0, 1, or i ) using the p 2j   

GS solutions tkmk as seed functions.  (Compared with [1], we dropped the third superscript in 

the notation of the PFrBs K 0
G  keeping in mind that the present study deals solely with GRef 

potentials on the line so the omitted superscript is always equal to 0.)  It directly follows from the  

analysis presented in Appendix A leads to the RCSLE 

 

p p

2
p po K K

{ m} { m}2

d
I [ ; | ] [ ; | ] 0.

d

 
 

  
       

  
t t

G G      (2.1) 

where the reference PFr (RefPFr) 

p p p

p po K o K o K
{ m} { m} { m}

I [ | ] I [ | ] I [ | ]


  
       

t t t
G G G     (2.2) 

 in the Bose invariant 

p p

p po K o K
K{ m} { m}

I [ ; | ] I [ | ] [ ; ]T 
         

t t
G G      (2.3) 

is expressed in terms of the Krein determinant  

pp p p { m}K [ |{ m} ] K [ |{ m} ];{ }       tt t        (2.4) 

via (A.90) and (A.91) for even  and odd  p, i.e., for 0   and 1 , respectively, namely, 

2 j

2jo K
K{ m}

I [ | ] I [ ; ]}{ T


 
    

t
G       (2.5) 
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21 1I [ ]} { [ ] [ ]}.
2 2

{ l d ld


              (2.6) 

As pointed to in Part I, the CLDTs preserve the density function which is chosen (in this series of 

publications) to have the very specific form 

Ta [ ; ]K T
,

24 ( e )

0

| |


         
  


 r
r

       (2.7) 

where T = K1 for K>0  is the order of the TP zero T;1 (if any) and [ ; ]n   stands for the 

monic polynomial with n simple zeros k (k=1,…,n).   For any GRef potential on the line, 

excluding the Gendenshtein (Scarf II) potential [34] discussed in a separate paper, the TP roots 

T  differ from the intrinsic singular points er  (1er = r, 0e0 = 0, and ie0 = i,  ie0 = + i) which 

implies that the density function of our interest has the second order pole at each intrinsic 

singularity.   The direct corollary of this observation [1] is that the sequential CLDTs of our 

interest keep unchanged the energy-dependent characteristic exponents (ChExps) at the intrinsic 

singular points of the resultant RCSLEs.  

Making use of representation (A.27) for the zero-energy free term in CSLE (A.21) in terms 

of Wroskian pW[ |{ m} ]  t  formed by GS solutions tkmk we can also write (2.5) as  

p

po K
p(p 2) K{ m}

I [ | ] I [ ; ]}{ T
     

t
G       (2.8) 

1 1
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K K p
d
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d

T T ld  

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   
t  

The Schulze-Halberg [56] representation of the zero-energy free term and similar formula for 

AEH solutions of RCSLE (2.1) is convenient to relate our results to Odake and Susaki s scheme 

[45, 46] for constructing multi-step SUSY partners of shape-invariant potentials.  We will come 



7 

 

back to this analysis in Part III where both shape-invariant potentials on the line: the Rosen-

Morse and  Morse potentials will be analyzed in great details as the limiting cases of the linear 

TP (LTP) r- and c-GRef potentials, respectively. 

It is convenient to re-arrange the second term in the right-hand side of (2.5), 

1 1
2 2

K K p 1 1 p p
d

2 [ ; ] [ ; ] K [ | m ;...; m ]
d


   
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  
t tT T ld      (2.8) 

p 1 1 p p K p 1 1 p p2 K [ | m ;..., m ] [ ; ] K [ | m ;..., m ] ,l d  ld T ld  


      t t t t  

as 
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0
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e
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
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 (2.8*) 

taking into account that 

T
K

T;kk 1 0

1
[ ; ] 2 2 ,

e

| |
ld T





   


   

    rr

     (2.9) 

where  T = T2
1  .   It will be proven in next two sections that the second-order poles  

appearing in the first and second terms in the right-hand side of (2.8*) compensate each other 

and that the last term has no singularities at the TP zeros T;k  for  = 0 as expected from the 

general analysis presented in Part I.  It is worth emphasizing that the latter assertion holds iff 

density function (2.7) has second-order poles at the intrinsic singular points which is not true 

either for radial GRef potentials or for two exactly quantized trigonometric potentials: the D/PT 

potential [64, 65] and its i-GRef analogue [29, 33]. 

Substituting GS solutions  
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k k k k k k k k kk k
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m k k 0; m 1; m m mm
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
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            (2.10) 

         

where 

0 1

;0 1

1 0

0 1
| |

0

(1 ) (1 ) for ( ),
[ ;2 1,2 | |

e e otherwise,

]

| |  

  

  
   
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


         
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     (2.11) 

into Krein discriminant  (2.4) one can represent the latter as the weighted polynomial: 

2 j { m}2 j

2j 1 1 2j 2 j

j 1 1 2j 2 j

K [ | m ;...; m ]

[ |{ m} ] P [ | m ;...; m ],
  

   
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   
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p
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  
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 



t t

t

r
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    (2.13) 

 

and the so-called ‘GS main polynomial determinant’ (GS-MPD) have the form 
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 
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   
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or 
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 
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     
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       
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for even (  = 0) or odd (  = 1) numbers of  steps, respectively.  Note that use of the Krein 

determinant [15], instead of the Crum Wroskian [17], allows one to consider only the  

first derivatives of the polynomials 
k k km m[ ; ]  t  making use of the auxiliary polynomials 

defined via (7.4) in [1], with m(n ) (m)

m m m
    t
t t t

* * 2j+, namely,  

 

 

m 1 m 1 m mP [ | m] P [ ; ; ; ]         t tt       (2.15) 

| |

m1 m m m m
0

B [ ; ; ] [ ; ] ( e ) [ ; ],


  


            t t tr
r

 (2.15*) 

where 

1
1 0 1 1 02

1
,0 0 12

B [ ; ; ] | | [( 1)( e ) ( 1)( e )]

( 1 ).

 



             

      

  (2.16) 

In this series of publications it will be always assumed that PDs (2.14a) and (2.14b) have only 

simple zeros and therefore can be represented as scaled monomial products 

 

{ m} { m} { m} pp p p
P [ | m ;...; m ] P | m ;...; m ) [ ; ].1 1 p p 1 1 p p { m}  

         t t t
t t t t t  

            (2.17) 



10 

 

It will be proven in next section that polynomials (2.17) remain finite at the intrinsic singular points 

er (r = 0, ||) – the common remarkable feature of the GS Liouville potentials on the line (with the 

Gendenshtein potential as the only exclusion).  

Substituting (2.12), coupled with (2.17), into the first two terms in the right-hand side of (2.8*)  

(while keeping the third term unchanged) we can represent the PFr in question as 

1 1
2 2

2 jK K 2j 1 1 2j 2 j { m}
d
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d

T T ld
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      

 
        

  
tt t   
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0

1
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e
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


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

     
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
rr
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[ ; ]
1

2
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| |
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 
   
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1 1 2j 2j2jT

T;k 2j 1 1 2j 2jk 1

K [ | m ;...; m ]
2

K [ | m ;...; m ]



   

     


 

  

t t

t t
 

where the PFr 

p p p p p

2 2
{ m} { m} { m} { m} { m}Q[ ; ] [ ; ] / [ ; ] [ ; ] / [ ; ].

 

                  t t t t t  

            (2.19) 

 

was adopted by us from Quesne’s works [44, 45, 66-70] and for this reason is referred to below  

as ‘QPFr’.  It will be demonstrated in next section that the second-order poles in the second and 

third terms in the sum in the right-hand side of (2.18) compensate each other so that the sum in 

question has only first-order poles at the intrinsic singular points er (r = 0, ||). 
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Let us consider the AEH solution of RCSLE (2.1) obtained by applying the (2j + ) -step 

CLDT in question to the GS solution t2j +  +1m2j +  +1.  Substituting (2.12) into generic formula 

(A.31) for solutions of the CSLE undergone a multi-step CLDT one finds  

2j+

p K[ ; | ; m ]2j+ 1 2j+ 1{ m}
     G t
t

      (2.20) 

2j 1 2j 1 { m}2j 1

1
2

{ m}2j

[ | m ] P [ | m ;...; m ]1 1 2j 1 2j 1

P [ | m ;...; m ]1 1 2j 2j

      

 

        


          

t

t

t t t

t t  

or, making use of (2.7), 

1
T2

2j 1 2j 12j+

p K[ ; | ; m ] [ | m ] [ ; ]2j+ 1 2j+ 1 0 T{ m}



   

            
G t t

t
 

    
{ m}2j 1

{ m}2j

P [ | m ;...; m ]1 1 2j 1 2j 1
.

P [ | m ;...; m ]1 1 2j 2j

  

 

     


   

t

t

t t

t t
  (2.21) 

We thus conclude that the PFr in the right-hand side of (2.21) may not vanish at intrinsic singular 

points.  Since the latter statement generally holds for Jacobi, generalized Laguerre, and Routh 

polynomials, we can prove by induction that the PDs of our current interest remain finite at the 

mentioned singular points and therefore satisfy the Heine-type second-order differential equations 

introduced in Part I. 

Though representation (2.21) for the AEH solution of RCSLE (2.1) is applicable to the 

potentials on the line, on the half-line, as well as to two trigonometric potentials mentioned above, 

the rational potentials on the line represent the very special case when 

i) the TP does not vanish at the intrinsic singular points  

and as a result 

ii) the CLDTs in question do not change the zero-energy ExpDiffs for intrinsic singularities.  
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This conclusion cannot be extended in general to either radial or trigonometric GRef potentials 

and this is the main reason of why we restricted our current analysis solely to rational potentials 

on the line. 

Up to now we did not impose any restrictions on sets of GS solutions used as seed functions 

for the given CLDT.  It should be however stressed that we are solely interested in RCSLE 

conditionally exactly quantized by GS Heine polynomials and for this reason the sets of our current 

interest include only regular JS or regular LS solutions lying below the ground energy level, i. e., 

 

p p p{ m} {m } ; {m }
a b

a bt a b        (2.22) 

assuming that 

k km 0< for k 1,..., p p p     
a bt c .      (2.22') 

With this choice of GS solutions the AEH solution of type or2j 1  t a b  (lying at the energy 

2j 1 2j 1m 0<
     t c ) become nodeless and therefore this should be also true for the PFrs in  

the right-hand side of (2.21).  Since the latter statement generally holds for both Jacobi and 

generalized Laguerre polynomials to construct GS solutions (2.22), we can prove by induction that 

the PDs in question may not have nodes inside the quantization interval.   

Excluding the shape-invariant Rosen-Morse and Morse potentials, we can also delete p
c

lowest bound energy levels by adding p
c eigenfunctions to set (2.22): 

 

p p p{ m} {m } ; {m } ; {v = 0,..., p 1} 
ca b

a bt a b c      (2.24) 

and also extending constraint (2.23): 

km p< for k 1,..., p ,   
c aa c        (2.24a') 

 
k

pm < for k 1,..., p .   
c bcb        (2.24b') 

However the above arguments are not applicable to CLDTs using pairs of sequential 

eigenfunctions as seed solutions.  Indeed, though the resultant AEH solutions must be also 

nodeless according the Krein-Adler theorem [52, 71] the denominators of the appropriate PFrs in 
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the right-hand side of  (2.21) do have zeros inside the quantization interval and therefore this 

should be also true for their numerators.  This is the main reason of why we did not include 

‘juxtaposed’ [49-51] seed solutions into the current discussion.  

 

3. Invariance of ExpDiffs at the intrinsic singular points under multi-step CLDTs  

    with GS  functions 

According to the arguments presented in Part I CLDTs with AEH FFs keep unchanged the 

ExpDiffs at the intrinsic singular points er (r = 0, ||) which implies that PFr (2.5) does not have 

second-order poles – the characteristic signature of GS Liouville potentials on the line.    

To confirm this assertion let us first demonstrate that the second-order poles in the second and 

third terms in the sum in the right-hand side of (2.18) compensate each other.  In fact, 

differentiating the logarithmic derivative 

k k

2 j k k

2 j

; m| | 2 j
k 1

j ,0 m
0 k 1

j

1[ |{ m} ]
2e



 


 
 

 

      
 

ld

t

tt
r

rr

  (3.1) 

(with 
k k k km 0 1; m )  t t  gives  

k k

2 j

2 j

; m| |
k 1

j 2
0

j

[ |{ m} ]
( e )











 

 

    
 

l d

t
t

r

r r

    (3.1) 

 

which confirms that the PFr in question 

2 j 2 jj j
0

1
2 [ |{ m} ] 2 [ |{ m} ]

e

| |
l d ld


 



 


    


t t
rr

p{ m}

| |

=0

2 | | ( j )
,

( e )







   




t

r
r

 

            (3.1) 

has only the first-order pole at any intrinsic singular point  = er,  Note that each summand  
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m 0; m 1; m ,0 m( ) | | ( ) ,            t t t t      (3.2) 

in the sum 

p

p

{ m} m
k 1

( )  


   t t         (3.2*)  

appearing in the numerator of PFr (3.1)  is an odd function of mt : 

( ) ( )         .        (3.2
†
) 

It will be shown in Section 7 that this feature of function (3.2) plays an important role in matching 

the double-step DT and two-seed Crum representations of the RefPFr 
1 1 2 2

o 2 K
m ; m

I ][ | 


t t
G  

Let us now prove that that GS-MPDs (2.17) do not have zeros at the intrinsic singular points 

er (r = 0, ||) as far as the TP remains finite at these points.  The latter assumption does not hold 

either for the aforementioned Gendenshtein potential or for radial GS Liouville potentials which 

will be thereby discussed in separate publications.  The proof requires a more detailed analysis of 

the FF 

   

K

2j+ 2j+ 2j+ 1 2j+ 2j+

2j+ 2j+ 2j+ 2j+

2j+ 1
m { m} m

1 (1 )
2

0; m 1; mK

[ | ]

T [ ] 2 1,2 | |[ ; ]











   



      



 

t t t

t t

G

  

  
{ m}2 j

{ m}2 j 1

1 1 2 j 2 j

1 1 2 j 1 2 j 1

P [ | m ;...; m ]

P [ | m ;...; m ]

 

  

   

     






t

t

t t

t t
 (3.3) 

implicitly used for the p
th

 single-step CLDT which by definition acts on the PFrB 

K

p 1 p p

p 1
{ m} m






 t tG   to generate the PFrB 

K

p

p
{ m}


 tG .  The cited expression can be directly  

derived from Krein’s formula [52] for the given solution of the Schrödinger equation with the RLP  
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K

p 1 p p

p 1
{ m} m

V[ (x) | ]







 t tG by changing seed functions 

K

k k p
m { m}

[ (x) | ]



 t tG  for 

GS solutions 

 

1
K K4

k k k kp p
m K m{ m} { m}

[ | ] [ ; ] [ | ].T
 

 
         t tt tG G   (3.4) 

Since the power 
p p; mr t coincides with one of the ChExps at the singular point er  

the PFr in the right-hand side of (3.2) must remain finite at   = er  for r =0, || (excluding the  

potentially exceptional case of an integer ExpDiff 
p p; m 0  r t ).  This implies that the PFr  

numerator does not generally vanish at  = er  unless this is also true for its denominator.  Now 

we can apply mathematical induction to prove that the GS-MPDs do not have zeros at the 

intrinsic singular points er keeping in mind that this assertion normally holds for the first 

polynomial in the sequence, i.e.,  for the Jacobi  polynomial if =1, for the Laguerre  polynomial 

if  =0, or for the Routh polynomial if =i, again putting aside  anomalous points along threshold 

curves (2.38) in [40] or (2.26) in [41] for the regular JS or LS solutions, respectively.   

We conclude that PFr (2.8*) does not have a second-order pole at any of the intrinsic singular 

points er.   This is also true for universal RI-independent correction (2.5).  Indeed, substituting 

both (2.9) and its derivative with respect to  into (2.5) one can represent the latter PFr as 

T
K T T

0 1 T;kk 1 0

2 | | 1
I [ ; ]} 2Q[ ; ; ] 2 ,

( e )( e ) e
{




  
    


         

        


| |
T

rr

 

           (3.5) 

where 

T T

T T

2
1 1

T T T T T2 2 2

[ ] [ ]
Q[ ; ; ] ( 1) .

[ ] [ ]

; ;

; ;

 

   
    

   

 
        

 

   

   
  (3.6) 
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An analysis of (3.6) reveals that the universal correction (if appropriate, i.e., iff  = 1) has second-

order poles only at the TP zeros.  We thus explicitly corroborated the assertion in [1] that CLDs 

using JS, LS, or RS solutions as seed functions do not change ExpDiffs at the intrinsic singular 

points. 

 

4. Erasing singularities at TP zeros by even-step CLDTs 

In Part I we suggested the conjecture that the intrinsic singular points er are the only common 

singularities of two sequential RCSLEs in the ladder generated by multi-step CLDTs using GS 

solutions (2.10) as their seed functions.  (In general it is theoretically possible that the given 

CLDT with an AEH FF turns second-order poles in the initial arbitrarily chosen RCSLE into the 

first-order poles in the resultant partner equation thereby excluding the possibility for a further 

extension of the SUSY ladder using the technique developed in Part I.)  The purpose of this 

Section is to prove that each TP zero is a regular point of RCSLE (2.1) generated by an even 

number p = 2j of sequential CLDTs. 

Indeed an analysis of universal RI-independent correction (3.1) shows that the coefficients of 

the second-order poles at the TP zeros  T;k  match those in the general expression for the 

partner RefPFr given by (2.24) in [1] and therefore  PFr (2.8*) may have only first-order poles at 

these points.   The immediate corollary from this observation is that the GS-MPD (2.14a) and 

(2.14b) may not share common zeros with the TP.   Otherwise both first and third terms in the 

right-hand side of (2.8*) would have second-order poles.  However, since the coefficients of 

these poles are negative in both cases they cannot cancel each other.   

Let us now explicitly corroborate that the last term in the right-hand side of (2.8*) does not 

have first-order poles at the TP zeros for 0 , in agreement with the arguments presented in 

Part I.  In other words we need to prove that the first derivative of Krein determinant (2.4) 

vanishes at each point  T;k:  

2j T;k 1 1 2j 2 jK [ | m ;..., m ] 0


  t t  (k' = 1,..,).     (4.1) 
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To do it we take advantage of the fact that computation of the first derivative of the Krein 

determinant only requires differentiation of its last row since all other determinants in the sum 

has a pair of identical row which gives   

2j 1 1 2j 2 j K 2j 1 1 2j 2 jK [ | m ;...; m ] [ ; ] D [ | m ;...; m ],T


       t t t t    (4.2) 

where 

2j 1 1 2j 2 jD [ | m ;..., m ]  t t         

K 0 K 0
m m1 1 2j 2j{ m} { m}2j 2j

K 0 K 0
m m m m1 1 1 1 2j 2j 2j 2j{ m} { m}2j 2j

j 1 j 1K 0 K 0
m mm m1 1 2j 2j{ m} { m}1 1 2j 2j2j 2j

j 1
mm 1 1 { m}1 1

[ | ] ... [ | ]

[ | ] ... [ | ]

...

[ | ] ... [ | ]

[ |

 
 

  

 
  

  
  


 

   

     



     

  

t tt t

t t t tt t

t tt tt t

tt t

G G

G G

G G

G

K 0 K 0
m m1 1 2j 2j{ m} { m}2j 2j

j 1K 0 K 0
mm 2j 2j { m}2j 2j2j 2j

[ | ] ... [ | ]

.

] ... [ | ]

 
  

 
 

   

  

t tt t

tt t

G G

G

 (4.3) 

Since the last row in the determinant does not contain the first derivatives of GS solutions the 

weight of the substituted PD (GS-SPD) 

 

{ m}2 j
1 1 2j 2 jP [ | m ;...; m ]

  
t

t t        (4.4) 

1 1 2j 2 j

1

j 1 j 1

1 1 1 2 j 2j 2 j1 1 2j 2 j

1 1 2 j2 j1

m m m1 2

m 1 1 1 2j 2jm2

m mm m

j j
m m mm m1 2j1 2j 2 j

[ ; ] ... [ ; ]m j

P [ | m ] ... P [ | m ]1j
... .

[ ; ] ... [ ; ]m m

[ ; ] ... [ ; ]m

 
 

 

  

   

     

 



        

       

t t

t t

t tt t

t t

t t
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in the weighted-polynomial representation of function (4.3), 

2j { m}2j
2j 1 1 2j 2j j 1 1 1 2j 2jD [ | m ;..., m ] [ |{ m} ] P [ | m ;...; m ],

         
t

t t t t t  

 (4.5) 

differs from that in (2.12) by the monomial product 
| |

0

( e )r
r






  .  Substituting (2.7) and (4.5)  

into (4.2) and dividing the resultant expression by (2.12) we come to  the PFr   

 

T
{ m}2j

{ m}2 j

2j 1 1 2j 2 j

K T 1 1 2j 2j

| |

1 1 2j 2 j
0

K [ | m ;...; m ]

a [ ; ] P [ | m ;...; m ]

.

2 ( e ) P [ | m ;...; m ]

| |

r
r

ld








   



  




   



 

t

t

t t

t t

t t

 (4.6) 

The last term in the right-hand side of (2.18) can be thus represented as  

{ m}2 j

{ m} 2 j2 j

T
p 1 1 2j 2 j

T;kk 1

K 1
K T T 1 1 2j 2 j

| |

{ m}
0

2 K [ | m ;...; m ]

a ( ) P [ | m ;...; m ]

,

( e ) [ ; ]r
r

ld  








 


    



  



 

 

    

 

    

t

t t

t t

t t  (4.7) 

where we set 

{ m} { m} { m}2j 2 j 2 j
1 1 2j 2 j 1 1 2j 2 j 1 1 p pP [ | m ;...; m ] P [ | m ;...; m ]/ P | m ;...; m )

         
t t t

t t t t t t

 (4.8) 

making use of (2.17).  This confirms that the term in question and therefore RefPFr (2.2) remain 

regular at each point T;k  if  = 0 (assuming that zeros of the Krein determinant differ from TP 

zeros.)  
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5.   The Quesne partial decomposition of multi-step GS RefPFrs  

It directly follows from the analysis presented in previous sections that RefPF (2.2) can be 

represented in the generic form specified by rational formulas (3.25a) and (3.25b) in Part I for  

 = 0 and 1, respectively.  Namely 

 

2 j2 j

{ m} 2j2 j

{ m} 2j2 j

2jo K o o
o { m}0{ m}

2j K
{ m}

| |

{ m}
0

I | I [ ; h , O ] 2Q[ ; ]

O [ | ]

4 ( e ) ;

[ ]

[ ]r
r




   






  


     

 



   

t

t

tt

t

t

G

G   (5.10) 

and 

2 j 1

2 j

2j 1o K o o
o 0{ m}

{ m} T T

I | I [ ; h , O ]

2Q[ ; ] 2Q[ ; ; ]

[ ]


 
  

  

  

      

t

t

G

  (5.11)            

{ m} 2 j 12 j 1

T{ m} 2 j 12 j 1

2j K
{ m}

| |

{ m}
0

O [ | ]

.

4 ( e ) ; [ ];[ ]r
r








 



    


 



       

t

t

t

t

G

 

It is essential that PFrs (2.19) and (3.5) appearing in the right-hand sides of RefPFrs (5.10) and 

(5.11) include  both second- and first-order poles at the singular points with energy-independent 

ExpDiffs.  Since the TP turns into a constant in the extreme cases of the shape-invariant RM and 

Morse potentials (K=0)  there is no need to distinguish between even and odd numbers of steps.  

As a result the Ref PFrs in question take the form 
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pp p

{ m} pp

{ m} pp

po 00 o 00
{ m}{ m} { m}

p 00
n { m}

| |

n { m}
0

I | I | 2Q[ ; ]

O [ | ]

,

4 ( e ) ;

[ ] [ ]

[ ]r
r





  





 


     

 



   

t

t

tt t

t

t

G G

G
  (5.2) 

regardless of evenness of p.   We [X, 1] thus refer to the given representation as the ‘Quesne 

partial decomposition’ (QPD) where the term ‘partial’ is used to emphasize that we do not 

separate explicitly all the second-order poles from the rest of the BI, in contrast with the original 

definition of BIs of our interest via (2.2) in Part I.   

Let us start from evaluating the polynomial numerator of the fraction in the right-hand side of 

(5.10).  Substituting (3.1) and (4.7) into (2.18) gives  

 
2j{ } 2j2j

2j K
{ m} { m}2j{ m} { m}m 2j

O [ | ] 4 2 | | j [ ; ]( )




  

        t tt tt
G                  (5.3)  

           2 j{ m}2 j

| |
{ m}

0

8 ( e ) [ ; ]
| |

r
r








 


     
t t  

   { m}2 j

K 1
T K T 1 1 2j 2 j2 a ( ) P [ | m ;...; m ].




          

t
t t    

Differentiating (2.12) with respect to  and substituting (2.7) and (4.2) into the left- and right-

hand side of the resultant expression, respectively, one can explicitly express polynomial (4.8) in 

terms of polynomial (2.14a) and its first derivative: 

{ m} { m}2j 2 j
K 1 1 2j 2j 1 1 p p

1 T [ ] P [ | m ;...; m ] / P | m ;...; m )
4        

t t
t t t t  (5.4) 

k k { m}2 j

{ m}2 j

2j | |
| |

1 m 1 1 2j 2j
k 1 0

| |

1 1 2j 2 j
0

B [ ; ; ] j ( e ) P [ | m ;...; m ]

( e ) P [ | m ;...; m ],

{ }










   
 



 


       

  

t

t

t t t

t t

r
r

r
r
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where we took into account [1] that first-order polynomial (2.16) can be alternatively represented 

as  

21 1B [ ; ;2 1 ] B [ ; ; ]                (5.5
†
) 

                0

| | | |

,0 1
00

1( e )
2e

r
r

rrr

 


 
 

 
        

   (5.5) 

        1
0 1 1 0 ,0 0 0 0 12

| | [ ( e ) ( e )] ( ),                 (5.5*)  

where 

 
0 1( e , e ) for | | 1

or
0 for 0.

   


  
 

        (5.6) 

The polynomial representing the right-hand side of (5.4) is thus necessarily divisible by the TP  

so the orders of polynomials (4.4) and (2.14a) differ by K1:  

2j 2 j{ m} { m} K 1.     t t        (5.7) 

For odd numbers of steps (p = 2j+1) we explicitly take advantage of the fact that 

2 j{ m}2j+

2 j
2 j{ m}2j+

2j 1 1 2j 2 j

{ m}

j
{ m}

| K [ | m ;...; m ] |

[ ; ]

[ |{ m} ]+
[ ; ]

ld

ld



 


 

   








  

  
  

t

t

t

t

t t

t
   (5.8) 

assuming that the PD has only single zeros 
p{ m} ;k t

 
for k = 1,…, 

p{ m} : t  

 

T { m}{ m} { m} pp p
P [ ; ; m] [ ; ],         tt t

t
    

(5.8*) 

and then re-group PFrs in the logarithmic derivative (3.14) in the following fashion 
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k k

2 j

2j

1 m | |
k 1

j | |
0

0

B [ ; ; ]
1

[ |{ m} ] j
e

( e )

ld |




 


 





  

    


 

t
t

rr
r

r

   (5.9) 

Taking into account that 

T
1

T T
T;kk 1

1
[ ; ] [ ] ( ) ,;








   


         
  

     (5.10) 

with 

T T;k
k 1

1
( 1 or 2).



 


   


       (5.11) 

The last term in the right-hand side of (2.18) thus takes the form: 

2 j 1 1 1 2 j 2 j 1T

T;k 2 j 1 1 1 2 j 2 j 1k 1

K [ | m ;...; m ]
2

K [ | m ;...; m ]



    

    


 

   

t t

t t
     (5.12)  

2j+11 K
T T 1{ m} { m}2j+1 2j+1

| |

{ m} T{ m} 2j+12j+10

( ) o [ | ]

,

4 ( e ) [ ; ] [ ; ]

 
    



    


    



      

t t

tt

G

r
r

 

where 

{ } { }2j+1 2j+12j+1 2j+1

2j+1 2j+1K K
1 1{ m} { m}m m

o [ | ] o [ | ]
 

 
       

t tt t
G G    (5.13)   

                                                                      2 j 1{ m}2j+1

| |

{ m}
0

8 ( e ) [ ; ]


 



 


      r
r

t t    

and 

{ } k k2j+1 2j+1

2j 1 | |
2j+1 K | |

1 1 m{ m}m
k 1 0

o [ | ] 8 B [ ; ; ] j ( e ){ }


 
 

    
 

         r
r

ttt
G  (5.13*)  

         2 j 1{ m}2j+1
{ m}[ ; ].

 
  

t
t  
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After substituting (5.12) and (3.1) into (2.18) and making use of (3.4) the numerator of the last 

PFr in the right-hand side of (5.11) can be thus represented as  

{ } 2j+12j+1

2j+1 K
{ m}m

O [ | ]
 

 
 

tt
G

2j+1 { m} 2j 12j+1
{ m} T { m}4 2 | | j [ ; ] [ ; ]( )

              
tt t        

   { m} 2 j 12j+1

| |
| |

T { m}
0

8 ( e ) [ ; ] [ ; ]


 




   


         r
r

t t   (5.14) 

{ m} 2j 1{ m} 1 2j+12j+12j+1

1
T T

2j+1 K | |
{ m}{ m}

0

( )

o [ | ] 8 ( e ) [ ; ]{ }.
| |

   


 


 

   


    

       tt
tt

G r
r

 

Note that the coefficient of the second-order pole (  T;k )
2

 in PFr (5.15) matches  

that in the general expression  for RefPFr oI [ | ] B given by (2.13) in Part I iff  the PD remains 

finite at   = T;k .    

 

6.   The gauge partial decomposition of multi-step GS RefPFrs  

While the QPD provides a compact formula for the RLP the gauge partial decomposition (GPD) 

originally introduced by us in [72] for shape-invariant potentials (both on the line and half-line and 

then extended in Part I to the generic GRef potential on the line) is preferable as a starting point 

for the gauge transformations turning the given RCSLE into the Heine-type differential equations.   

The RefPFrs in the GPD formally have the structure  

K

2j2j

2jo K o o
o { m}0{ m}

I [ | ] I [ ; h , O ] 2Q [ ; ]
        tt
G     (6.10) 

         
{ } 2j2j

{ }2j 2j

2j K
{ m}m

| |

{ m}m
0

O [ | ]

4 ( e ) [ ; ]












  


 



    

tt

tt

G

r
r

  

and 
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T
K

2j+12j+1

2j+1o K o o
o { m}0{ m}

I [ | ] I [ ; h , O ] 2Q [ ; ; ]
         tt
G    (6.11) 

{ } 2j+12j+1

{ }2j+1 2j+1

2j+1 K
{ m}m

| |

T { m}m
0

O [ | ]

,

4 ( e ) [ ; ] [ ; ]








 



    


 



       

tt

tt

G

r
r

 

reminiscent to (5.10) and (5.11) accordingly,  except that the PFr 

p{ m}p p { m}p

p
{ m}p p p{ m}p

2
{ m}{ m}

{ m} 2
{ m} { m}

;;
Q[ ; ]

2 ; ;

[ ][ ]

[ ] [ ]



 




  


  

    
   

     

t t

t
t

tt
t

t t

  (6.20)  

in (6.10) has the twice smaller first term, compared with QPFr (2.19), whereas the PFr   

T

T

K K
2j+1 2j+1

K
2j+1

Q [ ; ; ] Q[ ; ;1] Q [ ; ]{ m} { m} T

Q [ ; ; ],{ m}

 



          

    

t t

t
   (6.21) 

in (6.11) has the mixed term 

{ } 2j+12j+1K

2j+1
{ } 2j+12j+1

J 1 { m}mT T
{ m} T

T { m}m

[ ; ]
( )

Q [ ; ; ] .
[ ; ] [ ; ]







  
 

 
   

  
   

    
     

 
tt

t
tt

 

(6.3) 

Decomposing the QPFr in (5.10) and (5.11) as  

{ m}p p

p p
{ m}p p

{ m}

{ m} { m}
{ m}

;
Q[ ; ] Q[ ; ] ,

2 ;

[ ]

[ ]







 

 
 

  
     

  

t

t

t
t t

t
   (6.4) 
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we come to the following polynomial formulas for the numerators of the fractions in the right-

hand sides of (6.10) and (6.11): 

{ } 2j { } 2j2j 2j

2j 2jK K 0
{ m} { m}m m

O [ | ] O [ | ]
 

 

 
  

    
t tt t

G G     (6.50) 

  { } 2j2j

| |

{ m}m
0

4 ( e ) ;[ ]






 


      r
r

tt  

and 

{ } 2j+1 { } 2j+12j+1 2j+1

2j+1 2j+1K K
{ m} { m}m m

O [ | ] O [ | ]
 

 

 
  

    
t tt t

G G   (6.51) 

  { } 2j2j

| |

{ m}m
0

4 ( e ) ;[ ]






 


      r
r

tt  

{ } 2j+12j+1

| |
J 1

T T { m}m
0

8 ( ) ( e ) [ ; ].







   


         r
r

tt   

Introducing the auxiliary polynomial 

{ } p{ }p p

{ m}p

p

| |

p { m}m m
0

| |
{ m}p

0

{ m} { m}p{ m}p

[ |{ m} ] ( e ) ;

2 ( e ) [ ; ]

[ ; ]

[ ]

| |

r
r





 





   





 


 

      

    

    

t

tt t

t

t tt

t r
r

   (6.6) 

and making use of (5.13) and (5.15) for p=2j+1 we can then represent (6.50) and (6.51) 

{ } 2j2j

2j K
{ m}m

O [ | ]







 
tt

G
{ }2j

2jm
4 [ |{ m} ]

   
t

t     (6.70) 
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     { m}2 j

K 1
T K T 1 1 2j 2 j2 a ( ) P [ | m ;...; m ]




         

t
t t  

and 

{ } 2j+12j+1

2j+1 K
{ m}m

O [ | ]


 




 
tt

G  

{ }2j+1
T 2j+1m

4 [ ; ] [ |{ m} ]{
        

t
t

{ m} 2j 12j+1
{ m}(1 | |) [ ; ]}

       
t t   

  
{ m} 1 2j+12j+1

2j+11 K
T T { m}

( ) o [ | ]
 

 
       

t t
G    (6.71) 

accordingly.  

For the single-step (p=1) SUSY partners of the GRef potentials one can exclude the second  

derivative of the monomial product  m m[ ; ]  t   from auxiliary polynomial m[ | m]  t  

taking into account that the latter satisfies second-order differential equation (3.35) in [1]: 

 

| |

m mm 1 m m
0

0 m m m m

( e ) [ ; ] 2B [ ; ; ] [ ; ]

C ( | ; ) [ ; ] 0,

r
r

 





   


  

          

      

t t t

t t t tG

   (6.8) 

where 

0 o
0 m 0; m 1; m mm 0 0

1C ( | ; ) C ( , ) ( O d ),
4              t t t t ttG  

            (6.9) 

and 

0
0; m 1; m 0; m 1; m 0 0; m 0 1; m0

1 1C ( , ) | | ( 1)( 1) ( 1) .
2 2               t t t t t t  (6.9*) 

This gives 
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mm 1 0 1 m

0 o
0; m 1; m m m m0 0

[ | m]=2B [ ; ; , ] [ ; ]

1C ( , ) ( O d ) [ ; ],
4

[ ]



 

      

        

          

t

t t t t

t
  (6.10) 

where we also took advantage of the symmetry relations  

| |
1 0 1 1 0 1

0

B [ ; ; , ] B [ ; ; , ] ( e )
| |


 



          r
r

    (6.11
†
) 

and 

0 0
0; m 1; m 0; m 1; m m0 0

C ( , ) C ( , )              t t t t t     (6.11
*
) 

for first-order polynomials  (5.5
†
) and functions (6.9*) accordingly, with the right-hand side of 

(6.11
*
)  defined via (3.1*).   Substituting (6.10) together with the simplified expression 

 

1 K
m 1 1 m m mmo [ | ] 8B [ ; ; ] [ ; ]
           t ttG      (6.12) 

for polynomial (5.13*) into (6.71), with  j=0, we come to single-step formula  (6.30a') in Part I for 

the polynomial 

 

{ } pp{ } pp

{ } pp

p K o
T { m}0{ m} mm

p K
{ m}m

O [ | ] O [ ; ] [ ; ]

O [ | ]










      


 

       

  

tt tt

tt

G

G
   (6.13) 

 

in the GPD of the RefPFr 
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pp

o;0 o;1po K 2
,0 o { m} T{ m} 2 2

0 1

h h
1I | | | 2Q[ ; , ]

4
4( e ) 4( e )

[ ]
 

   
 

          
   

tt
G  

    
{ } pp

{ } pp

p K
{ m}m

| |

r T { m}m
r 0

O [ | ]

,

4 ( e ) [ ; ] [ ; ]








 



    






       

tt

tt

G

 (6.14) 

with p = 1. 

The main advantage of GPD (6.14) is that one can easily convert the original RCSLE to the  

Heine-type equations  

{ m}p 1p p

p pK K
{ m} { m}

D̂{ ; m }Hi [ | ; m ] 0
 

 
       

tt t
G t G t     (6.15)  

using the appropriate gauge transformations [   ].  The latter can be directly obtained from (3.15) 

in Part I  by setting m   t  which gives   

2 j

2 j2j+

2j+ K K
m { m}{ m}

ˆ ˆD{ ; m } D{ | ; }



 
        t tt

G t G     (6.16*) 

              
2j+m { m} TD̂{ ; ; }       t t    (6.16) 
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


         t ttt

G  

where we set the energy-dependent second-order differential operator 
KD̂{ | ; }

  B in therightr 

hand of (6.16*) is defined as follows:  

2j

p2 j 2 j
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K K
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


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 
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   
t

tt t

t

G G

G
 (6.17) 
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The second-order differential operator and the free term in the right-hand side of (6.16) are 

defined via relations (3.16) and (3.29) in [1], respectively.   It directly follows from the form of 

AEH solutions that equation (6.15) has polynomial solutions 

 

 
{ m} { } p+1p+1 p+1p

p K
p+1 p+1 { m}{ m} m

Hi [ | ; m ] [ ; ]
 


       

t tt t
G t    (6.18)  

referred to by us as GS-Heine polynomials.  By setting m   t  in the aforementioned  

relations one finds 

2j+

T{ m} 2j+2j+ 1

m { m} T

2| |
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d
( e ) [ ; ] [ ]
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    



   


  

     


 
t

t t
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 (6.19) 
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
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 (6.20) 

T{ m} 2j+2j+ 11 m { m}2B [ ; ; ] [ ; ] [ ];


 
            tt t

T T{ m} 2j+2j+ 1
1 m { m}2 B [ ; ; ] [ ; ] [ ]; },



 
               

tt t  

 

T{ m} 2j+2j+ 1

1 1d 2m 0; m 1; m ,0 m4 2

{ m}

{ [| | ]}

[ ; ] [ ];
 

           

  

       

     
t

t t t t

t



30 

 

where the first-order polynomial 1B [ ; ; ]    is defined via (5.5*) in previous section.  The 

polynomial coefficient of the first derivative in the right-hand side of (6.18) can be thus 

represented as 

Tp{ }p

T{ } pp

m { m}| |m

{ m} 1 mm

B [ ; ; ; ]

[ ; ] [ ]B [ ; ; ];





       

    

   

        

t tt

t tt

 (6.21) 
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 
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       
 
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t

 

where 

1
T T;k

k 1

.


 
 

           (6.22) 

As outlined in Part I, we can then make use of the appropriate gauge transformation to 

convert the given RCSLE to the second-order differential equation solved by GS Heine 

polynomials which is the main result of this paper. 

 

8. Conclusions and further developments 

The very specific common feature of the RCSLEs associated with multi-step rational SUSY 

partners of the r-GRef potential on the line is that they have only regular singularities, including 

infinity.  In the generic case of the second-order tangent polynomial [1] discussed here the 

exponent differences (ExpDiffs) for singularities at the ends of the quantization interval as well 

as the ExpDiff for infinity is unaffected by CLDTs.   This implies that polynomial determinants 

formed by Jacobi-seed (JS) solutions [40] satisfy the Fuschian equation and thereby are referred 

to us as JS Heine polynomials.  
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On other hand, the CLDTs of the linear-TP(LTP) r-GRef potential analyzed in Part III do 

change the ExpDiff at infinity. It turns out that the PD constructed in the aforementioned way 

has as a rule zero of order k > 1 at the origin.  To obtain the appropriate JS Heine polynomials 

one thus need to divide the PD  by z
k
.  We moved a  study on SUSY ladders of the LTP  

potentials 
1V[ | ]

 G into Part III because  they have some specific features which do not fit 

the general pattern for the generic r- and  c-GRef potentials 
2V[ | ]

 G generated using 

second-order TPs.  We also postponed any study on its shape-invariant limiting cases (already  

addressed in the literature [73, 74, 44-47] in this context.     

An analysis of the LTP r- and c-GRef potentials is significantly simplified by the fact 

that energies of AEH solutions are determined by roots of quadratic (instead of quartic) 

equations so that we can directly formulate constraints selecting regular AEH solutions below 

the ground-energy level.  When the TPs turn into constants the derived constraints become 

equivalent to the parameter ranges obtained by Quesne [44, 45] for the RM (=1) and Morse 

(=0) potentials.  This would present a convenient opportunity to more precisely relate Quesne’s 

works to our general approach.  Without going into details let us only mention two other 

astounding attributes of the LTP r- and  c-GRef potentials:  

i) their single-step SUSY partners constructed by means of CLDTs with one of four basic 

FFs exactly quantized in terms of Heun or c-Heun polynomials for =1 or 0, 

respectively; 

ii) both r- and c-GRef potentials preserve their form under some double-step CLDTs with 

basic GS solutions. 

In Part IV we will present a more thorough analysis of the double-step SUSY partners of GRef 

potentials.  A special attention will be given to CLDTs using the basic JS and LS solutions as seed 

functions keeping in mind that the resultant RLPs are conditionally exactly quantized by Heun and 

c-Heun polynomials, respectively. 

The only exception from this rule is the Gendenshtein (Scarf II) potential [3] which is 

constructed using the TP with zeros at the singular points i and i of the given RCSLE.  The 

remarkable feature of this exceptional family of rational potentials on the line is that ChExps at 
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the singular points i and i of the RCSLE are energy-independent and as result each of the 

mentioned SUSY partners is quantized by a finite set of orthogonal polynomials. 

As pointed to in [5] the symmetric curves [3, 14, 4] form the intersection between r- and i-

GRef potentials.  As a result it can be alternatively quantized via both ultraspherical [75] and 

Masjedjamei [76] (symmetric Romanovski-Routh) polynomials. The most important 

consequence from this observation is that multi-step RCSLEs constructed using irregular 

Gegenbauer-seed (GS) or alternatively symmetric Routh-seed  (sym-RS) solutions [5] allow the 

dual quantization scheme via both GS and sym-RS Heine polynomials.  The main advantage of 

sym-RS Heine polynomials is that they form orthogonal sets. 

 In particular this implies that the symmetric Rosen-Morse (sym-RM) potential – the 

“soliton” potential in terms of [46, 47] – also.  Quantization of the Schrödinger equation with 

multi-step symmetric ‘algebraically-deformed’ [77, 78] soliton potentials via Gegenbauer-seed 

(GS) Heine polynomials (in our classification scheme) was discussed in detail in [79-83].  The 

appropriate finite orthogonal sets of sym-RS Heine polynomials will be analyzed in detail in 

[84]. 

As mentioned above the benchmark feature of the GRef potential on the line is that line the 

density function of the appropriate RCSLE has the second-order pole at the origin and as a result 

the CLDTs of our interest do not change the ExpDiff at this singular point.  On the contrary, for 

the Liouville transformation to convert the given RCSLE to the Schrödinger equation on the 

half-line the density function  must have the first-order pole at the origin (if any).  As a result, the 

Darboux transformations do change the exponent differences (ExpDiffs) for the zero singular 

point, contrary to the ladders formed rational SUSY partners of GRef potentials on the line. The 

direct consequence of this change is that the polynomial determinants used to define the Heine 

polynomials in question generally vanish at the above singularity so one first needs to determine 

the order of this zero root bearing in mind that each Heine polynomial must remain finite at each 

singular point by definition. The explicit expression for the order of the zero root in terms of the 

number of regular-at-origin GS solutions used to construct the given rational SUSY partner of 

the radial GRef potential will be given in [85].   

 

Appendix A 
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SUSY ladders of canonical Sturm-Liouville equations 

The purpose of this appendix is to study transformation properties of the canonical Sturm- 

Liouville equation (CSLE)  

 

2
o o o

2

d
I [ ;Q ] [ ] [ ; ;Q ] 0

d

  
         

  

             (A.1) 

under multi-step Darboux transformations (DTs) of the corresponding Liouville potential 

expressed in terms of the variable .  For the reasons explained in Introduction the operators 

generated by these transformations in the space of the energy-dependent solutions o[ ; ;Q ]    

are referred to us as CLDTs.  In principle the derivation presented below can be done with no 

relation to the Schrödinger equation obtained from (A.1) via the appropriate Liouville 

transformation, as it has been independently done in [56] for the multi-step GDTs.   However 

applying Krein’s conventional formalism [52, 49-51, 54] to the resultant Schrödinger equation 

(instead  of deriving all the results from scratch) allow us significantly simplify the arguments.   

Let 
k 1,...,p p

o
{ }

[ (x);Q ]
 

    be seed solutions of the Schrödinger equation with the Liouville 

potential 
oV[ (x);Q ]   associated with CSLE (A.1).  (Here and below subscript p{ }   indicates 

that the potential parameters are restricted to the region where all the p seed solutions co-exist 

with each other.)   The Crum Wroskian W [ (x)]{ }p{ }   formed by these solutions can be 

converted into the Krein determinant  

   

K [ ;{ } ] K [ ];p { }p { }p{ }               (A.2) 

formed by seed functions 
k

[ ]   of   using the easily verified relation 
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k 1,...,2 j

1 j
2W [ (x)] [ (x)]K [ (x);{ }2 j{ } },

 


            (A.3) 

where we have to distinguish between even ( )0 and odd ( )1 numbers of steps, namely, 

             

1 2j

2 j

k 1,...,2 j 2 j 1 1 2 j 2 j

1 2 j1 2 j
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[ ] ... [ ]
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 
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     (A.40) 

and 
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  (A.41) 

with dot standing for the derivative with respect to  we can represent the Liouville potential 

obtained from 
oV[ (x);Q ]  via the p-step DT with the seed solutions 

k 1,...,p p

o
{ }

[ (x);Q ]
 

   as 

follows 
 

2j 2j 2j

o oV ;Q V ;Q 2j V [ ]}{ } { } { }
[ ] [ ] {

   

      
      (A.5) 
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d

2 [ ] [ ] K [ ];
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{ }{ ld | |
 
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where 

1
2

1 d1 2V [ ]} [ ] [ ] [ ]
2 d

{ ( )ld
 

       

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3 21 2

4
[ ] 3 [ ] [ ] [ ]{ }

 
        .     (A.6) 

Our next step is to express Liouville potential (A.5) in terms of the solutions 

k p

o
{ }

[ ;Q ]


 
 

1
4

k p

o
{ }

[ ] [ ;Q ]



 

              (A.7) 

of CSLE (A.1).   Keeping in mind that the Krein discriminant transforms under multiplication of 

each seed solution by the same function in the same way as the Crum Wroskian: 

 

k 1,...,p p k 1,...,2 j p

p
{ } { }K [ ] [ ]; } [ ]K [ ]; }{f f {

                 (A.8) 

one finds 
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   (A.100) 

 

and 
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2 j 1 2 j 12 j 1
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In particular, combining (A.3) and (A.9) we come to the following general relation  

k 1,...,2 j

1
4W [ (x)] [ (x)]K [ (x);{ }2 j{ } },

 
           (A.11) 

between the Krein determinant  

K [ ;{ } ] K [ ];p { }p { }p{ }               (A.12) 

formed by seed solutions of an arbitrary RCSLE and  the Crum Wroskian formed by seed 

solutions of the corresponding Schrödinger equation after the former function is converted from 

 to x. 

Substituting (A.9) into the right-hand side of (A.5) thus gives 

2j 2j 2j

o oV ;Q V ;Q V [ ]}{ } { } { }
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It seems useful to present an alternative representation for Liouville potential (A.14), in 

following Quesne’s prescription [67] originally implemented in her pioneering study for multi-

step rational SUSY partners of the isotonic oscillator.  Namely, to find an explicit expression for 

the ‘algebraically deformed’ [77, 78] isotonic oscillator in terms of generalized Laguerre 

polynomials and their derivatives she converted Wroskian (A.11) from x to (x) via the 

conventional formula [86] 

1 p(p 1)
4W [ (x)] [ (x)]W [ (x);{ } ]{ }p 2j{ } ,

 
            (A.14) 

where we set 

p
W [ |{ } ] W [ ]p { }{ }             (A.15) 

and also took into account that the derivative of (x) with respect to x is related to the density 

function [ ] via the conventional formula 

1
2(x) [ (x)]


   .         (A.16) 

This implies that Liouville potential (A.14) can be alternatively represented as 

2j 2j 2j

o oV ;Q V ;Q p(p 1) V [ ]}{ } { } { }
[ ] [ ] {

   
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}.{ ld | |
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By converting Wroskian (A.15) to  the Wroskian W [ |{ } ]p    formed by seed solutions 

k p

o
{ }

[ ;Q ]


 
   of CSLE (A.1): 

p
W [ ]{ }{ }  

1 p
4 [ ]W [ ;{ } ]2 j


           (A.18) 

and bearing in mind that 
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2j
o j( j 1 ) oW [ ;Q ] [ ]K [ ;Q ];{ } { }p { }p{ {} },


             (A.19) 

or, which is equivalent, 

1 1j( j 1 ) p(p 2) ,
4 4

            (A.20) 

we come back to (A.11) which confirms that representations (A.13) and (A.17) are equivalent. 

Let us now remind the reader that our final goal is to find the zero-energy free term 
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       (A.21) 

obtained from (A.1) via the p-step CLDT in question.  By excluding the Schwarzian derivative  

from the standard relation between this function and the corresponding Liouville potential: 

p p2j

o 1 o o 1V ;Q [ ]I [ ;Q ] { , x}
2{ } { } { }

[ ]
 



     
  

      (A.22) 

 one finds  

2jp p p 2j2j

o o o o o oI [ ;Q ] I [ ;Q ] [ ] V ;Q V ;Q{ }{ } { } { } { } { }
[ ] [ ]{ }.

    

         
  

(A.23) 

Substituting (A.13) into (A.23) brings us to the expression sought for: 

2j 2j

o o o o oI ;Q |{ } I ;Q I { [ ]}2j{ } { }
[ ] [ ]

  
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1 1

2 2
d

2 [ ] [ ] K [ ;{ } ] ,p
d

ld | |
  

       
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  (A.24) 
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where 

1
2

1 do 2I { [ ]} [ ] [ ] [ ]
d

( ).ld


      


     (A.25) 

Representing Liouville potential (A.17) 

2j 2j 2j

o oV ;Q V ;Q p(p 2) V [ ]}{ } { } { }
[ ] [ ] {

   
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one can re-write zero-energy free term (A.24) as 

 

2j 2j

o o o o oI ;Q |{ } I ;Q p(p 2) I { [ ]}2j{ } { }
[ ] [ ]

  
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One can verify that Sturm-Liouville equation (1) in Schulze-Halberg’s paper [56] turns into 

CSLE (A.21) with zero-energy free term (A.27)  if we put g = 0, f = 
1[ ]  , and then make 

trivial substitutions 

 

p p

1 o o 1 o oV [ ]I ;Q V [ ]I ;Q |{ }1 2 p{ } { }
[ ], [ ]

 
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   (A.28) 

and 

1o 1 1I {f } f f f
2

ld


     

in his formula (5) for the potential V2.   

In the particular case  p =1 (j = 0, =1) one finds 

1 1
2 2
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            (A.29) 
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in agreement with (B.20) in [1] or (7) in [56].   

Since any solution of RCSLE (A.21) is related to the appropriate solution of the Schrödinger 

equation (converted to the variable ) via the conventional formula 

1
4

p pp 1 p

o o
{ } p 1 { } p 1{ } { }

[ ; ;Q | ] [ ] [ ; ;Q | ]
 




    

             (A.30) 

it can be represented as  
1

2

p 2j 1

[ ]K [ ;{ } ]2j 1o[ ; ;Q | ] .{ } 2j 1{ } K [ ;{ } ]2j

}


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         

  (A.31) 

Alternatively, making use of (A.19) and (A.20), we can write the latter formula as 

1 p
4

p p 1

[ ]W [ |{ } ]p 1o[ ; ;Q | ]{ } 2p 1{ } W [ |{ } ]p
 

    
       

,    (A.32) 

in agreement with (3) in [56].  

 It is crucial that both expressions (A.27) and (A.31) were derived in [56] with no reference 

to the Schrödinger equation with the associated Liouville potential.  One can thus start from 

these expressions and then express both zero-energy free term and solutions of CSLE (A.21) in 

terms of Krein determinants using (A.19).  By deriving (A.24) and (A.31) in such a way we 

would stay within the framework of the Sturm-Liouville theory, with no need in the Liouville 

transformation to the Schrödinger equation. 
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