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Abstract

We discovered a beautiful symmetry to the equation x"+y"t z", first studied by
Fermat, in a dependent variable t = x+y-z and the product (xyz) if we introduce a
term we call the symmetric r = x’+yz-xt-t>. Once x"+y"+ z" is written in terms of
powers of t, r and (xyz) we looked at the coefficient vs. exponent abstract space and
found Lucas, Fibonacci and Convoluted Fibonacci sequences among other
corollaries. We also found that 3 cases of a prime decomposition factor q of x*+yz
gave certain results for Fermat’s Last Theorem which could be eliminated if a forth
case could also be solved. Intrigued by this, we then introduce partial congruence
representations modulo a prime for this much harder forth case to find the ‘form’ of
the solutions modulo g. The form of the solutions leads us to a cubic congruence
method that solves the special and general cases. There are several pages and stages
of the proofs where computer verification of the results is possible.
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Introduction

When studying the equation x"+y"+ z" we found that a particular approach to Fermat’s Last Theorem (FLT) was
giving back our original starting point. We analyzed why this was so and found that a certain term x*+yz-xt-t*
was the cause, thereby making that approach to FLT intractable. So what we did, was try and put the equation in
terms of this new term, which we called the symmetric r. What we initially found with small n was a separation
of t and (xyz) and so we wondered whether this was possible for all n. What we wanted to do was see if we can
put this equation in terms of x+y-z and (xyz), or more specifically powers of (x+y-z) and powers of (xyz) and
indeed we could with this new term x*+yz-xt-t* . Once we had done this, we looked at the structure of this
equation and found many corollaries including Lucas, Fibonacci and convoluted Fibonacci sequences over the
exponents n. We next recognized that if we take a prime decomposition factor (q) of x*+yz for example, we can
show that with this new transformation or representation of Fermat’s equation for n=p gives us t=0modq or we
get common factor solutions for 3 cases of . The forth case however, proved a lot more difficult and had us
introducing partial congruence’s and primitive roots to build a picture of the form of the solutions modulo q for
this case. Once we discovered the ‘form’ of the congruence solutions we then use a cubic congruence method
that eliminates solutions (congruence contradictions), gives common factor solutions or makes =0modg. In the
general case (Beal’s conjecture) this method also puts constraints on the exponents. Lastly we show that if
t=0modq then t—co using this new representation of Fermat’s equation.

Definitions
We define the dependent variable t as t= x+y-z to reflect Fermat’s equation. However, the definition of t
depends on the plus/minus form of the fundamental equation + x"+ y" + z" including the odd/even exponents.

Example. X"+ y"—z" for noddand x"+y"+2z" for neven, we use t=x+y—z. Forx"—y"+2z"
with nodd weuset=x—-y+z.For x"+y"—2z" for n even then we use a complex definition,
t=x+y-—iz.

Lemma 1 Another way of writing t is that, if we have three variables x,y,z then there exists a “¢’ € R that has
the only other plus/minus combinations as Xx,y,z.

Let, x+y=C,z-y=A, z—x=B. Furthermore let, t=x+y—-z.. z=C+t,x=AFt y=BFt
Whenz=C-tthenz<C,z<x+Vy,z-y<X..Xx=A+t.Whenz=C+tthenz>C,z-y>x ..x=A-t
likewise when z=C-t, thenz>C,z—x<Yy .. y=B+t.When z =C +t, then y = B —t, therefore,

+2z=+A+BxC (1.01)
+2x =t AFB+C (1.02)
+2y=37A+BxC (1.03)

Moreover,Ft=+zFyFx =+C FtFBFtF AFxt, therefore,
+2t=FAFB+C (1.04)
Therefore, t has the only other plus/minus combinations as x, y, z and can be written as (1.04)
We define the symmetric r in general as,
vl =X2+yz-Xt+Vt? = y2 + Xz - yt +Vt? = 72 - xy + 7t + Vt? (1.05)

We can also write this as,
= X2+ yz-xy+Vt? (1.06)

When we transform to the t, r, xyz space we use V= -1 and we call this the convoluted Fibonacci abstract space
which is simply an exponent vs. coefficient function space. The abstract function spaces are taken over the
exponents n and each are given by linear recurrence relations. Other V’s give other abstract spaces with different
properties.

Remark: ‘M’ stands for ‘multiple of” at some places in this work.
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The symmetric parts are defined as,

Wil = x2+yz, y,tr:y2+xz, _Z,tr:zz-xy, of = XZ+yz-Xxy (2.07)

v = any of ,,;r, UERY (1.08)
n-3m

Proposition 1: We can write x" +y" +2z" in terms of (xyz)" and (,r) 2 modulo t (or t independent, t = 0).

We derive the t independent equation (t = 0) by factoring A>+BC or B*+AC or C*-AB with,
X" +y" 2" =(A+)" +(B+t)" —(C-t)"

=(-C"+A"+B" )mod t

=(-C"+A"+(C-A)")mod t

(1=3) cpc pys 4 (N=4)(N=5)
21 3!

(n-N)(n—(N+1))(n—(N+2))...4C”7‘5A”7_5(C_A)2 L(n=(N+1))(n=(N +2))---2CL;3AnT_3)modt (1.09)
(N-1)! Nt '

Where N is the number of terms, n is odd.

=-nCA(C-A)(C-A)"3+ C2A%(C-AYT .

We are using B>+AC in this derivation. We get when n=odd, [1]

n-5_ n-7
n-3)  ( X ) (n-9)
2 2

x"+y"—z" =-nABC((B*+AC) 2 + = £ (ABC)*(B*+AC) 2
3!

7 n-9
( ) X ) ) n-15
n (ABC)*(B®+AC) 2 +

n-9 n-11_n-13_n-15_ n-17_ n-19

n-21

2 2 2 2 2 2 __(ABC)’(B?+AC) 2 +..
71

((n—(m+2)))((n—(m+4))) ((n—(3m—2)))
+ 2 2 . 2 (ABC)™(B? +AC) 2 )modt (1.10)
m!
t-independent (t = 0) equation n = odd >1

(With (B? +AC)= ,,,rmodt= yiifmodt=_, rmodt=yrmodt)

n-3m

m=n/3
m=(n-2)/3 (n-(m+2))
m=m-4/3 (—_ —) n-3m

X"y 7" = T -n+3m(xyz)m( 1) 2 modt (1.11)
= my oM,

t-independent (t = 0) equation n = even >1

n-4 n-6_n-8 n-10
n n(44447) n-6 n( n-12
2

X" +y" 42" = (2(B% + AC)? + (ABC)%(B + AC) 2 2 2

+ (ABC)* (B2 + AC) 2 +
2! 41

n-8 n-10. n-12 n-14 n-16
n
2 2 2 2 2
6!

n(n—(m+2))((n—(m+4)))m(n—(3m—2)) Ca
2 2. 2 (ABC)"(B® + AC) 2 )modt 1.12)
m!

n-18
(ABC)*(B* + AC) 2 +...

© Copyright Chris Sloane 2017



4 ON FERMAT’S EQUATION AND THE GENERAL CASE

m=n/3
m=(n-2)/3 n-(m+2) |
m=(n-4)/3 2 ) n-3m
X"+y"+2" = n——-—=———(xyz)"(,r 2 modt (1.13)
m=0(even) g1y I( n-3m )!
2
We can write both n odd and n even as,

m=n/3
m=(n-2)/3 n-(m+2) Y
m=(n-4)/3 L, ) n-3m
X"+y"£2"= Y (-1)'n 2n_3m (y2)™(,r) 2 modt (1.14)
m=0(n,m even) O!lm '(T )!

m=1(n,m odd)

Proposition 2 We can write x" +y" +z" in terms of (xyz)", ;r®and t° (or t dependent).

What’s remarkable is that we can do this for each power of t by ‘factoring” the symmetric into the equation (r is

factored into parts of the expanded equation) which separates t‘and (xyz)" to get a t’ dependent
representation or transformation. The rigorous proof is available in Extract 2 if one wishes to see this.

In general, we get fornand 7,

n=odd ¢ =even

#n=even/=o0dd - -1
n+((=3)n+(/-5) n—-(l+1) n+((=5) n-((+1) n—(3#) n—(5#) n-((+1)

. n-(-3
~ 2 2 2 2 2 2 2 2 ¢ T
((n Lol +n TR +..n 1|1|(ﬁ)| Xoxyz v
HI()!
n+(L=-5)n+(L-7) n—(L+7) n+((-7) n—(L+7) n—-(5#)n—(7#) n-(L+7) nroo
_ 2 2 2 2 2 2 2 2 (o3 L 2
(n 3101 +n TEET +.0n l|3|(ﬁ)| Y¥o(xyz)® r
1)
n(n+(€—m—2))(n+(€—m—4))m((n—(U+3m—2)) n(n+(€—m—4))((n+(C—m—6))m((n—(€+3m—2))
< 2 2 2 . 2 2 2 ..
('m!Q! (£-2)Im11!
n(n—(rr12+2#))((n—(r;1+4#))m((n—(f;Bm—Z)) Nl 3m
R M) e 2 (L15)
ml——=1
2
n=odd ( =odd
*n=even,( =even — +1
n+((=2)n+((-4) n-((-2) n+(L-4) n-((-2) n—()n-(3) n-((-2) o
(n 2 2 2y 2 2, ,_2 2 2 )tcierJr
£1010! (c-2)ro011! 1|0|(E)|
O (—)!
n+(f-4)n+((-6) n-(+4) n+(L-6) n-(l+4)  n-(F)n-(5) n-(l+4) n-(-6
2 2 72 2 72 2 2 2 i
(n 9700 +n TR +.0n 1|2|(C*‘1)| rxyz) r 2.
2
n(n+(l—2m—2))(n+(,€—2m—4))m((n—(C;:%m—Z)) r](n+(€—2m—4))((n+([;m—6))._'((n—(CJ;?»m—Z))
('m!0! (r-2)'m!1!
n(n—(r;1+1*))((n—(r2n+3"))m((n—(ﬂz3m—2) C ntam
= M Oyz)" e 2 (1.16)
Uml—=1
2
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This gives,
m=(n-(-4)/3
s=((-1)/2 m=(n-(-2)/3
n+((-2s-m-2)
s=10/2 m=(n-()/3 (——)! n-3m-/

t" termsforx" +y" "=+ ¥ Y n( 2 )t Oyz)™ gr 2 (1.17)
= |

s=0  m=21odd(n even,lodd,#) (C—ZS)!m!s!(w)_
2

m = Oeven (n odd, Zodd ,*)
Therefore we can write,

Theorem 1.1 t dependent equation V =-1, (n > 0)
m=(n-(-4)/3

s=((-1)/2m=(n-(-2)/3 (n+(ﬂ-25—m—2)

s=0/2 m=(n-£)/3 2 )! n-3m-¢
+y'ed"= ¥y T DN ) ar 2 (118)
=0 s5=0  m=Llodd#) (£-2s)'mlsli(———)!
2

m :Oeven(*)
*n=o0dd,/=o0dd ,n=even,(=even
#n=odd,/=even,n=even,( =odd

Where _ir is the V= -1 symmetric x*+yz-xt-t*

Makingmzw
m=(n-(-4)/3
s=((-1)/2m=(n-(-2)/3
n s=0/2 m=(n-/)/3 ) ) —1)1
A T (@ oS D gy e (119)
(=0 s=0 m =1 odd (#) (t=2s)Im!sl(o)!

m = Oeven (*)
*n=o0dd ,/=o0dd ,n=even,(=even
#n=o0dd,(=even,n=even,(=odd
Proposition 3 We can write the negative n equation or xz"+yz"txy" in terms of (xyz)" and ( r)
modulo t. (t independent or t=0)

n-3m

vz (M y T 22y = () ()" £ 09)N = (X2 ) (Y2 ) 2 (22— )"

_ n.,.2n,.2n__2n,__n! 2n-2 , . 2n-2 . _2n-2 n! 2,.2n—4 _ 2n-4  _2n-4
=34r £(xT +y"T 42z )+—1!(n_1)!_r(x +y +Z i—Z!(n—Z)!_r(X +y +12 )...

n! n-1,.2,.2. .2
i—(n—l)!ll S T(xT+yt+z7)
:3_1rni(2rn+¥(xyz)2(_lr)”_3+zn(n_g)(2|_4)(n_5)(xyz)4(_1r)n_6+
2004050 B)NTINB) (611 ((272)> 20
__nt n-1 (2n-2)(n-3) 2 n-4 (2n-2)(n-4)(n-5)(n-6) 4 n-7
+1!(n—1)! _qr(2r +—2! (xyz)“(qr) "+ n Oyz) )™+
(2n—2)(n—5)(n—66)|(n—7)(n—8)(n—9)(xyz)6(71r)n710+__((2.72)_> n-2)

n! 2,,.n-2 (2n-4)(n-4) 2 n-5 , (2n-4)(n-5)(n-6)(n-7) 4 n-9
i—Z!(n—Z)! are(er +—! (xyz)“(_qr) 7+ n Oyz)* ()" +
(20-4)(n-6)(n-7)(n=8)(N-8)(n-10) 16 L1, (ron o aye M-l

6! (n-1)!1!
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Hence we have,

My 2 (M yz) ™ - Bz ™24 n(0n|;?) _1rn_6(xyz jn+4 _n(n_07|)3f|n_8) _lrn_g(xyz yn+6
+n(n—9)(gl—:?)(n—1l) _lrn—lz(xy)—n+8 n(n-(2m+1))(n- (2m|+2)) (n.—(3m-1)) n—3m(xyz)—n+2m)modt
141 m!
The tindependent (t=0),n<1
Oy2)" Oy M2
m=n/3
m=(n-1)/3
—0x2)" +(y2)" £ (xy)" Em:(nz_zm( gy (@MDY (n=3m) s 2 od ¢
m=0 0'm!(n- 3m)'

Proposition 4 We can write the negative n equation or (xz)"+(yz)"+(xy)" in terms of (xyz)*", ;r®and t*

This is written in 2 forms when ¢ is even and odd respectively. Hence, both forms are required to generate the t
dependent equation for negative n.

Theorem 1.2 t dependent equation V = -1, (n <0).
£ even

yz) Ty M2y = o) (v2) = 0"

(t+4)

m=(n— )/ 3
m=(n—{F2) 3
(£)
2n s=¢ M=(n—27)/3 S _ n—-3m-—=
> £ (-)M(-1)2n—, (=(2ME)E 4 xyz)2M g 2 (1.20)
= 0(¢even) s=0(s even) m=0 s!(;)!(m—g)!(n—3m—5)!
. . . (n—(2m-+1)! .
Note:if we are using the s = ¢summation then make Tmosi2)l Owhen s/2>m as we can't

have negative factorials. We could also use s =2m summation that does the same thing.

¢ odd
Oy Ty x My = 0a) ()" £ 0y)”
me (n—([+7))
m:(n—@)/S
—(n_{+3) =] +3
on or s=¢ M= )3 = n-3m-°>
-3 s S O R L L O LT 2 (121
¢=1(odd ) s=1odd m=0 s!(%)!(m Sy 1(n—3m-¢ ;3))
Note:if using s = ¢ summation then make % =0when s/2>m.
Otherwise we can use s =2m-+1 summation.
n—-3m-/ L (-3 .
Result. Hence by making ® ==, 0" -3m -5 orn -3m ——; Wwecan conclude we can write all

these equations in terms (xyz)™ , ;r®and t*

© Copyright Chris Sloane 2017
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First ExamplesV =-1, ,r >r

x4 y76 NP (t12 + 6t10r +6xyzt9 +15t8r2 + 24xyzt7r + 20t6r3 +3( xyz)zt6 +36xyzt5r2 c1settt 4 0( xyz )2t4r + 24xyzt3r3
-10( xyz )3t3 + 6t2r5 - 9t2(xyz )2 r2 + 6txyzr4 —12t( xyz )3 r+ r6 - 6( xyz )2 r3 +3(xyz )4 )(xyz )_6

x4 y75 S0 (t:Lo +5t8r+5xyzt7 1012 +15xyzt5r c10t® +0( xyz)zt4 +15xyzt3r2 w54 -5( xyz)ztzr +5><yztr3

—5( xyz )3t i 5( xyz )2 2 Yoz) ™

oy y41 AP (t8 catdry 4xyzt5 sor’t? +8xyzrt3 card - 2( ><yz)2t2 +4><yztr2 ot -4 xyz)2 r)(xyz )74

xS, y_3 3. (t6 caty +3><yzt3 calr? . Sxyztr + e -3 ><yz)2 )(xyz )_3

x4 y72 22 (t4 ol 2xyzt + 2 )(xyz )72

x Ly y_1 e (t2 +1)(xyz )_1

R S
X2+}’2+22:3t2+2r
X3*)’3*23=4t3+3tr7 3xyz

x4 + )/4 +z4 = 7t4 +812r— 4xyzt + 2r2

x5 + y5 - 25 = 11t5 +15t3r —10><yzt2 + 5r2t— 5xyzr

x6 + y6 + z6 = 18t6 + 30t4r —18><yzt3 +15r2t2 —12xyztr + 2r3 + 3( xyz )2
x7 + y7 - 27 = 29t7 + 56t5r - 35xyzt4 + 35r2t3 —35xyzt2r + 7tr3 +7(xyz )Zt - 7r2xyz

x8 + y8 + 28 = 47t8 +1O4t6r - 64xyzt5 + 80r2t4 —80xyzt3r + 24t2 r3 +20( xyz )2 t2 - 24><yztr2 + 2r4 +8(xyz) 2
xg + y9 - zg = 76t9 +189t7r —ll7><yzt6 +171r2t5 —180xyzt4r + 66t3r3 + 45( xyz)zt3 - leyztzr2 + 9tr4 + 27(xyz

xlo + y10 + zlo = 123t10 + 340t8r - 210xyzt7 + 355r2t6 - 380><yzt5r + 170t4r3 +100( xyz )2 t4 - 220><yzt3r2 + 35t2 r4 +90(xyz) 2rt2 - 4O><yztr3

r

) 2rt - 9xyzr3 —3(xyz )3

-10( xyz )3t + 2r5 +15r2 ( ><yz)2

x11 + y11 - z11 = 199t:|'1 + 605t9 r— 374xyzt8 + 715r2t7 - 781xyzt6 r+ 407t5 r3 +209( xyz )2 t5 - 561xyzt4r2 + 110t3r4 + 242( xyz )2 rt3

—154><yzt2r3 —33(xyz )e’t2 +11r5t + 66r2(xyz)2t —11><yzr4 —11( xyz )3 r

Computer Verification. One may care to verify these results by computer where t = x+y-z and

I =X°4yz-Xt-'=y?+xz-yt-t'=7°-xy+zt-t*

There are many corollaries but notable corollaries are as follows:

Corollaryl6

XMyt 2" = (MY (x Ty oz (2 Yy 2 2 )y (X YR 12" )xyz (1.22)

Corollary17

e yfn T 77" _ ( Xf(nfz) 4 yf( n-2) T Zf(nfz) )(Xyz )71,[ +( X71 4 yfl _ Zfl X Xf(nfl) 4 yf( n-1) + Zf(n—l) )

~(x(173) 4y (n=3) | 77 (13) y(xyz )L (1.23)

Corollary18

The sum of the exponents in each term add to n (n > 0) and 2n (n < 0) so with exponent factor (xyz) =3, r=2

n-2 n-2

and t = 1 we therefore have for n = M3, lone (xyz)"® terms. For n=M3-1we have (xyz) 3 t*> and (xyz) 3 r

n—4 n-4

terms in n >0 and vice versa in n < 0. For n=M3+1 we have (xyz )Tt and (xyz )T _,r’termsinn>0and
vice versainn < 0.

(1.24)
Corollary 20 First term coefficient for n=p (prime) is 1modp, all the rest are Omodp. Column 1 is a Lucas
sequence and L, is congruent to 1modn if n is prime. [2] (1.25)

© Copyright Chris Sloane 2017
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Corollary 24.
One can see the positive columns are binomial variations of the convolved Fibonacci sequence and columnl

is Lucas. Write;

ROk -1123581321..

R 1,2,5,10,20,38, 71,130...
F(?) 21.39,22,51,111,233,474...
F(3) _1,414,40,105,256,594,1324...

etc. such that,

R g (kD 0 (k)

hence we get, Fy<) = R DR(O) L p{KDE(0) p(kD)e(0) ..F,%k‘l)FrE?()m_l)....FrEk‘”Fl(o) -3 F plkD

(k) m=nd=me=d w=v
and Ry’ = Z_l DI J szlFn—(m—l)Fm—(d—l)Fd—(e—l) ----- Fu—(w-1)Fw

Where the number of summations=Kk -1
We can also see binomial coefficients as follows;

[1] =Lpt" [9] =EF(f)t”‘8 Lt
[21=nF{ %2 r [101—nF(2) "B0ye)?
[31 = -nF\ 3"z (1] = -0k Pz

[41=2 R ur? (12 = -2 R " e’
(51 = -nF{ 4" Sz r [14] - . R0 e
[71=2 e [15] - nFn‘?fot”‘”wz P
[61 = SFAZA"6 e (18] - 233" )’

(81 =-nF 2" oy 12

o k k!  n_(k
Hence, each column group is given by, ihgomﬂlzrgfz)k—hﬂ n-2k- h(xyz) k—=h
n/2
(n-1)/2 k1 n
n. .n,.n_,.n : (k) n-2k-h h  k-h
and x +y tz =Lpt % Z h:OWEFﬂ_Zk_hH't (xyz)" _qr (1.26)
Therefore we have,
(n-£-4)/3
s=((-1)/2(n-1-2)/3 N2
= -/ _
gty e (0 (2) {2y o T (L
(20 s—0  m=1odd@) (£-25)Im!s)(o)! k=L h=0hi(k-h)1k N-2k-h+l
m=0even(*)
(1.27)

Hence, one can also view this as a transformation to the convoluted Fibonacci space in as much as it is easier to
find high t exponent, low r, (xyz) coefficients using the convoluted Fibonacci sequence.

© Copyright Chris Sloane 2017
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Corollary 29 The T, R, (XYZ) equation.
We can apply the t, r, (xyz) representation or transformation to any three variable equation if we make T equal
the equation in question.

T dependent equation,

m=(n-(-4)/3
=((-1)/2m=(n-(-2)/3
n z:(CIZ) EZE:_[)/; (W)! n-3m-(
n,yn n_ n i 2 ( m 2
X"+y"+z"= ¥ y y (-1)"(=1)"n( T (X2)" R (1.28)
(=0 s=0 m=1 odd(#) (0-2s)'m!sl( )!
m=0even(*)

*n=odd,(=o0dd ,n=even,(=even

#n=odd,(=even,n=even(=odd

Where X,Y,Z represents the terms in the equation and R=X2+YZ - XT-T? =Y? 4+ XZ YT -T2 =7% - XY + 2T -T2
For example if

x+3y—z2 =C (C constant)
Make T=C

_1R:x2+3yzz—xT -T2

=(3y)2+xzz—3yT -T2

=7 “3xy+ 2T -T2

Choose n=3

W +(3y) -(22 ) =413 43T ,R-3(x)(3y)(%)
X =x,Y =3y,Z =7

T independent equation T =0,

m=n/3
=(n-2)/3
2—5:74;/3 A2y, n-3m
n n n_ n 2 m 2
X" 4y 1z = Y (-)"n——"—(XY2)"(4R) (1.29)
m=0(n,meven) 0mi( n- m)!
m=1(n,modd)

Where y ;R=x2+3yz2,y 1R=(3y)? +x2%, ,rR=2"-3xy

© Copyright Chris Sloane 2017
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Partial Congruence and the primitive root multiplier

If X,y,z #0mod q where q is a prime decomposition factor of jr=xz+yz—xy or the symmetric parts

il =X2+yzor yr=y*+xzor _,,r=2"-xy. We define a partial congruence mod or or mod r as,

Xz = X'modq
yz = y'modq
Xy = z'modq (4.01)

Where x'+y'—z"=t" and x',y',z" are congruence residues. If xz=0mod ¢, then xz is a multiple of g
but q is a prime decomposition factor of x® +yz,y? +xz,2% —xy or xz+yz—xy which would mean x,y,z must
share the common factor q if x,y,z>0. Similarly if y7=0mod g and xy=0mod q.
One can see that x'+y'-z'=t'=0modq and if t=0 then x'+y'-z'=t'=0mod r because
xz+yz—xy=x2+yz=y2+xz:22—xy in that caset=0.
Moreover, if we had an equation such as x" +y" —z" =0 where n is odd and we write the partial
congruence as,

(x2)" = x'modgq

(y2)" = y'modq

(xy)" = z'modgq (4.02)
One can see X'+y'—z'=t'=0mod r because (xz)"+(yz)" —(xy)" =x*"+y"z" = y?" 4 (xz)" = 22" —(xy)"
of which x%+yz, y2+xz, 22 —xy are factors respectively if n is odd.
We can multiply the residues to get x' z'+y'z'—x"y' =xyztmod q or in the second example partial congruence
(4.02) X' z'+y'z'=x"y' =0mod g or we could just square X' and add y'z' to get xz(xz+y?) so,
x'Z+y'z' =0mod q for g of 1.
q has a primitive root g and we use the primitive root as the generator of the multiplicative set of integers
modulo q or g™ generates all residues mod g, for 0 <m <q so we write,

g™ xz = x'modg

g™ yz = y'modq

g™ xy = z'modg (4.03)
and in this form g™ just generates the set of residues but we will refer to m as phase number.
The double partial congruence is defined as,

g™ xz = x'modgq gnl X'z' = y'modq
g™ yz = y'modq 9" y'z" = x'modg
g™ xy = z'modq g"3xy" = 2'modq (4.04)

where n,n,,n, are such that we get back our y' x',z" residues respectively.
n.,n,,ng are not arbitary for t=0 or equations that are equivalent to 0 mod uloq.

We have y'2+x'z' =0mod q so, x'z'(g>x'z'+g"™y'2)=0modq but y'2=—x"z'modq hence
g* ™™ —1mod q. Likewise g*"2""™ =1mod g, g ™ ™2 =1mod q and with n,,n, ,ns <q we get two

possible solutions:
1) n=n,=ng >n (Note, n is not the other exponent n - but for lack of symbols)

2) 3n; =3n, =3n; =0mod q where ny,n,,n; take the 3 values %(q -1), %(q-l), (g-1).

Remark: g—1=0mod q so we can write our 3 values as 0, %(q-l), %(q-l)

We can refer to the n's as partition numbers.

© Copyright Chris Sloane 2017



11 ON FERMAT’S EQUATION AND THE GENERAL CASE

Computer Verifications - Take any equation that equals 0 thatdoesn't have common factors (though one
could factor out the common factors) and solve for n;,n,,ns.

Examplel 5+7=12 (t=0)and ,,;r =109 which is prime with a primitive rootof 6

we find that n; = 64, n, = 28 and n; =100 these are shifted 0,1/ 3,2/ 3 partitions of g —1 so if we made
m = 28 then we get our 0,1/ 3,2/ 3 partitions.

Example2 x+y®—z°=0and x=118,y=5and z =3, ;1R =x2+y3z% =(31)(1429)
So our first g is 31 and we don't need a g™ since we find n, =0, n,= 20, n; =10 with g =3.

Our second q is 1429 and what we find with g =6 is n, =24, n, =500, n; =976 these are shifted
0,1/ 3,2/ 3 exponents, shifted by 24 but to get n, =0, n, = 476, n; = 952 we need to multiply our first partial

congruences by g2*, m = 24. The reason why q = 31 has m = 0 is because q = Mabc +1 where a,b,c are the
exponents.
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Applications
Theorem 5 Fermat’s Last Theorem

x"+y"-z" = 0 has no non zero integer (and hence rational) solutions when n > 2.

Proof
Make n=p (prime).

If one of x,y,z=M3 then the other 2 variables must be £1mod3 to satisfy x”+yP-zP

i.e. (M3)P +(M321)P - (M3+1)P =0

S X+y-z=t=0mod 3 (5.01)
If x,y,z%M3 then only (M3+1)P +(M3+1)P —~(M3%1) =0 is allowed hence t=M3+1+M3+1-M351=M3
~t=0mod 3 (5.02)

X,y,2>0and t=x+y-z soif x+y<zthen z=x+y+d and x? +yP? —(x+y+d)? <0 an inequality, hence t >0
With z>x,y and ,, r=x2+yz .. ,r>0 and ,,r is odd as one of x,y,z is even and t is even. Furthermore,
X2 +yz>t ie (z-y+t)> +yz>t. We canalso show this for yithy —anl-
using i r= x? +yz, lets make q a prime decomposition factor of «/t7 which is odd >3 (5.03)
If g=3then t=0mod q as above, otherwise write our first partial congruence,

g™ (xz)P =x"mod q

g"(yz)? =y mod g

g™(xy)? =z"mod g (5.04)
Where g is the primitive root of g or a multiplicative set generator. x',y',z'=0mod q otherwise x,y,z=0mod q
and we get common factors g. Hence, from the partial congruences we have x'z'+y'z'-x"y'=0mod q and

x'2+y'z' =0mod g since we can factor ,,.r from (yz)?" +(yz)Px*PHence x? +(yz)P =0mod q as shown
previously. We need to define 4 cases when ¢ #3:

la) q#3sp+1 (5.05)
1b) g=sp+1,s=M3 (5.06)
1c) q=3s+1,5= Mp (5.07)
2) q=3sp+1 (5.08)

Case la. Write Ip=ug-v and make u-v=1. Hence,
Ip=(v+1)g-v=v(q-1)+q (5.09)
Choose v such that v(q-1)+q=Ip where | = M3 and from our T,R (T independent) representation (C.29) with T =0
as (5 as) (TR, I-35
O) +(yP) (7)) =0-1002)" (R) 2+ 2 (an)P(R) 7o) (R)

((I—(r;+2)))((l—(r21+4)))m((l—(32n—2)) I3

ot () "PPR) 2 ) (5.10)

m!
LHS=tmodq ie. (x+y-z)+Mg=t+Mg=tmodq if x,y,z=Mq (from Fermat's little theorem)

RHS=0modq. (R=x*P+yPzP =M ,r)

~t=0mod q (5.11)
Remark: If one of x,y,z contain g then so do the other 2 variables and we have a common factor solution which
must factor out.

© Copyright Chris Sloane 2017



13 ON FERMAT’S EQUATION AND THE GENERAL CASE

Case 1b) Write Ip=ugq-v and make u-v=3p,

Ip=(v+3p)g-v=v(q-1)+3pq (5.12)
I=vs+3q where s iseven #3 .. | is odd = M3 hence from (C.29), T =0.
-5 1-7 -11_1-
3 ()2) -9 (7)(7)(7)(7) 1-15
)+ y”) ") =0l (R) 2+ Eo P R) 2 ettt (P (R)
((I_(n+2)))((l_(n+4)))...((l_(3n_2))) 1-3m
ot 2 2 : : (xy2) ™ PP R) 2 ) (5.13)
m!
LHS = x°P + 3P — 23" mod q if X, Y,z # Mg
RHS =0modq
-.-3(xyz)? =0mod g (5.14)

Hence we get common factor solutions in this case.

Case 1c) Write Ip=uq-v and make u—-v=1,
Ip=(v+1)g-v=v(q-1)+q (5.15)
Ip=v3s+q where s is even q=M3.. | is odd =M3.

-5 1-7 1-7 1-11
(3) (—)(—) (1-9) (7)(7)(7)( ) -5
OO () ) =0-10m2)P(R) 2+ —EE )P (R) 7+t () P(R) 2
((l—(n+2)))((|—(n+4)))m((|—(3n—2)) =
ot —E Zm. 2 ()" P(R) 2 ) (5.16)
LHS =tmod q if x,y,z = Mq
RHS =0mod q
~t=0modq (5.17)
Case 2) With g=3sp+1, write a double partial congruence,
g"(xz)? =x"mod q g"(xz')=y'modq
9" (yz)? =y mod g g™ (y'z')=x"mod g
g™(xy)P =z'mod g g™(x'y')=z"mod g (5.18)

Where g"® is the primitive root multiplier such that we can get all residues mod ulo q including x',y’,z’
Now we have x'+y'—z'=0mod g and multiplying entries gives us,

92M(xyz)P(xP +yP —zP)=x"z'+y' 2'=x" 2'mod g (5.19)
hence X' z'+y'z'—x' z' =0mod q also. This means x'2+y'z' =0mod g, y'> +x'z' =0mod g, z'>~ X' y' =0mod q or we can

show it directly as (xz)?P +(xz)P y?P =0mod q etc. hence,

g2 (x'2)+ ™™ (y)? =0mod g — g?™ ™™ =1mod g, (5.20)

92 (y'2)+ g™ (x)? =0mod g - g?™ ™™™ =1mod q, (5.21)

92" (X' y)-g"*M™(2)? =0mod g — g?% ™™ =1mod g (5.22)
With n;,n,,ng <q we get two solutions:

2a8) m=n,=ny—>nor (5.23)

2b) 3n; =3n, =3n; =0mod q
Where n;,n,,n, take the 3 values,

1 2
g(q—l), g(q—l), (9-1). (5.24)
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14 ON FERMAT’S EQUATION AND THE GENERAL CASE

Case 2a)

9" (x'z")=y'mod q

9"(y'z)=x"mod q

g"(x'y')=z"modq (5.25)
Make g"9x'=y'modq, gVz'=1modq hence g%*' =1mod q

N+, +v

and g y'=x"modq, g¥z'=1mod q hence ¢
2m2d (xty)=(x' y')ymod g,
- 9?29 —1mod q (5.26)

=x'modqg, gy’ ' =1mod g, hence g =1mod q

=1modq ..d=cmmodqg and v=-d mod q.
We have ¢
Next write g"*¢z"
and g"""x'=z'mod q, g¥y'=1mod g, hence g™" =1modq ..e=mmod g and w=—-emod q.

We have, g2""2¢(x'z")=(z' x")mod q,
2n+2e

g =1mod q (5.27)
and write g™ "z'=y'modq, g"x'=1mod q, hence g ** =1mod q
and g"™'y' =z"mod q, g*x' =1mod q, hence g'** =1modq ..1=fmodq and p=—f mod q.
We have, g?"2"(y'z")=(z'y)mod q,

~g2"2f =1mod q (5.28)
Therefore, we have 3 equations if one of d,e,f =0 or q—1 or one of 2d,2e,2f #0 orq-—1:

g(224) —1mod q

g(2n+263) =1mod q

g(®2f) —1mod g
or, (2n+2d)=0,(q-1),(29-2)...

(2n+2e)=0,(g-1),(29g—-2)...

(2n+2f)=0,(q—1),(2q—2)... (5.29)

.e=dmodg,e=fmodqg,d=fmodq, d,e, f<q.

Ife=dmodq thenz'=y'mod q, ife=f mod q then x'=y'mod q, ifd = f mod g then z'=x"mod q
giving x',y',z'=0mod q because x'+y'—z'=0mod q (i.e 2y' =z'mod g hence,y'=0mod q).

If x',y,z'=0mod q then Xx,y,z=0mod q and we have common factor solutions q. (5.30)
Otherwise:

If one ofe,f =0 or q—1,say f, then g"z'=y'modq, g"y'=z"mod g, x' =1mod g hence since
X'+y'—z'=0mod g then 1+y'—z'=0modq and g" =1modqg,n=0, y'z'=1modgq, but

x'? =1mod g hence X'+ y'z'=2mod g which is false. Similarly for e =0. (5.31)
If d=0or g—1 then g"x'=y'modqg, g"y'=x"modq, z' =1mod g but x'+y'—1=0mod g hence
g" =1modqg,n=0, x'y'=1mod g. Moreover, x'=y'mod q hence, x'2 =1mod g, X' =+1mod q and
y'2 =1mod g, y' =+1mod g which is a contradiction in x'+y'—1=0mod q. (5.32)

If 2e or 2f =q—1say 2e then e:qT_l hence wE_qT—l and y'=-1mod g, g"z' =—x"mod q,

g"x'=-z"mod q but x'-1—z'=0mod q hence g" =1modqg,n=0, x' z' =—-1mod q, y'2 =1mod q
x2z% =—1mod ¢, y?® =1mod q,y" = +1mod q. Moreover,—z' = x' mod g, z'? =1mod q,
z'=+1mod q, x' =+1mod g which is a contradiction with x'—1—z'=0mod q. (5.33)

If 2d =q—1 then z'=—-1modq, X'y’ =—1mod q and we get a contradiction z'2—x'y' = 2mod q
If more than 1 of d,2e,2f,=0 or q—1 then we get 2 or 3 of z'—y"z'—x",x'—y'=0mod g and we
get common factor solutions. (5.34)
Therefore, there are only common factor solutions for Case 2a.
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135 135 13s

m =0 for case 2b) We have q=3sp+1 or q—1=3sp so ge‘mS =y modq =x""mod g=2z"'" mod q hence,

g3 =y'¥* . y'3 =1mod q as n;,n,,n; are 1/3 partitions. Therefore, g>™ =1mod g, s#0,q-1 ..m=0 (5.35)

Case 2b) When n;,n,,n; take the 3 values %(q—l), %(q—l), (q-1) cube both sides to get,

x2 2% =y¥mod g

y‘3 2% =x'3 mod q
x'3 y'3 =73 mod q (5.36)

d'+v'

Make gd'x'?’zy'?’ mod q, gv'z'3zlmodq hence ¢ =1mod q

and g°y®=x"3modq, g"' 23 =1mod q' hence g®* =1modq ..d'=w'modq and v' =—d’ mod g.
We have gZd'(x'3 y'3)s(x‘3 y'3 ymod q.

- 9% =1mod g (5.37)
Next write g¢ 23 =x"3mod q, g"'y'3 =1mod q, hence g®*" =1mod q
and g"'x"®=z"mod g, g"y'3 =1mod q, hence g™ *" =1modq ..e'=m"'modq and w' =—e' mod q.
Hence, g% (x'32'®)=(z'3x"3)mod q.

-.9% =1mod g (5.38)
andwrite g"'z'* =y3mod g, g* x'3 =1mod g, hence g' " =1mod g
and g"y'3 =2'3 mod q, g“'x‘3 =1mod g, hence g”“' =lmodq ..I'=f'modq and pn'=—f"mod q.
Hence, g“'(y‘3 7' )z(z'3 y‘3 )mod q.

g”' =1mod q (5.39)
Therefore, 2d',2e',2f'=0,9-1,29—2 and we have 8 possibilities:
1)de, f'=0,g-1 > x> =1mod g,y =1mod g, z'> =1mod q and from our n =3,—3 transformations we get
1=-3x"y'z'mod g and 1=-3x"? y'2 2'2 mod q respectively .. x' y'z' =1mod g which is a contradiction (4#q).
(Note; (x"y" z')3(x"3+ y"3—z"3)=(y' z‘)3 +(x' z')3 -(x' y')3so use the —n transformation ) (5.40)
2) 2d',2e"',2f'=q-1,29-2. —x'3 =—1mod q,y'3 =-1mod g, 2'3 =—1mod q hence we get

-22-2

-1=-3x"y'z'mod q and 1=-3x"2 y s X'y'z'=-1mod q again a contradiction (-4=q). (5.41)

3)e'=0,0-1,2d"2f'=q-1,29-2—> y‘3 =1mod q, x'3 =—1mod q, 23 =—1mod q hencewe get 1=-3x"y'z'mod g

1=-3x"? y'2 2'2 mod q..x"y'z'=1mod q again a contradiction (4 Q). (5.42)
4)f'=0,g-1,2d",2¢' =q-1,2g-2 > x"> =1mod q, y'*> =—1mod q, z'> =—1mod g hence we get

-1=-3x"y'z'mod q, 1=-3x"? y'2 2'2 mod gq..x"y'z'=-1mod g again a contradiction (-4 =q). (5.43)
5)d'e =0,g-12f"=q-1,29-2— y'> =1mod q, x'> =—1mod q, > =1mod q hence we get —1=-3x"y' z' mod q
1=-3x"2y'2 7% mod q .. x' y' z' =—1mod q again a contradiction (-4 #q). (5.44)
6)d, f'=0,q-12e"=q-1,2q-2—y'3 =—1mod q, x> =1mod g, z'> =1mod q hence we get —1=-3x'y' z' mod q
1=-3x'? y'2 2'2 mod gq..x"y'z'=-1mod q again a contradiction (-4=q). (5.45)
7)e',f'=0,0-1,2d"'=q-1,20-2 > y'3 =1mod q, x'® =1mod q, '3 =—1mod g hence we get —-3=-3x"y'z'mod q
~3=-3x"? y'2 2'2 mod q..x"y'z'=1mod g and no contradiction, but x'32'% = —1mod g and y'3 =1modq

which is a contradiction. (5.46)
8)d'=0,q-1, 2" 2f'=q-12q-2—> 2> =1mod g, x'3 =—1mod q, y'> =—1mod g hence we get
-3=-3x"y'z"'mod q, —3=-3x"2 y'2 2'2 mod q..x"y'z'=1mod g and no contradiction. (5.47)

Therefore, we only have Case 8.) possibility.

(Note: The other cases are applicable to the sum/difference combinations in +x" +y" +2")
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16 ON FERMAT’S EQUATION AND THE GENERAL CASE

Case 2b.8) x'y'z' =1mod q but one of ny,n,,n; must be 0 or q—1 hence for n; we get y‘2 =Ilmodq,y' =+1modq,

but +1 is ruled out above so y'=-1mod g, X' z' =—1mod g — xPzP =—1mod q, y2P =1mod g, yP =+1mod g. (5.48)
If np=0orqg-1, x'2 =1mod g, X' =+1mod q but +1 is ruled out above so x' =-1mod q, y'z' =-1mod q — y°zP =-1mod g
2P =1mod g, x” = +1mod . (5.49)
If n=0o0rq-1, 7' =1mod g, z' =+1mod q but -1 is ruled out above so z' =1mod g, y' x' =1mod g — x"yP =1mod g
2°P =1mod q, z° = +1mod . Hence, (5.50)

M My N3

FyP =y'mod g=-1mod g +z2P =y'mod g +xP =y'mod q

+zP =x"mod g #xP =x"mod g=-1mod g +yP =x"mod q

+xP =2"mod g +yP =z"mod q +7P =7'mod g =1mod q (5.51)

Choose any of n's, for example ny =0,(z" =+1mod q)we have x*P =1mod q hence (x” +1)(x*P £xP +1)=0mod q and
y3P =31mod q, (yP +1)(y?P FyP +1)=0mod q. These are called the ‘form’ of the solutions (n, = 0),

2P =+1mod g

%3P =1mod g

y*P =F1mod q (5.52)
(Remark : We can't computer validate this because we have no discrete solutions to choose from. However, we can for the general
case, see later)

When zP =1mod q then xP,yP #-1mod q, for if xP or y? =—1mod q then y® or xP =2mod q respectively from

xP +yP —zP =0 hence, 3=0mod g which it is not. Therefore, we have 2 quadratic congruences in xP and y® with

2 unique solutions for xP,y” because if xP = yP mod q then 2x”,2yP =1mod g, 4x?P =1mod q, —4yPzP =1mod g,

+4yP =1mod q which is a contradiction. (5.53)
When zP =—1mod q, x** =1mod q,y" =1mod g Then x*° +x? +1=0mod q, y2" +yP +1=0mod g solutions and

xP,yP =1mod g, as above and xP = yP mod q also. Therefore, we know X,y =Flmod q. (5.55)

We now develop the following method which uses cubic congruences:

Firstly, lets assume x3 % F1mod q and y3 # F1mod g. We can write, X = ulx2 mod q where uf” =xlmodq (i.e uy=xmodq)
We next write u; =u,x’ mod q hence u,*” =F1mod q also.We repeat until U3pg su3px2 mod q with each uy 3P =F1mod g.
We can see none of the uy's equal as this would give x?" = +1 which would give the x?, x2P = +1 contradictions.

However, there must be a (F1)mod g solution and it can't be us, because that must equal .

Hence we can write, % =5x%,7x*,7x°....7x%P~2 mod q. (5.56)

One can see that Tx%,7x...and Fx*,7x¥

...congruence sequences give x2P =1mod g, xP =-1mod q respectively
which gives common factor solutions or the 3 =0mod q contradiction. So we can write;

C=1x8 7x2 .. 1x8P 5 mod g (5.57)

We also do this for x° svly2 mod q etc. and y3 =V y2 mod q etc. and y3 =u'y X2 mod q etc. to get,
6

X =3y° 5y 7y*P P mod g (558)
v =3x8 7x2 . 5x% O mod q (5.59)
y =5y® Fy2 5y mod g (5.60)
Next we write x° swlxzy2 mod g where w,” =1mod q repeating we must get a (+1)mod g solution for wy hence we have,
X® = (xy ), (xy)*..(xy)?P? mod g (5.61)
likewise, y® =(xy)2,(xy)*..(xy)2P~2 mod g (5.62)
and x°y2 = (xy)?,(xy)*...(xy)?2 mod q if xy=1mod q* (5.63)
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This means that the x%,y® solutions must have the same exponent otherwise x,y =31 mod g or x%,y® = F1mod g which

have been ruled out. Hence, x® = y* mod q. (5.64)
x3—y3 =0mod q—>(x—y)(x2 +xy+y2)50m0d g, but x=ymodq (xP =yPmodq) so (x2 +xy+y2)50mod q,

(-yz+xy+ y2 y=0modq ..yt=0modq (y gives common factors q so we are left with t=0mod q.) (5.65)

*If xy=1mod q then with either z=+1mod q or z=+1modq we get: If z=+1mod q then 22 —xy =0mod g and

therefore, t=0mod q. (5.66)
(ie X2 +yz—z2 +xy=(x+z)(x—z+y)=(x+2z)t and x=-zmod q gives common factorsq or 3=0mod q)

If z=1mod q we repeat our analysis above but with z=+1mod q and y3 #¥1lmod q (see below #) to get y3 +23 =0mod q,
(z+y)(z2 —yz+y2 y=0mod q, z=-ymod q(z” #-yP mod q) and (z2 —yz+y2)50mod q, (x +y +22)=0mod q
=(3t>+2_4r)=t>mod q=0mod q ..t =0mod q.

or we have y3z° =—1mod q but if this is the case then we would repeat our analysis again but instead with z =+1mod q and
3 #31mod q giving (x®+2z3)=0mod q — zt =0mod q or x°z® =—1mod q. But if both y3z® =—1mod q and x*z® =—-1mod g

3

we have x®—y®=0modq — yt=0mod q as before. ..t=0mod g. (5.67)

#Next we assume x° =F1mod q but y* =F1mod q and z#+1mod q (Note: if p=3 then if x° =FLmod q then because

23 = +1mod q, y3 =x2mod g contradiction. Hence, 23,2% #+1mod q for p>3)

6p-2

Make, 23 =w', y? where w;'3P =+1mod q etc. so we get 23 =+y? +y*..+y®?2 mod q and refining,

22 =+y® 4y +y®P O mod g (5.68)
With 23 =w" 2% mod q etc. giving, 8 =472 +7*.7%P 2 mod q (5.69)
likewise, v =3y 1y 7 y®P O mod g (5.70)

v =722 524 522 2 mod g (5.71)

28=(y2)® (y2)2..(y2)**® mod q (Note, z° = F1mod q as zP =+1mod q) (5.72)

y8 =(y2)® . (y2)*...(yz)®P® mod q (Note, y® # +1,as y*P = F1mod q) (5.73)

vz =—(y2)® —~(yz2)2..—(y2)®P O mod q if y3z% % -1mod qo (5.74)
Hence y2 +2z° =0mod q (z+y)(z%-yz+y®)=0modq, z=—-ymodq (z° =y mod q) and (z2 —yz+y?)=0mod g
(x®+y%+2%)=0mod q=(3t*> +2r)=0mod q, t> =0mod q therefore, t=0mod q. (5.75)
01f y32® =—1mod q which it would be for our ,,r choice then with y* =52z%,72* .72*P? mod q and
v =7y® 7y 5y%P® mod g write z=wz® mod q etc. to get,

7=+72 7% £7%" 2 mod g (5.76)
andwith z=v' y2 mod g... etc.to get 2=+y% 1y +y*P P modq (.77)
Moreover, write yz=uzy? mod q etc.  y°z=52y® 728y* . 723P3y8PC mod g (5.78)
and y® =u’ y?zmod q etc. y zy ylzz6 YeP823P 3 mod g (5.79)
and 2 =w" y?zmod q etc. =y52% 1228 .y 82373 mod g (5.80)
Therefore, y®,z must have the same exponents hence y3 =-zmod g, z* =1mod q and hence z = +1mod q which is a
contradiction. (5.81)

If y*=F1modq and x°,z #F1+1mod q respectively then we repeat analysis #to get z°+x3 =0mod g — 2% -xz +x* >

s—zt=0mod g (5.82)
3

or 2x3 =—1mod g. In this case we can repeat similarly ¢ above but with x congruence sequences to get z=+1mod g

contradiction. (5.83)
If x3,y® =F1mod q then we get x° —y® =0mod q— (x—y)(X? +xy+y?)=0mod q —.. yt =0mod q as above. (5.84)
If x3,z=F1,41 then we get x> +2° =0mod q— z° —xz+ x> —..—zt =0mod ¢ as above. (5.85)
If y® z=%1+1then we get y*+2° =0modq— (z+Yy)(z°-yz+y?)=0modq—>t=0mod g as above. (5.86)
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18 ON FERMAT’S EQUATION AND THE GENERAL CASE

Therefore, for all cases we either have common factor solutions g or t =0mod g.
For t=0mod g, the special case allows us to factor out the common factors, hence t must contain all the prime

decompositions of X2 + yz.So we can now use an inequality argument for primes p (exponent p) of the form
M3 + 1land M3 -1. So looking at our transformation equation examples and corollary18.

o+ y5 -5 =11b +15t3r—10xyzt2 +5r2t - 5xyzr
X" +y" -z" =29t +56t°r —35xyzt* +35r%t3 —35xyzt2r+7tr3 +7(xyz )Zt—7r2xyz Where ris _;r
We have, t=M ,,r but ,,,r=x>+yz >t . ,,r must contain a power of q's =q,0,,0s... (Say G, iS a power)

but for p=M3+1 we have from our t, _;r equation t= Mq12 so if o is a power then,

X2 +yz=Mag? >t=Mg? > 4r —>Mag?,t > Mg* (5.87)
butthen x® +yz >t >q% 0,03 which is an inequality so ¢, must be a higher power g; hence,

X2 4yz = qu ->t= Mq14 - _4r- Mq14 - Mql8 (5.88)
but then x* +yz>t>q* 0,0, and so on ad infinitum hence t — . (5.89)

For primes of the form M3-1 we get from our transformation _;r = Mql2 but _r= x? +yz—xt—t? and

otT =020, ... Therefore, xt =Mg;> so either common factors or t=Mg,® but x?+yz >t>q?0,0; which is an
inequality so g, mustbe a higher power, say qf hence, x? +yz= qu, 4f = Mql"' from our transformation and then
xt = Mg ->t=Ma; > and so on ad infinitum t — oo, (5.90)
For p=3 we get directly 3xyz=0mod q for q >3 hence common factor solutions again.

If g=3, and since t=M3 then 3xyz = M3? therefore, one of X,¥,Z=M3 and then so must the other 2 variables
hence share a common factor 3. (5.91)

t can not go to infintity because then x,y,z — o which is not possible.

Lastly we could have t =0 however if we look at our transformation equations for p >7, _;r must share g with

Xyz hence common factor solutions. For p=3,t=0 we get 3xyz=0

2

For p=5,7 we have xyz=0 or _;r =0, which gives x“ =yz and we get common factors again. (5.92)

With n=4 solved by Fermat we can conclude there are no discrete solutions to Fermat's equation for n> 2.
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Theorem 6 The General Case (Beal’s Conjecture).

x2+y?—z°=0 has no integer co- prime solutions in x,y,z >1 for a,b,c> 2.

Proof

Make q a prime decomposition factor of R =x%% +y®z¢ which is odd >0 and must alsobe a prime

decomposition factor of y?° +x3z° and z%° —xy®. Again one of x,y,z is even so q is odd >0 and g must
be >3 because at least 2 of x,y,z>1. (6.01)

Lemma6 g can not be a power of 3 —3" for n>1.

Firstly all of x,y,z=M3+1 (if one of x,y,z=M3 andR =M3 we would have the common factor 3)

Assume q =3" We have, x? +y® —z¢ =(m3+*1)% +(m,3+*1)° —(my3+*1)° =0

* sign depends on odd/even exponents such that the sum equals +3.

s M9tam 3+bm,3+cmy3+3=0.

We also have, x* +y* + 2% = MT +2R2 =2(M9"), (T =0) hence (m;3+*1)* +(m,3+*1)* +(my3+*1)* =M 9"
- M9+ 4amy 3+4bm, 3+ 4cmy3+3=M9" and we getfor +am;3+bm,3+cm;3=3 we get 12+3=M9 which is false.
- +am 3+bm,3+cmy3=-3 and with x?® +y? + 7% = MT +2R=M3" we get M9— 3=M3". Therefore n=1.
Furthermore, we have Case 1.) q=s3-1,

Let, la=uqg—v; where uy —vy =0
b=uyq-v,
lc=u3q-v;
hence, la=v;(q-1), Ib=v,(q-1),lc =v5(q-1) (6.02)
~I=q-1,1is even= M3 and we can write,
-4 1-10
L) 161028y 1-12
ey 2 042(R)2 + 22| (@Y (R) 2 42 42| 2 (x5 R) 2 4
1-10 1-16 I - 2 |- 4 I-(3m-2
() 1ag 202 d=(med), | [=Bn=2) I-3m
5 2 (Y PR 2 42 fn, 2 (MY)™R) 2 (6.03)

LHS =3mod q if x,y,z= Mq

RHS =0mod g (Note:R = Xa/TRwhen T=0)

~.q/3 is a null result.

Therefore, we have ¢ =(3s+1)or a combination ¢;q, =3(3s+1) but g >3 hence there must be a prime
decomposition factor q=3s+1 which we will use.

Writing double partial congruences,

g"x*z° =y'mod q g"x'z'=y'modq
g™y?z¢ =x"mod q g™y'z' =x"mod q
g"x®y? =z'mod g g™x'y'=z"mod g (6.04)

Where x2z° +y°2¢ —x®y°? =x® +yP2° =x'+y'=z' =0mod g and x'2+y'z' =0mod g, y'>+x" z' =0mod g,
2'2-x"y'=0mod q.

Therefore, we have solutions for n;,n,,n, as before g2 ™™ =1mod g, g2 ™™™ =1mod g, g2 ™™ =1mod q
with ng,n,,ng < we get two solutions;

28) np=n,=n3—>n (6.05)

2b) 3n; =3n, =3n; =0mod q (6.06)
where n;,n,,ny take the 3 values,

1 2
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Case 2a g"(x'z')=y ' mod q
g"(y'z)=x"mod q
g"(xy")=2z"mod q

Make g™9x'=y'modq, g"z'=1modq hence g% =1mod q.

and g""°y'=x"mod g, g¥z' =1mod q' hence, g®" =1modq, ..d =comodq and v=—-d mod g.
We have, g2""2d(x'y")=(x'y")mod q,

- g(?*2d) —1mod q (6.08)
Next write g"*¢z' =x"mod ¢, g"y' =1mod g, hence g**" =1mod q.

and g""Mx'=z'mod q, g"y' =1modq, hence g™" =1modq ..e=mmod q and w=—-emod q.

Hence, g2"*2¢(x' z')=(z' x")mod q,

g2 =1mod q (6.09)
and write """ z' = y'mod q, g"x' =1mod g, hence g'** =1mod q,
and g"“y' =z'mod ¢, g*x' =1mod g, hence g'“l =1lmodq ..I=fmodqg and p=-f modq.
Hence, g?"*2f(y'z")=(z'y")mod q.

~g%™2" —1mod q (6.10)
Therefore, we have 3 equations if one of d,e,f =0 or q—1 or one of 2d,2e,2f =0 orq-1.

g(2M28) —1mod q

g(2n+2e) =1mod q

9(3"21) —1mod q

(2n+2d)=0,(q-1),(29-2)...

(2n+2e)=0,(q-1),(29-2)...

(2n+2f)=0,(q-1),(29-2)... (6.11)
s.e=dmodg,e=fmodqg,d=fmodqg asd,e f<q. (6.12)

If edmodq then z'=y'mod q, if e= f mod g then x'=y'modq, if d=fmodq then z'=x"mod q
again giving x',y',z'=0mod q because x'+y'+z'=0mod q. If x',y",z' =0mod q then x,y,z=0mod q

and we have common factor solutions q. (6.13)
Otherwise:

If one ofe, f =0 or q—1,say f, then g"z'=y'modq, g"y'=z"mod g, x' =1mod g hence since
X'+y'—=z'=0mod g then 1+y'—z'=0mod g, and g" =1modq, n=0, y'z'=1modq, but x'?> =1mod q
hence x'?+ y'z'=2mod q which is false. Similarly for e =0. (6.14)
If d=0or q-1 then g"x'=y'modq, g"y'=x"modq, z' =1mod q but x'+y'-1=0mod q hence
g"=1modq, n=0, x'y' =1mod q, x®y? =1mod q, 2% =1mod q, z° = +1mod q. Moreover, x' = y' mod q
hence x'? =1mod g, X' =+1mod g and y'? =1mod ¢, y' = +1mod g which is a contradition in
X'+y'-1=0mod g. (6.15)

If 2e or 2f =q-1, say 2e, then equ_l hence wE_qT—l and y'=-1modq, g"z' =-x"mod q,

g"x'=-z'mod q but x'~1—z'=0mod q hence g" =1modqg, n=0, x'z' =—1mod g, y'?> =1mod q,

x2z° =-1mod q, y2b =1mod q, yb =+1mod q, moreover —z' = x"'mod q, 2'2 =1mod g,z'=+1mod q,
x'=+1mod g which is a contradiction with x'—1—z'=0mod q. (6.16)
If 2d =q—1 then z'=—-1mod g, X'y’ =—1mod q and we get a contradiction z'2—x"y' = 2mod q. (6.17)
If more than 1 of d,2e,2f =0 or g—1 then we get 2 or 3 of z'-y'z'-x', X'=y'=0mod q

and we get common factor solutions. (6.18)
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Case 2b)

When ng,n,,ny take the 3 values %(q—l), %(q—l), (g-1) cube both sidesto get,

X2z =y modq
y2 2% =x3mod g
x'3 y‘3 =2"3 mod q (6.19)

Make g x 3=y 3 modq, g"z'°=1modq hence g%* =1modq,
3

and g®y3=x"3modq, g"'z'3 =1mod q' hence g®*
We have, g2 (x*y'®)=(x"®y"®)modq,

- g% =1mod g (6.20)

=lmodq ..d'=e'modq and v' =-d"'mod q.

Next write g% z'3 =x'3mod q, g"'y'® =1mod g, hence g®*" =1mod q

and g™ x'3 =z"mod g, g"y'3 =1mod q, hence g™ *" =1modq .. ' =m'mod g and w' =—e' mod g.

Hence, g% (x'*z'%)=(z'3x"3)mod q,

g% =1modg (6.21)
and write g' 2’3 = y"* mod g, g* x'* =1mod g, hence g " =1mod q
and gy =z3mod q, g" x'3 =1mod g, hence g'** =1modq .. I'=f'modq and p'=—f'mod g.
Hence, 92" (y*z%)=(z*y"*)modq,

- 92" =1mod q (6.22)
Therefore 2d',2e',2f' =0, q-1,20—2 and we have 8 possibilities: (6.23)

1)d'e', f'=0,q-1 —x'3 =1mod q,y'3 =1mod q, 23 =1mod q and from our n =3,-3 equations we get
=-3x"y'z'mod q and 1=-3x"2 y'2 2'2 mod q respectively. Therefore, x'y'z'=1mod q which is a contradiction
(4=q). (6.24)

2)2d',2e"2f ' =q-1,29—-2. - x> =—1mod q,y'® =-1mod q, z'> =—1mod q hence we get

~“1=-3x"y'z'mod q and 1=-3x'2y'2 7' . x'y'z'=—1mod q again a contradiction (4 =q). (6.25)
3)e=0,q-1,2d,2f =q-1,2q-2 - y'* =1mod g, x> =—1mod q, z'> =—1mod q hence we get 1=-3x'y' z' mod g
=-3x2y'2 7' modq . x"y'z' =1mod q again a contradiction (4 #q). (6.26)
4)f=0,q-1,2d,2e=q-1,2g-2— x> =1mod q, y'® =-1mod g, z'> =—1mod q hence we get —1=-3x"y' z' mod q
1=-3x"2 y'2 2'%2 mod q..x'y'z'=-1modqg again a contradiction (-4 #q). (6.27)
5)d,e=0,q-12f =q-1,2q-2— y'> =1mod g, x'* =-1mod q, '3 =1mod q hence we get —1=-3x"y' z'mod q
1=-3x'2y'?7'2modq . x'y'z' =—1mod q again a contradiction (4 =q). (6.28)
6)d,f=0,q-12e=q-129-2—y>=-1mod g, x'> =1mod g, z'> =1mod g hence we get —1=-3x"y' z' mod g
1=-3x"2y'2 7’2 mod q .. x"y' z' =—1mod q again a contradiction (—4 =q). (6.29)
7)e, f=0,q-1,2d =q-1,2q-2— y'3 =1mod g, X' =1mod g, z'> = —1mod q hence we get —3=-3x"y' z'mod g

-3=-3x"2y'27'2mod q .. x"y'z' =1mod q and no contradiction, but x'*z'* =—1mod q and y'® =1mod g

which is a contradiction. (6.30)
8)d'=0,q-1, 2¢",2f'=q-1,20-2 > 2'% =1mod q, x'3 = —1mod q, y‘3 =-1mod g hence we get
-3=-3x"y'z'mod q, -3=-3x"2 y'?z'>mod ¢ .. X" y' z' =1mod q and no contradiction. (6.31)
Therefore we have only Case 8.) possibility.

(Note: The other cases are applicable to the sum/difference combinations in +x? + yb +1°)
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Case 2b.8) x'y'z' =1mod ' but one of ny,n,,ng must be 0 or q—1 hence for n; we get y'2 =1mod g, y' = +lmod q but+1

is ruled out above so y'=—-1mod g, x'z' =—1mod q — x*z° =-1mod q, yZb =1mod q, yb =+1mod g. (6.32)
If n,=0o0rq-1, x'% =1mod q, X' =+1lmod q but +1 is ruled out above so x'=-1modq, y'z'=-1mod q — ybzC =-1mod q,
x28 =1mod g, x* = +1mod q. (6.33)
If n=00rq-1, 2% =1mod g, z2'=+1mod g but -1 is ruled out above so z' =1mod q, y'x' =1mod q —>xayb =1mod g,
2% =1mod q, z* = +1mod g. Moreover, we can write; (6.34)
7y® =y 'mod g =-1mod g +7° = y'mod q +x® =y'mod q
+2° =x"mod g Fx* =x"mod g=-1mod g +y® = x"mod q
+x% =7'mod g +y® =7'mod g +2°=z7'mod g =1mod q (6.35)

Choose n, =0 this time. We have x?® +2° =0mod g, z2° x* =0mod q for n, =0 we have,
-

y’ =+1lmod q
32 = +1mod q
2% =1mod g (6.36)

without the g™ phase number as these are redundant with the methods we use (i.e multiplying R or x* + yb -z% by g*"
or g?™). So x? = +1mod q for we would get z¢ =+2mod q— 3= 0mod g hence x?® +x* +1=0mod g,

2¢ % F1mod q for we would get x* =F2mod g —3=0mod q hence, z°° F2° +1=0mod g.

If x* or z° =+1mod g then z°, x* =2mod q respectively. Hence, 3=0mod g which it is not. Hence we have 2 quadratic
congruence solutions for x* with z° being the other negative mod g solution since x* +z° #0mod q otherwise,

2x® =31mod q, 22° =+1— 4x?® =1mod q, 4z° =1mod q contradiction. (6.37)

Computer Verification. One may choose discrete equations where one or more of a,b,c=1or 2 and once the phase number
m is found we verify the form of the solutions. From our Example 1.) 5+7=12,,,,r =109, m=28 we get g*y=-1mod q
9*x3 =—1mod q, g*?z> =1mod q. Example 2.) we have x+y®-z°>=0and x=118, y=5and z=3, R=(31)(1429) >m=0,

q=31 we get x>® =1mod q, yb =1modq and z* =-1mod q, m=24, g, =1429. This gives glzyb =1mod 1429 in this

36 X3a 36 Z3c

example and g =1lmodq, g =-1mod . In fact we can choose g™ such that any of ny,n,,ns =0.

Lets assume, x° # +1mod q and A #7¥1lmod q with a,b,c odd (this assumption therefore excludes a,c =1) we have,

y? +x32° =0mod g. We know x?, z¢ # +1,71mod q otherwise we get our3=0mod q contradiction. Therefore , write

x2 zulz2 mod g, hence uf’c =z1mod q etc. and there must exist a (£1)mod g congruence at uy .

Now, we can include the g™ phase number but we don't need too because the methods deal with the same exponents in

the congruence sequences and these have the same g™ ® which become redundant.
So we can write our congruence sequence;

X2 =+(2)%, 4(z)*..4(2)* Zmod q (6.38)
Likewise, 2 =3(x)? 7). 3 (x)%® 2 mod g (6.39)
Remark: If a,c are composite and a',c" is a factor of a,c respectively and is such that x¥ =+1mod q, rad =F1mod q then
x2,2% =+1,F1mod q contradiction.

Furthermore, write x* =u', x> mod q etc. and z° = w’ 22 mod q etc. toget,

x® =+(x)2,+(x)*..£(x)* % mod q (6.40)

2 =5(2)*, 7(2)*,..7(2)*? mod q (6.41)
Make x* =u";(xz)’ mod q hence u”; *®=1mod q etc. and z%° =w"(xz)? hence w; "*%° =1mod q etc. therefore,

X2 =(x2)? (x2)*...(x2)%® 2 mod q (6.42)

2% =(xz)? (x2)*..(x2)**? mod q (6.43)

© Copyright Chris Sloane 2017



23 ON FERMAT’S EQUATION AND THE GENERAL CASE

Since x*z° =-1mod g we can't write a congruence sequence for this but we can use a longer stepwise method to solve this.
If X% =x? N mod q then x =72 modq hence x2N =z%N mod q.

6¢ = %3 mod g.

Therefore, we have one of 3 results x*° =z% mod q = x% mod g or x*° = z2* mod q=—z° mod q=x*® mod g or x
Hence, we get 2Nc—a=M3a or 4Nc-2a=M3a or 6Nc =M 3a respectively.
~.cand a must share common factors or N = Ma (M stands for 'multiple of )which leavesx* =522 52*8..mod q.  (6.44)

Repeating —» 2N'a-c=M3c andhence N'=Mc, but 2% is outside our range.
The only way to avoid this isif a,c share common factors. (6.45)

If 2Nc—a=M3 only then we will reduce to x3 = +1mod q which is a contradiction or a,c=M3.
Likewise, 2Na—c=M3c etc. or z° = +x%° +x*°..mod g, 2N" c—a=M3a but x?* is outside our range. (6.46)
(Remark1:To put it another way we know that along the x sequence that x? =+x* mod g and along the z sequence

2 =7% mod g then x*3z% =(xz)? mod g and with x3z° =—1mod q then x*32N =x® mod ¢, 22N =z° -.2N =3a and

2N =c, N =3ac, 2N =6ac which is outside our range unless a,c share common factors) (6.47)
(Remark 2 : One may wonder what if 2Nc—-a=q-1 where q—1= M(a,c) which is possible if R is apower of small primes
but then 2Nc-a=2Na-c —>(c-a)(2N +1)=0 hence, c =a). (6.48)

If a,c are not co-prime then we can repeat but with the non common factor or co-prime exponents a’,c'

x¥=+(2)%,+(2)*,..2(2)% ?mod g (6.39)

2 =3(x)° F(x)* . 7(x)* ? mod g (650)

xa =+(x)?,+(x)*..2(x)% 2 mod q (6.51)

2% =x(z2)* #(2)",.F(2)* " mod g (652)

22 = (xz2)? (xz)*..(x2)*% 2 mod g (6.53)

® =) (x)*..(x2)* mod g (6.54)

xa'zC =—(x2)?,~(x2)?..—(x2)*** % mod q (6.55)

where if x¥z% #-1modq .. xX* =—z%and we get our 3=0mod q contradictions. (6.56)

If x2'z% =—1mod g then we need y congruence sequences. If y° =+1mod q write;
x3 £(x)* (). ()" mod g (657)

+(y )P £(y)* £ (y)*? mod g (6.58)
y) 00" mod g (6.59)
y)? (6.60)
(6.61)

(x
()2, ()" ()82 mod g 6.60
3y =y )2, () (xy )% mod g 6.61

We are missing 2 sequences as we can't write CLye y® in terms of y,x respectively.

w

How ever, if x>y3 #1mod q then we have that x° = x?,x*...mod q must have the same exponents as y° = y?,y*...mod q but

we have x° = x8 x*2..x%3 mod q sothen y = y y yZb‘2 mod q hence b = M3 otherwise y =+1mod q which we have

assumed # £1. If x3 y =1mod q then use the 2, y congruence sequences to show that b=M3 and if sz3 =-1mod q also

then see below.* If b=M3 then we can now write; (6.62)
& =+y? +yh y2b 2 mod g (6.63)
2 =3y? 7y* . 7y" ? mod g (6.64)
x* =(xy V2, 09).(x)* mod g (6.65)
2 = (xy )2, ()" ()P 2 mod g (6.66)
and with, X = +(x)%, +(x)* .. +(x)%* 2 mod (6.67)
7 zx(x)z,—(x)“...;(x)ea’z mod g (6.68)

(‘D

gives us our common factor exponent method as before i.
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If %2 = x2 N mod q then x? = y N'mod q hence 2N = y2N mod g . Therefore ,we have X2 =1mod q, x* =1mod q, x® =1mod g...etc.
Hence, 2Nb = M 3a therefore, b and a must share common factors or N = Ma which leaves x? s+yZa rry ..mod g - y2sz1 =1mod q
but this is not in the range so b and a must share common factors. (6.69)
Likewise 2Nc=M3b and ¢ and b must share common factors. (6.70)

Therefore, if all a,b,c share the same common factor, say p, we have the special case with t' = x* +yb' -7% and

x¥ P +yP'P 7P =0 where t' — o and has no solutions or common factor solutions in X,y,z. (6.71)
If a,b,c dont all share the same common factor then we can write the congruence sequences for x** and y* or ¢ and y>'

where a", b’ and c", b" are the co-prime factors respectively. But this just gives our contradictions or X" yb' =1mod g and

yb"zc" =-1mod q so raising these to the common factors gives xayb s—ybzC mod q and we get our 3=0mod g contradictions.(6.72)

*If y3 =+1mod q or if x*y> =1mod q and z°y*=-1mod q write;

x3=1(2)? +(z2)*..+(2)% 2 mod g (6.73)
22 =3(x)% 7(x)*..3(x)%® 2 mod q (6.74)
x& =+(x)? +(x)*...£(x)%% 2 mod q (6.75)
2 =5(z) #(2)* . 5(2)" " mod g (6.76)
X6 =(xz)?,(xz)*...(x2 )% mod g ©.77)
2% =(x2)?,(x2)*..(x2)** 2 mod q (6.78)
¥ =—(xa)?,~(x2)*..—(x2)** % mod q (6.79)

Firstly, if x3z° #-1mod q we get x® =—z° mod q. We then repeat above with x° and z¢ congruence sequences and since x°z° #1mod g
unless a=3 then x° =z mod g, likewise 2> = —x? mod q unless ¢ =3. Therefore, X* =—z% mod q — 2x® = +1mod ¢ contradiction.
If a=c=3then x*z> =—1mod q.So we have (y6 +x73 )=0mod g with y3 =+Imodq but (y2b +%%2°)=0mod g which is not

factorizable into y6 +x%23unless a,b,c = M3 but thenwe will have the special case with p=3. .. 2% = ~1mod g which now excludes

the y® =+1mod q case as above. Furthermore, when we have with x>y® =1mod q and z°y® = -1mod q alsothen z° =-y® mod g,

2> =—x*mod g, x* = y* mod g and one can see we again get common factor exponents if we raise them to a,b,c i.e

% =_y* mod q=1mod g, 3c—b=Mb.. ¢c=Mb otherwise y =+Imog (b is odd) but y* =1modq likewise 3a—b = Mbso a,b,c share
common factors and we get the special case. (6.82)

Conclusion we can only have common factor solutions in the exponents for when 3 #+1lmod g and o #F1lmod q with a,b,c odd,
which leadsto the special case.

Next, lets assume x° = +1mod q, 2 #F1lmod q we know x=+1mod g then if we repeat above we can see our first exception »a=1
=£(2)" #(2)"..£(2)" " mod g (6:83)

° =%z ) #2)'. 7 (2)*? mod g (6.84)

¥ =+x% +x* mod q (6.85)

¢ =3x% 7x* mod q (6.86)

2 =(xz )2 (x2)*..(x2)¥ 2 mod g (6.87)

2% =(x2)? (x2)*..(x2)* 2 mod q (6.88)

But x*z° =1mod q so we can'twrite a congruence sequence for this. Although we have only 2 choices for x*, z° in terms of the x
sequence we dont necessarily have the same exponents because x"\® =1mod g. So we have x* =z%" mod g or x* = 2*N mod g.

-~ we get x* =22"mod q = x% mod q or x*¢ = z*"° mod q = x*® mod q like before. Hence we get 2c—a=M3a or 4c—2a=M3a
Therefore ¢ and a must share common factors unless a=1 where we get 2c-1=M3, x™* =+1mod q which it is. (6.89)

But we also have x°® = 22 mod q — —z° = 22 mod q s0 2Na—-c =M3c is possible too with a=1and N =Mc and because with
a=1then 2ac does not fall outside our range. However, when a>3 we get 2ac falling outside the range, hence we need common

factor exponents to avoid this. (6.90)
Therefore, a=1is our first exception. We can carry on as before but with a smaller x congruence range to show shared common factor
exponents in a,b,c and we get the special case with t' — oo giving no solutions or common factor solutions in x,y,z. (6.91)
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Similarly with z°® =F1mod q and x® = +1mod q with the first exception c =1. (6.92)

If x® =+1mod q and 23 =31mod q we get an even smaller range with the exceptions a,c =1. (6.93)
Next we need to demonstrate our methods work with even exponents and to get our second exception with a,c =2
so we choose a=even, c=odd, b=odd. We have the same form of the solutions for any of a,b,c even/odd

and in this case we continue with x* =+1mod g, z°° =F1mod g, y° = +1mod g.
It's bestto write x* _+ulz mod ¢ for even a, hence u “=+1mod q and u, _uzz mod ¢ where u2 =+1mod q etc.

Therefore there must be a (+1)mod g in our congruence range. As before assume x° # +1mod g, z° # F1mod g.

X =52,72° 722525 T mod g (6.94)
2 =+x, x5, X0 £x¥ T mod g (6.95)
@ =%, 5, £x° .+ X% mod q (6.96)
=525 32 .. 525 mod g (6.97)
X2 =+(xz),+(xz)* (x2)...+(xz )** L mod g (6.98)
2% =+(xz),H(xz)®..+ (x2)** T mod g (6.99)
Therefore, we have x(?N™1) = 22N mod g thus x© = 2° =—x?®mod q or x* =z mod q or x*¢ = 7% =722 = +x% _etc. so
(2N -1)c-2a=3a,(2N-1)c-3a=3a, (2N -1)c—a=3a respectively but 2N -1 is odd, hence c is even also.
Likewise, x* =z% =22 mod g, x* = 7% mod q,x°® =% =—z° mod g — (2N -1)a—2c =3¢ etc.
Hence we can now write, x2 si(x)2 ,ir(x)“...ir(x)ea"2 modq where a'=a/?2 (6.100)
2 =302 7(x)* . 7 ()% mod g (6.101)
@ =+(2)2,+(2)*,..+(2)% " mod q where ¢'=c/2 (6.102)
2 =5(2)% 5 2)* 7 (2)% 2 mod g (6.103)
2= (xz)?,(x2)*..(x2)P* 2 mod q (6.104)
2 =(xz)?,(xz)*...(x2)P% 2 mod q (6.105)

Therefore we have a smaller range and with 2Nc—a=3a so if N=Ma' then x? s+z2a ,¢z4a .modg—2N'a'-c=M3c

and N'=Mc' but 222 is outside our range unless a' =1 then we have a=2 or a' =2 then a=4 and so must ¢=M4.

Similarly ¢'=1,2—c=2,4. These are the first cases of our second exceptions. (6.106)

Now, we can extend this to powers of 2 where we put x*,z% in terms of smaller ranges until we have odd term common

factors or we could show b=M4 also as below a to get an equation to the power of 4 which has no solutions by Fermat.
If a,c are not co-prime but share odd common factors then we can repeat but with the non common factor exponent a',c’.

x¥=-z,-23,..-2% T mod g (6.107)
% = +x, J_rx3,J_rx5. X2 mod g (6.108)
X =4x, 6 £ .+ T mod g (6.109)
zC' s$z,4—,23 72°..72% % mod g (6.110)
¥ =t(xz)4(xe ).t (x2)**  mod g (6.111)
2 —+(xz),+(x2)>... 2 (x2)* L mod q (6.112)
xa' ¢ =4xz,4x2%...+ x2%* " mod q (6.113)
where if x¥z° =-1mod q .. xX* =-z%andwe get our 3=0mod q contradiction.
If xX*z% =—1mod q then we need y congruence sequences as before. If y* #+1mod q write;
x> =+(x)?,£(x)"..£(x)** mod g (6.114)
y? =2(y)? #(y)* £ (y) 2 mod g (6.115)
x* = (), ()" 0)* % mod g (6.116)
y® =(), ()" 0)™ % mod g (6.117)
Y =0y )2 ()" ()2 mod g (6.118)

We are missing 2 sequences as we can't write x°,y* in terms of y,x respectively.
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3 2

How ever, if x° y #1mod g then we have x3 =x?,x*..mod q must have the same exponents as y° = y?,y*...mod q but
xS =x8 x12..x8%® mod q so then y = y e ...y2b 2 mod q hence b =M3 otherwise y =+1mod g which we have
assumed = +1. (6.119)

If x3y®=1modq then use the 23, y* congruence sequences and if z°y® =—1mod q also then see below.o
If b=M3 then we can now write;

x*=y,v3.y® mod q (6.120)
¢ =—y,-y>..—y?® 1 mod q (6.121)
x22 = +(xy ), 2(xy ). 2 (xy)*% L mod g (6.122)
=30y),709)* . 7 ()" mod g (6.123)
and with x® = 4,0, 4. £x%  mod q (6.124)
2 =%, 5, £ .. £ x% T mod g (6.125)
If x* =x*N" mod g then x* =y mod g hence x*N* = y2N mod q. Therefore, we get x?° =1mod g, x*® =1mod g,

6 —1mod q..etc. Hence (2N —1)b=M3a, . b must be even or M4* if a=M4 etc. Therefore we can now write;
2b'-2

X =+y? +yt oty mod q where b' =b/2 (6.126)
=5y’ 7y .. Fy? 2 mod g (6.127)
X =+(x)?, ()" .2 (x)®¥ 2 modq where a'=a/2 (6.128)
28 =3(x )%, 71(x)* .5 (x)%® 2 mod q (6.129)
22 = (xy )%, (xy)*.(xy P22 mod g (6.130)
2 =0y)" 0y)" () 2 mod g (6.131)

Which gives a smaller range and with 2Nb—a=3a so if N =Ma' we have x* =+y*® +y*' modq— 2N'a'-b=Mb and

N'=Mb' but 22 is outside our range unless a' =1 then we have a=2 or a'=2 then a=4 and so must b=M4. (6.132)
Similarly b'=1,2,b=2,4. If a,b,c=M4 then we have a power of 4 equation which has no solutions by Fermat otherwise
a,b share common factors. Similarly, b,c share common factors. (6.133)

Therefore, if all a,b,c share the same common factor, say p, we have the special case with t'=x® +yb' -z% and
X3P L yP"P_7¢P =0 where t' — o0 and has no solutions. (6.134)
If a,b,c don't all share the same common factor then we can write the congruence sequences for x* and y® or z¢" and y®"

but this just gives our contradiction or x& yb' =1mod g and yb"zc" =-1mod g so raising these to the common factors gives

x? yb z—ybzC mod g and we get our 3=0mod g contradictions. (6.135)
0If y®=+1mod q or if x3y® =1mod q and z3y® =-1mod q write;

x3=+(z)?,+(z)*,..2(2)% 2 mod q (6.136)

2® =2(x)? 3(x)* .3 (x)** 2 mod g (6.137)

S =2(x)? £(x)*...+(x)2 mod g (6.138)

22 =3(2)? 7#(2)*,..3(2)®* 2 mod q (6.139)

x®=(x2)?,(x2)*...(x2)* % mod q (6.140)

E( x2)?,(xz)*..(xz )2 mod q (6.141)

2B =—(x2)? ~(x2)?..—~(x2)** % mod q (6.142)

3

If x°z%%-1modq we get x®=—-z>modq. We then repeat above with x®and z° congruence and because x°z¢ #1mod g

unless a =3 which it doesnt. We get x° = -z mod g, likewise z* = —x? mod q unless ¢ = 3. Therefore, xX* = —z% mod q —

2x* =+1mod q contradiction. (6.143)
If x32° =—1 mod q we have y® +x%z® =0mod q but y?° +xz° =0mod g which is not factorizable into y® +x3z% unless
a,b,c=M3 but then we will have the special case with p=3. ..x3z® =—1mod q and y* =+1mod q. (6.144)
Furthermore, we have with x>y> =1mod q and z3y® =—1mod q also then > =—y*mod q, z° = -x3 mod g, x® = y* mod q and
one can see we again get common factor exponents if we raise them to a,b,c i.e A =—y “mod q=1mod g, 3c—b=Mb
Therefore, a,b,c share common factors and we have the special case. (6.145)
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Next, lets assume x® =+1mod q, A #¥1lmod g, we know x=+1mod q then if we repeat above we can see our second case
of the second exception,

x® =+(z)%,+(z)*,..2(2)* 2 mod q (6.146)
2° =5(z)* #(2)",..3(2)* " mod g (6.147)
x® =+x% +x* mod g (6.148)
¢ =3x% 7x* mod q (6.149)
x28 = (xz2)? (x2)*...(x2)* "2 mod q (6.150)
22 =(x2)? (x2)*..(x2)®* 2 mod g (6.151)

but x*z° =1mod g so we can't write a congruence sequence for this. Although we have only 2 choices for x?,z° in terms of

x we don't necessarily have the same exponents because x\° =1mod q. So we have x* = 22" mod q or x* =z*" mod g

Therefore we get x%° = z2"° = x¥ mod q or x*¢ = 7*\¢

=x?2 mod q like before. Hence we get 2c—a=M3a or 4c-2a=M3a
Therefore, ¢ and a must share common factors unless a=2 where we get 2c-2=M6, c-1=M3, xM3 = +1mod q,

which it is. (6.152)
But we have x°® = 22" mod q - —z° = 22" mod q s0 2Na—c=M3c is possible with a=2 and N =Mc and because with

a=2 then 2ac does notfall outside our range. However, when a >3 we get 2ac falling outside the range, hence we need

common factor exponents to avoid this. (6.153)
Therefore, a =2 is our second exception. We can carry on as before but with a smaller x congruence range to show shared

common factor exponents in a,b,c and hence we get the special case with t' — oo giving no solutions. (6.154)
Similarly with 2> =F1mod q and x> = +1mod q with the exception ¢ = 2. (6.155)
If x*=+1mod q and z° =F1mod g we get an even smaller range with the exceptions a,c = 2. (6.156)

Thus this method works for even exponents in a,c If b were even then it makes no difference giving b=2 exception or we could
choose another ny,n, ,ny symmetry.

Conclusion

One can see that the form of the solutions* x*® = +1mod g, 2% = 31mod q,yb =+1mod g puts a constraint on the exponents
with one or more of a,b,c=1 or 2 falling within the constraint, otherwise the exponents themselves have common factor
solutions which leads to the special case which has common factor solutions in x,y,z or t' — .

Therefore, there are only common factor solutions to x2 + yb —z° for a,b,c>2. * Excluding phase number.
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Continuous Representation

The transformation or t,r,( xyz ) represention equation is valid for all x,y,z € R..
We writethe t,r,(xyz) representation for real number exponents as a continuous summation or infinite series, so for the t
independent equation we get with V =-1,

n (M)l n-3(m) » (M)l n-3(m+n)
xn+yn+zns( Z n2—3(xyz)m(r) 2 4 Y n 2 3 (xyz)m+n(r) 2 )mod t
m=0(even) O!m!(n_zm)! n+m(m=0 even) mr(m+n+1)(”‘2m)!
(7.01)
(O nm) (0, n-8(msn)
xn+yn—zns(— Z nw(xyz)m(r) 2 - ) n n3m (xyz)m+n(r) 2 ymod t
m=l(odd) O!mi(=>=)! n+m(m=1 odd) 01 T(m+n+1)( )
(7.02)
(n—(m+2))|
where n_23m is written not as a factorial in the second summation but as afinite numerator that we did originally.
( )!
2
We use the gamma function T instead of a factorial because we are dealing with real numbers.
n-(m+2) n—(m+4) n-3m-2
. , - (Oyz)™" , 2 ; 2 )
This is a convergent series where both |im =0 and limn =0
moo  N=3(M+n) m—w 0'T(m+n+1)
(n 2
in the second summation.
The negative t independent equation,
o) +(y2)" £ ()"
=( 3 (ayrn G (n=dm) g m 5 (SR 2men) (n-3m ) og
m=0 0'm!(n-3m)! n+m=0 O0!T(m+n+1)(n—-3m)!
(7.03)
This also converges in the second summation.
The general form;
n+((-2s-m-2) | n-3m-/
n,n,n_ DD n N, i\l ( 2 ) ( m 2
FAEUET LSS S S SN O AU CS A a— W o)
(=0s=0m=1odd(#) (1=25)m1sy(12M=Ey,
m=0even(*)
(n+((‘—25—m—2))I n-3(m+n)-¢
[ee) 00 00 . ) -
+3 % P n( )™ 2 (7.00
(=0s=0m+n(m=10dd(#) 1(¢-2s5)(m+n+1)I's( )!

m-+n(m=0even(*))
*=o0dd,(=o0dd ,n=even,(=even
#n=o0dd,( =even,n=even ! =odd
where we write the factorial as a finite numerator.

© Copyright Chris Sloane 2017



29 ON FERMAT’S EQUATION AND THE GENERAL CASE

References
[1]Gullberg. MATHMATICS, From the birth of numbers. First edition (1997). P 289-294

[2] Wikipedia. Lucas sequence. Congruence relations, http://en.wikipedia.org/wiki/Lucas_number

Email: chrissloane70@gmail.com

© Copyright Chris Sloane 2017



