
Cosine interpolation
Sine interpolation

Interpolation of arbitrary series with multiplicative coefficients
Scilab codes

Andrej Liptaj∗

Abstract
This text summarizes methods for (pure) cosine and sine interpolations and reminds the reader of the matrix-

inversion method valid for any interpolation using series with multiplicative coefficients.

Introductory note: This text was previously published on Scribd1.

1 Introduction
In my previous text [1] I gave detailed instructions concerning interpolation of data by Fourier series (with choice among
different possible cutoffs in case of even number of points). It seemed to me a good idea to complete that text with
interpolation based on pure cosine and sine series. Meanwhile I realized that interpolation for any series with multiplicative
coefficients is trivial - probably no surprise for an educated reader. Still, for pedagogical reasons, I give a description of
the latter in a dedicated section and provide Scilab code for all procedures.

2 Cosine and Sine interpolation
Both are based on a simple trick with subsequent use of the general procedure for Fourier interpolation as described in [1].

2.1 Cosine
We start with a data set

S1 = (xi, yi).

One can define a mirror-symmetric (with respect to the y-axis) data set

S2 = (−xi, yi)

and their union
S = S2 ∪ S1

and use the general Fourier interpolation method. Because the set S is symmetric, even functions (i.e. cosines) will be
automatically filtered out from the Fourier series whereas all sine coefficients will vanish. The only cumbersomeness which
remains because of the even number of points is, that, depending on the high-frequency cutoff, one cosine too much could
be present. Indeed, if the number of points is N , we are supposed to have one constant term a0

2 and N − 1 cosine terms.
By adding the symmetric data set we get 2N points, which can be described by one a0

2 term, N cosine and N sine terms
(these ones vanishing) with, however, cutoff freedom. Carrying out the cutoff properly we can use this freedom to remove
the high-frequency (N -th) cosine. The general procedure for doing it is described in Section 4 of [1]. I refer the reader to
that text for what follows. In case of the high-cosine cutoff one has

c−N =
1

2
ibn,

cN = −1

2
ibn,

∗Institute of Physics, Bratislava, Slovak Academy of Sciences, andrej.liptaj@savba.sk
I am willing to publish any of my ideas presented through free-publishing services in a journal, if someone (an editor) judges them interesting
enough. Journals in the “Current Contents” database are strongly preferred.

1https://www.scribd.com/document/289673276/Cosine-and-sine-interpolation-Interpolation-for-arbitrary-series-with-multiplicative-
coefficients

1

leading to

K = −1

2
ibn

and
p0 + qK =

1

2
ibn.

This results to
K = − p0

1 + q
.

With this constant we construct the interpolation polynomial (as described in [1]) and read-out the interpolation coeffi-
cients. An alternative way of interpreting this procedure is as follows: we add to the symmetrized data set a new point at
x = 0, thus keeping the symmetry and preventing any sine function from appearing, and we adjust its vertical position
(y-coordinate) so as to make vanish the coefficient in front of the highest-frequency cosine.

The Scilab code for the cosine interpolation follows in Appendix.

2.2 Sine
The sine interpolation is straightforward, cumbersomeness-free. We produce an anti-symmetric data set (symmetry w.r.t.
the origin)

S2 = (−xi,−yi),

and make the union
S = S2 ∪ (0, 0) ∪ S1,

since each sine interpolation needs to go through the origin. Adding this point (the origin) we get an odd number of data
points which leads to unambiguous Fourier interpolation with vanishing cosine terms. The Scilab code is in Appendix.

3 Interpolation of arbitrary series with multiplicative coefficients
Focusing on the “genuine” trigonometric interpolation2 I overlooked the basic fact, that any expression of the form

FN (x) =
N∑

n=1

anfn (x)

can be interpolated through data points using linear algebra. This holds of course on some general conditions, assuming
the functions fn are not behaving bad (e.g. not all off them vanishing at some xi with nonzero yi, not being linear
dependent, etc.). If one has N experimental points and N functions then the interpolation is usually unique and therefore
the method described in this section is equivalent to any other interpolation method. It is of course as “genuine” as any
special recipe which is based on the properties of the functions fn. Actually, in some sense it is even more general: if
we apply it for example on the Fourier-type series, it automatically allows for an arbitrary cutoff (high-frequency sine or
cosine, symmetric cutoff, see [1]) or even for cutting terms inside the series. The only true question when comparing to
other approaches is the computing time (computational complexity).

In this general approach we can forget about details of the functions fn, the only information needed are their values
at xi, let me note them fi,n. These numbers naturally build a matrix, which, when multiplied by the coefficient vector ai,
needs to give the yi values, ∑

n

fi,nan = yi,

or written with full explicitness
f1 (x1) f2 (x1) . . . fN−1 (x1) fN (x1)
f1 (x2) f2 (x2) . . . fN−1 (x2) fN (x2)

...
...

. . .
...

...
f1 (xN−1) f2 (xN−1) . . . fN−1 (xN−1) fN (xN−1)
f1 (xN) f2 (xN) . . . fN−1 (xN) fN (xN)




a1
a2
...

aN−1

aN

 =


y1
y2
...

yN−1

yN

 .

2Finding several text with this topic on internet, I was thinking only in the given direction, forgetting other possibilities. It is maybe pity
that the “matrix inversion” approach, as a natural way of finding the interpolation, is not mentioned on (most) Web resources related to the
trigonometric interpolation.

2

One then needs to invert the matrix (f)i,n and compute the coefficients an

ai =
N∑

n=1

(
f−1

)
i,n

yn.

The summary is

• Choose a sequence of your basic functions fn with all specificity you are asking for. For example, if you wish,
in case of the Fourier-series and even number of data points, to cutoff the high-frequency cosine, your sequence
should end with a high-frequency sine term: f1 = 1

2 , f2 = cos (x), f3 = sin (x), f4 = cos (2x), f5 = sin (2x), ... ,
fN−2 = cos

(
N−2
2 x

)
, fN−1 = sin

(
N−2
2 x

)
, fN = sin

(
N−1
2 x

)
.

• Build the matrix (f)i,n by evaluating each basic function at each xi.

• Invert the matrix (f)i,n, getting
(
f−1

)
i,n

.

• Multiply the inverted matrix by the vector of values yi, getting thus a vector with the an coefficients as elements.

The Scilab code is in Appendix.

4 Closing remarks
• For what concerns the interpolation based on trigonometric functions, the “symmetrization” procedure can lead to

two separate group of points (S1 and S2) lying far from each other. This is, of course, only a cosmetic feature without
any impact on the interpolation procedure. To concentrate the data (in any case, not only when “symmetrizing”)
one is completely free to move their x-coordinates by any (entire) multiple of 2π, and put them into an interval of
2π length.

• Numerical calculations I have performed seem to suggest that the Fourier series interpolation gets very quickly
numerically unstable with increasing number of data points. It seems to be an intrinsic issue, independent on the
method. The problem starts at such small number of points as 10. I see two possible go-arounds:

– Use an arbitrary-precision computation software. Doing this, I was able to interpolate approximately 100 data
points (on a standard computer). I failed at 300 points: the required numerical precision is so high that the
computational time becomes very long.

– Use an approximate regularization procedure. For example, in the last piece of code in Appendix (matrix
inversion) the Scilab software contains an implementation of the pseudo-inverse of a matrix with, when desired,
user given precision (the commented line “iM = pinv(M)”).

Appendix

Scilab code for cosine interpolation

// INTERPOLATING POLYNOMIAL
func t i on [f] = in t e rpo l a t i on_po ly (x , y)

nData = length (x)

atom (1) = poly (1 ," x" ," c o e f f ")

f o r i =2:nData
atom(i) = atom(i −1)∗poly (x (i −1) ,"x")

end

po ly_inte rpo l = poly (0 ," x" ," c o e f f ")
f o r i =1:nData

const = (y (i) − horner (po ly_interpo l , x (i)))/ horner (atom(i) , x (i))
po ly_inte rpo l = po ly_inte rpo l + const ∗atom(i)

end

3

f = po ly_inte rpo l
endfunct ion

// COMPUTING COEFFICIENTS
func t i on [a ,N] = t r i g o_c f s (X,Y)

dim=1;

Z = f l i pd im (X, dim)
Z = −1.0.∗Z
x = cat (dim ,Z ,X)

W = f l i pd im (Y, dim)
y = cat (dim ,W,Y)

nDat = length (x)

N = nDat/2

f o r i =1:nDat
z (i)= exp (%i ∗x (i))
Y(i) = (z (i))^N∗y (i)

end

z_polynomial = in t e rpo l a t i on_po ly (z ,Y)

// ∗∗∗ Cut high−f r equency COSINE ∗∗∗∗
p0 = c o e f f (z_polynomial , 0)
q = 1

f o r i =1:nDat
q = q∗(−z (i))

end

K = −p0/(1+q)
polyToAdd = K∗poly (z , " x")
z_polynomial = z_polynomial + polyToAdd
// ∗∗∗ END ∗∗∗

c f s = c o e f f (z_polynomial)

f o r i=−N:N
i f i <0 then

cont inue
end
co e f = c f s (i+N+1)
a (i +1)=2∗ r e a l (c o e f)

end
endfunct ion

// COMPUTING TRIGONOMETRIC INTERPOLATION
func t i on [f] = i n t e r po l a t i o n_t r i g o (x , a ,N)

f = a (1)/2
f o r i =1:N

f = f + a (i +1)∗ cos (i ∗x)
end

endfunct ion

// START OF THE PROGRAM FLOW

4

dataSet = read (" twoColumnDataFile . dat " ,−1 ,2)
nDat = length (dataSet)/2

x = dataSet (: , 1)
y = dataSet (: , 2)

[a_cfs ,N] = t r i g o_c f s (x , y)
d i sp (N)
d i sp (a_cfs (N+1)) // should be zero

xmin = min (x)
xmax = max(x)
dx = (xmax−xmin)/10
xmin = xmin−dx
xmax = xmax+dx

x_ax = [xmin : 0 . 0 1 : xmax]
y_ax = in t e r po l a t i o n_t r i g o (x_ax , a_cfs ,N)

ymin = min (y)
ymin = min (ymin , 0)
ymax = max(y)
ymax = max(ymax , 0)
dy = (ymax−ymin)/10 ;
ymin = ymin−dy
ymax = ymax+dy

plot2d (x_ax , y_ax , r e c t =[xmin , ymin , xmax , ymax])
p l o t (x , y , ’ ∗ ’)

Scilab code fore sine interpolation

// INTERPOLATING POLYNOMIAL
func t i on [f] = in t e rpo l a t i on_po ly (x , y)

nData = length (x)

atom (1) = poly (1 ," x" ," c o e f f ")

f o r i =2:nData
atom(i) = atom(i −1)∗poly (x (i −1) ,"x")

end

po ly_inte rpo l = poly (0 ," x" ," c o e f f ")
f o r i =1:nData

const = (y (i) − horner (po ly_interpo l , x (i)))/ horner (atom(i) , x (i))
po ly_inte rpo l = po ly_inte rpo l + const ∗atom(i)

end

f = po ly_inte rpo l
endfunct ion

// COMPUTING COEFFICIENTS
func t i on [b ,N] = t r i g o_c f s (X,Y)

dim=1;

Z = f l i pd im (X, dim)
Z = −1.0.∗Z

5

x = cat (dim ,Z , 0 ,X)

W = f l i pd im (Y, dim)
W = −1.0.∗W
y = cat (dim ,W,0 ,Y)

nDat = length (x)

N = (nDat−1)/2

f o r i =1:nDat
z (i)= exp (%i ∗x (i))
Y(i) = (z (i))^N∗y (i)

end

z_polynomial = in t e rpo l a t i on_po ly (z ,Y)

c f s = c o e f f (z_polynomial)

f o r i=−N:N
i f i <0 then

cont inue
end
co e f = c f s (i+N+1)
b(i+1)=−2∗imag (co e f)

end
endfunct ion

// COMPUTING TRIGONOMETRIC INTERPOLATION
func t i on [f] = i n t e r po l a t i o n_t r i g o (x , b ,N)

f = 0
f o r i =1:N

f = f + b(i +1)∗ s i n (i ∗x)
end

endfunct ion

// START OF THE PROGRAM FLOW

dataSet = read (" twoColumnDataFile . dat " ,−1 ,2)
nDat = length (dataSet)/2

x = dataSet (: , 1)
y = dataSet (: , 2)

[b_cfs ,N] = t r i g o_c f s (x , y)
// d i sp (N)
// d i sp (b_cfs)

xmin = min (x)
xmax = max(x)
dx = (xmax−xmin)/10
xmin = xmin−dx
xmax = xmax+dx

x_ax = [xmin : 0 . 0 1 : xmax]
y_ax = in t e r po l a t i o n_t r i g o (x_ax , b_cfs ,N)

ymin = min (y)
ymin = min (ymin , 0)

6

ymax = max(y)
ymax = max(ymax , 0)
dy = (ymax−ymin)/10 ;
ymin = ymin−dy
ymax = ymax+dy

plot2d (x_ax , y_ax , r e c t =[xmin , ymin , xmax , ymax])
p l o t (x , y , ’ ∗ ’)

Scilab code for interpolation of arbitrary series with multiplicative coefficients
The following code, as an example code, preforms the Fourier series interpolation with basic functions being cosines and
sines. In case of even number of data points, it goes for high-frequency sine cutoff. For different interpolation type, one
needs to implement its own version of the function “basicFns”.

The code contains a commented line with pseudo-inversion of the matrix (“iM = pinv(M)”). One can use it in case of
numerical instabilities.

f unc t i on [f] = bas icFns (x , Z)
n = f l o o r (Z/2)

i f Z==1 then
f = 1 .0

e l s e i f modulo (Z,2)==0 then
f = cos (n∗x)

e l s e
f = s i n (n∗x)

end
endfunct ion

func t i on [M] = bui ldMatr ix (x , y)
L = length (x)
f o r i =1:L

f o r j =1:L
M(i , j)=bas icFns (x (i) , j)

end
end

endfunct ion

func t i on [c f s]= getCfs (x , y)
M = bui ldMatr ix (x , y)
iM = inv (M)
//iM = pinv (M)
c f s = iM∗y

endfunct ion

func t i on [f]= gen In t e rpo l a t i on (x , c f s)
L = length (c f s)
f = 0
f o r i =1:L

f = f + c f s (i)∗ bas icFns (x , i)
end

endfunct ion

// START OF THE PROGRAM FLOW

dataSet = read (" twoColumnDataFile . dat " ,−1 ,2)
nDat = length (dataSet)/2

7

x = dataSet (: , 1)
y = dataSet (: , 2)
c f s = getCfs (x , y)

xmin = min (x)
xmax = max(x)
dx = (xmax−xmin)/10
xmin = xmin−dx
xmax = xmax+dx

x_ax = [xmin : 0 . 0 1 : xmax]
y_ax = gen In t e rpo l a t i on (x_ax , c f s)

ymin = min (y)
ymin = min (ymin , 0)
ymax = max(y)
ymax = max(ymax , 0)
dy = (ymax−ymin)/10 ;
ymin = ymin−dy
ymax = ymax+dy

plot2d (x_ax , y_ax , r e c t =[xmin , ymin , xmax , ymax])
p l o t (x , y , ’ ∗ ’)

References
[1] A. Liptaj, “Short notice on (exact) trigonometric interpolation”,

https://www.scribd.com/doc/270904435
http://vixra.org/abs/1704.0048

8

