
Group Importance Sampling for Particle Filtering and
MCMC

Luca Martino?, Vı́ctor Elvira†, Gustau Camps-Valls>
? Universidad Carlos III de Madrid (Spain).

?,> Image Processing Laboratory, Universitat de València (Spain).
† IMT Lille Douai CRISTAL (UMR 9189), Villeneuve d’Ascq (France).

Abstract

Bayesian methods and their implementations by means of sophisticated Monte Carlo
techniques have become very popular in signal processing over the last years. Importance
Sampling (IS) is a well-known Monte Carlo technique that approximates integrals involving a
posterior distribution by means of weighted samples. In this work, we study the assignation
of a single weighted sample which compresses the information contained in a population
of weighted samples. Part of the theory that we present as Group Importance Sampling
(GIS) has been employed implicitly in different works in the literature. The provided
analysis yields several theoretical and practical consequences. For instance, we discuss the
application of GIS into the Sequential Importance Resampling framework and show that
Independent Multiple Try Metropolis schemes can be interpreted as a standard Metropolis-
Hastings algorithm, following the GIS approach. We also introduce two novel Markov Chain
Monte Carlo (MCMC) techniques based on GIS. The first one, named Group Metropolis
Sampling method, produces a Markov chain of sets of weighted samples. All these sets are
then employed for obtaining a unique global estimator. The second one is the Distributed
Particle Metropolis-Hastings technique, where different parallel particle filters are jointly used
to drive an MCMC algorithm. Different resampled trajectories are compared and then tested
with a proper acceptance probability. The novel schemes are tested in different numerical
experiments such as learning the hyperparameters of Gaussian Processes, two localization
problems in a wireless sensor network (with synthetic and real data) and the tracking of
vegetation parameters given satellite observations, where they are compared with several
benchmark Monte Carlo techniques. Three illustrative Matlab demos are also provided.

Keywords: Importance Sampling, Markov Chain Monte Carlo (MCMC), Particle Filtering,
Particle Metropolis-Hastings, Multiple Try Metropolis, Bayesian Inference

1 Introduction

Bayesian signal processing, which has become very popular over the last years in statistical signal
processing, requires the study of complicated distributions of variables of interested conditioned

on observed data [35, 45, 49, 59]. Unfortunately, the computation of statistical features related to
these posterior distributions (such as moments or credible intervals) is analytically impossible in
many real-world applications. Monte Carlo methods are state-of-the-art tools for approximating
complicated integrals involving sophisticated multidimensional densities [34, 35, 59]. The most
popular classes of MC methods are the Importance Sampling (IS) techniques and the Markov chain
Monte Carlo (MCMC) algorithms [34, 59]. IS schemes produce a random discrete approximation
of the posterior distribution by a population of weighted samples [9, 41, 40, 35, 59]. MCMC
techniques generate a Markov chain (i.e., a sequence of correlated samples) with a pre-established
target probability density function (pdf) as invariant density [34, 35]. Both families are widely
used in the signal processing community. Several exhaustive overviews regarding the application
of Monte Carlo methods in statistical signal processing, communications and machine learning can
be found in the literature: some of them specifically focused on MCMC algorithms [2, 17, 26, 36],
others specifically focused on IS techniques (and related methods) [8, 9, 18, 24] or with a broader
view [11, 66, 21, 54, 60].

In this work, we introduce theory and practice of a novel approach, called Group Importance
Sampling (GIS), where the information contained in different sets of weighted samples is
compressed by using only one, yet properly selected, particle, and one suitable weight.1 This
general idea supports the validity of different Monte Carlo algorithms in the literature: interacting
parallel particle filters [6, 50, 58], particle island schemes and related techniques [64, 65, 67],
particle filters for model selection [22, 48, 63], nested Sequential Monte Carlo (SMC) methods
[51, 52, 62] are some examples. We point out some consequences of the application of GIS in
Sequential Importance Resampling (SIR) schemes, allowing partial resampling procedures and
the use of different marginal likelihood estimators. Then, we show that the Independent Multiple
Try Metropolis (I-MTM) techniques and the Particle Metropolis-Hastings (PMH) algorithm can
be interpreted as a classical Independent Metropolis-Hastings method by the application of GIS.

Furthermore, we present two novel techniques based on GIS. The first one is the Group
Metropolis Sampling (GMS) algorithm that generates a Markov chain of sets of weighted samples.
All these resulting sets of samples are jointly exploited to obtain a unique particle approximation
of the target distribution. On the one hand, GMS can be considered an MCMC method since it
produces a Markov chain of sets of samples. On the other hand, the GMS can be also considered as
an iterated importance sampler where different estimators are finally combined in order to build a
unique IS estimator. This combination is obtained dynamically through random repetitions given
by MCMC-type acceptance tests. GMS is closely related to Multiple Try Metropolis (MTM)
techniques and Particle Metropolis-Hastings (PMH) algorithms [3, 4, 12, 16, 47, 44], as we discuss
below. The GMS algorithm can be also seen as an extension of the method in [13], for recycling
auxiliary samples in a MCMC method.

The second novel algorithm based on GIS is the Distributed PMH (DPMH) technique where

1A preliminary version of this work has been published in [37]. With respect to that paper, here we provide
a complete theoretical support of the Group Importance Sampling (GIS) approach (and of the derived methods),
given in the main body of the text (Sections 3 and 4) and in five additional appendices. Moreover, we provide
an additional method based on GIS in Section 5.2 and a discussion regarding particle Metropolis schemes and the
standard Metropolis-Hastings method in Section 4.2. We also provide several additional numerical studies, one
considering real data. Related Matlab software is also given at https://github.com/lukafree/GIS.git.

2

https://github.com/lukafree/GIS.git

the outputs of several parallel particle filters are compared by an MH-type acceptance function.
The proper design of DPMH is a direct application of GIS. The benefit of DPMH is twofold:
different type of particle filters (for instance, with different proposal densities) can be jointly
employed, and the computational effort can be distributed in several machines speeding up the
resulting algorithm. As the standard PMH method, DPMH is useful for filtering and smoothing
the estimation of the trajectory of a variable of interest in a state-space model. Furthermore, the
marginal version of DPMH can be used for the joint estimation of dynamic and static parameters.
When the approximation of only one specific moment of the posterior is required, like GMS, the
DPMH output can be expressed as a chain of IS estimators. The novel schemes are tested in
different numerical experiments: hyperparameter tuning for Gaussian Processes, two localization
problems in a wireless sensor network (one with real data), and finally a filtering problem of
Leaf Area Index (LAI), which is a parameter widely used to monitor vegetation from satellite
observations. The comparisons with other benchmark Monte Carlo methods show the benefits of
the proposed algorithms.2

The remainder of the paper has the following structure. Section 2 recalls some background
material. The basis of the GIS theory is introduced in Section 3. The applications of GIS in
particle filtering and Multiple Try Metropolis algorithms are discussed in Section 4. In Section 5,
we introduce the novel techniques based on GIS. Section 6.1 provides the numerical results and
in Section 7 we discuss some conclusions.

2 Problem statement and background

In many applications, the goal is to infer a variable of interest, x = x1:D = [x1, x2, . . . , xD] ∈ X ⊆
RD×ξ, where xd ∈ Rξ for all d = 1, . . . , D, given a set of related observations or measurements,
y ∈ RdY . In the Bayesian framework all the statistical information is summarized by the posterior
probability density function (pdf), i.e.,

π̄(x) = p(x|y) =
`(y|x)g(x)

Z(y)
, (1)

where `(y|x) is the likelihood function, g(x) is the prior pdf and Z(y) is the marginal likelihood
(a.k.a., Bayesian evidence). In general, Z ≡ Z(y) is unknown and difficult to estimate in general,
so we assume to be able to evaluate the unnormalized target function,

π(x) = `(y|x)g(x). (2)

The computation of integrals involving π̄(x) = 1
Z
π(x) is often intractable. We consider the Monte

Carlo approximation of complicated integrals involving the target π̄(x) and an integrable function
h(x) with respect to π̄, i.e.,

I = Eπ̄[h(X)] =

∫

X
h(x)π̄(x)dx, (3)

where we denote X ∼ π̄(x). The basic Monte Carlo (MC) procedure consists in drawing N

independent samples from the target pdf, i.e., x1, . . . ,xN ∼ π̄(x), so that ÎN = 1
N

∑N
n=1 h(xn)

2Three illustrative Matlab demos are also provided at https://github.com/lukafree/GIS.git.

3

https://github.com/lukafree/GIS.git

is an unbiased estimator of I [35, 59]. However, in general, direct methods for drawing samples
from π̄(x) do not exist so that alternative procedures are required. Below, we describe the most
popular approaches. Table 1 summarizes the main notation of the work. Note that the words
sample and particle are used as synonyms along this work. Moreover, Table 2 shows the main
used acronyms.

Marginal Likelihood. As shown above, we consider a target function π̄(x) = 1
Z
π(x) that

is posterior density, i.e., π̄(x) = p(x|y) = `(y|x)g(x)
Z(y)

and π(x) = `(y|x)g(x). In this case,

Z = Z(y) =
∫
X `(y|x)g(x)dx represents the marginal probability of y, i.e., Z(y) = p(y) that

is usually called marginal likelihood (or Bayesian evidence). This quantity is important for model
selection purpose. More generally, the considerations in the rest of the work are valid also for
generic target densities π̄(x) = 1

Z
π(x) where π(x) ≥ 0 and Z =

∫
X π(x)dx. In this scenario, Z

represents a normalizing constant and could not have any other statistical meanings. However,
we often refer to Z as marginal likelihood, without loss of generality.

2.1 Markov Chain Monte Carlo (MCMC) algorithms

An MCMC method generates an ergodic Markov chain with invariant (a.k.a., stationary) density
given by the posterior pdf π̄(x) [34, 59, 27]. Specifically, given a starting state x0, a sequence of
correlated samples is generated, {xt}Tt=1. Even if the samples are now correlated, the estimator

ÎT = 1
T

∑T
t=1 f(xt) is consistent, regardless the starting vector x0 [27, 59]. The Metropolis-Hastings

(MH) method is one of the most popular MCMC algorithm [34, 35, 59]. Given a simpler proposal
density q(x|xt−1) depending on the previous state of the chain, the MH method is outlined below:

1. Choose an initial state x0.

2. For t = 1, . . . , T :

(a) Draw a sample v′ ∼ q(x|xt−1).

(b) Accept the new state, xt = v′, with probability

α(xt−1,v
′) = min

[
1,

π(v′)q(xt−1|v′)
π(xt−1)q(v′|xt−1)

]
, (4)

Otherwise, with probability 1− α(xt−1,v
′), set xt = xt−1.

3. Return {xt}Tt=1.

Due to the correlation the chain requires a burn-in period before converging to the invariant
distribution. Therefore a certain number of initial samples should be discarded, i.e., not included
in the resulting estimator. However, the length of the burn-in period is in general unknown.
Several studies in order to estimate the length of the burn-in period can be found in the literature
[7, 28, 55].

4

Table 1: Main notation of the work.

x = [x1, . . . , xD] Variable of interest, x ∈ X ⊆ RD×ξ, with xd ∈ Rξ for all d
π̄(x) Normalized posterior pdf, π̄(x) = p(x|y)
π(x) Unnormalized posterior function, π(x) ∝ π̄(x)

π̂(x|x1:N) Particle approximation of π̄(x) using the set of samples x1:N = {xn}Nn=1

x̃ Resampled particle, x̃ ∼ π̂(x|x1:N) (note that x̃ ∈ {x1, . . . ,xN})
wn = w(xn) Unnormalized standard IS weight of the particle xn
w̄n = w̄(xn) Normalized weight associated to xn
w̃m = w̃(x̃m) Unnormalized proper weight associated to the resampled particle x̃m

Wm Summary weight of m-th set Sm
IN Standard self-normalized IS estimator using N samples

ĨN Self-normalized estimator using N samples and based on GIS theory
Z Marginal likelihood; normalizing constant of π(x)

Ẑ, Z Estimators of the marginal likelihood Z

Table 2: Main acronyms in the work.

IS Importance Sampling
SIS Sequential Importance Sampling
SIR Sequential Importance Resampling
PF Particle Filter

SMC Sequential Monte Carlo
MCMC Markov Chain Monte Carlo

MH Metropolis-Hastings
IMH Independent Metropolis-Hastings
MTM Multiple Try Metropolis

I-MTM Independent Multiple Try Metropolis
I-MTM2 Independent Multiple Try Metropolis (version 2)

PMH Particle Metropolis-Hastings
PMMH Particle Marginal Metropolis-Hastings

GIS Group Importance Sampling
GSM Group Metropolis Sampling

PGSM Particle Group Metropolis Sampling
DPMH Distributed Particle Metropolis-Hastings

DPMMH Distributed Particle Marginal Metropolis-Hastings

2.2 Importance Sampling

Let us consider again the use of a simpler proposal pdf, q(x), and rewrite the integral I in Eq. (3)
as

I = Eπ̄[h(X)] = Eq[h(X)w(X)] =
1

Z

∫

X
h(x)

π(x)

q(x)
q(x)dx, (5)

5

where w(x) = π(x)
q(x)

: X → R. This suggests an alternative procedure. Indeed, we can draw N

samples x1, . . . ,xN from q(x),3 and then assign to each sample the unnormalized weights

wn = w(xn) =
π(xn)

q(xn)
, n = 1, . . . , N. (6)

If Z is known, an unbiased IS estimator [35, 59] is defined as ÎN = 1
ZN

∑N
n=1wnh(xn), where

xn ∼ q(x). If Z is unknown, defining the normalized weights, w̄n = wnPN
i=1 wi

with n = 1, . . . , N , an

alternative consistent IS estimator of I in Eq. (3) (i.e., still asymptotically unbiased) is given by
[35, 59]

IN =
N∑

n=1

w̄nh(xn). (7)

Moreover, an unbiased estimator of marginal likelihood, Z =
∫
X π(x)dx, is given by Ẑ =

1
N

∑N
i=1wi. More generally, the pairs {xi, wi}Ni=1 can be used to build a particle approximation of

the posterior measure,

π̂(x|x1:N) =
1

NẐ

N∑

n=1

wnδ(x− xn) =
N∑

n=1

w̄nδ(x− xn), (8)

where δ(x) denotes the Dirac delta function. Given a specific integrand function h(x) in Eq.
(3), it is possible to show that the optimal proposal pdf, which minimizes the variance of the
corresponding IS estimator, is given by qopt(x) ∝ |h(x)|π̄(x).

2.3 Concept of proper weighting

In this section, we discuss a generalization of the classical importance sampling (IS) technique.
The standard IS weights in Eq. (6) are broadly used in the literature. However, the definition
of properly weighted sample can be extended as suggested in [59, Section 14.2], [35, Section 2.5.4]
and in [24]. More specifically, given a set of samples, they are properly weighted with respect to
the target π̄ if, for any integrable function h,

Eq[w(xn)h(xn)] = cEπ̄[h(xn)], ∀n ∈ {1, . . . , N}, (9)

where c > 0 is a constant value, also independent from the index n, and the expectation of the left
hand side is performed, in general, w.r.t. to the joint pdf of w(x) and x, i.e., q(w,x). Namely, the
weight w(x), conditioned to a given value of x, could even be considered a random variable. Thus,
in order to obtain consistent estimators, one can design any joint q(w,x) as long as the restriction
of Eq. (9) is fulfilled. Based on this idea, dynamic weighting algorithms that mix MCMC and
IS approaches have been proposed [68]. When different proposal pdfs q1(x), q2(x), . . . , qN(x) are
jointly used in an IS scheme, the class of proper weighting schemes is even broader, as shown in
[24, 23, 25].

3We assume that q(x) > 0 for all x where π̄(x) 6= 0, and q(x) has heavier tails than π̄(x).

6

3 Group Importance Sampling: weighting a set of samples

In this section, we use the general definition in Eq. (9) for designing proper weights and summary
samples assigned to different sets of samples. Let us consider M sets of weighted samples,
S1 = {x1,n, w1,n}N1

n=1, S2 = {x2,n, w2,n}N2
n=1,, SM = {xM,n, wM,n}NMn=1, where xm,n ∼ qm(x),

i.e., a different proposal pdf for each set Sm and in general Ni 6= Nj, for all i 6= j, i, j ∈ {1, ...,M}.
In some applications and different Monte Carlo schemes, it is convenient (and often required) to
compress the statistical information contained in each set using a pair of summary sample, x̃m,
and summary weight, Wm, m = 1, . . . ,M , in such a way that the following expression

ĨM =
1∑M

j=1 Wj

M∑

m=1

Wmh(x̃m), (10)

is still a consistent estimator of I, for a generic integrable function h(x). Thus, although the
compression is lossy, we still have a suitable particle approximation π̂ of the target π̄ as shown
below. In the following, we denote the importance weight of the n-th sample in the m-th group
as wm,n = w(xm,n) = π(xm,n)

qm(xm,n)
, the m-th marginal likelihood estimator as

Ẑm =
1

Nm

Nm∑

n=1

wm,n, (11)

and the normalized weights within a set, w̄m,n = wm,nPNm
j=1 wm,j

= wm,n

Nm bZm , for n = 1, . . . , Nm and

m = 1, . . . ,M .

Definition 1. A resampled particle, i.e.,

x̃m ∼ π̂m(x) = π̂(x|xm,1:Nm) =
Nm∑

n=1

w̄m,nδ(x− xm,n), (12)

is a summary particle x̃m for the m-group. Note that x̃m is selected within {xm,1, . . . ,xm,Nm}
according to the probability mass function (pmf) defined by w̄m,n, n = 1, . . . , Nm.

It is possible to use the Liu’s definition in order to assign a proper importance weight to a
resampled particle [38], as stated in the following theorem.

Theorem 1. Let us consider a resampled particle x̃m ∼ π̂m(x) = π̂(x|xm,1:Nm). A proper
unnormalized weight following the Liu’s definition in Eq. (9) for this resampled particle is

w̃m = Ẑm, defined in Eq. (11).

The proof is given in A. Note that two (or more) particles, x̃′m, x̃′′m, resampled with replacement
from the same set and hence from the same approximation, x̃′m, x̃

′′
m ∼ π̂m(x), have the same weight

w̃(x̃′m) = w̃(x̃′′m) = Ẑm, as depicted in Figure 1. Note that the classical importance weight cannot
be computed for a resampled particle, as explained in A and pointed out in [33, 38, 51], [41, App.
C1].

Definition 2. The summary weight for the m-th group of samples is Wm = Nmw̃m = NmẐm.

7

Resample 3 times

x

bZm
bZm

x

wm,4

wm,1

wm,2

wm,3

xm,1 xm,2 xm,3 xm,4 ex0
m = ex00

m = xm,4ex000
m = xm,2

Figure 1: Example of generation (one run) and proper weighting of 3 resampled particles (with
replacement), x̃′m, x̃′′m and x̃′′′m, from the m-th group, where Nm = 4 and Ẑm = 1

4

∑4
n=1wm,n.

Particle approximation. Figure 2 represents graphically an example of GIS with M = 2 and
N1 = 4, N2 = 3. Given the M summary pairs {x̃m, w̃m}Mm=1 in a common computational node,
we can obtain the following particle approximation of π̄(x), i.e.,

π̂(x|x̃1:M) =
1

∑M
j=1 NjẐj

M∑

m=1

NmẐmδ(x− x̃m), (13)

involving M weighted samples in this case (see B). For a given function h(x), the corresponding
specific GIS estimator in Eq. (10) is

ĨM =
1

∑M
j=1NjẐj

M∑

m=1

NmẐmh(x̃m). (14)

It is a consistent estimator of I, as we show in B. The expression in Eq. (14) can be interpreted

as a standard IS estimator where w̃(x̃m) = Ẑm is a proper weight of a resampled particle [38], and
we give more importance to the resampled particles belonging to a set with higher cardinality.
See DEMO-2 at https://github.com/lukafree/GIS.git.

x

ex1 ex2

xx1,1 x1,2 x1,3 x1,4 x2,3x2,1 x2,2

N1 = 4 N2 = 3

N2
bZ2N1

bZ1

w1,1

w1,2

w1,3

w1,4

w2,1

w2,2

w2,3

Figure 2: Graphical representation of GIS. In this case, M = 2 groups of N1 = 4 and N2 = 3 weighted
samples are summarized with a resampled particle and one summary weight w̃m = NmẐm, m = 1, 2.

8

https://github.com/lukafree/GIS.git

Combination of estimators. If we are only interested in computing the integral I for a specific

function h(x), we can summarize the statistical information by the pairs {I(m)

Nm , w̃m} where

I
(m)

Nm =
Nm∑

n=1

w̄m,nh(xm,n), (15)

is the m-th partial IS estimator obtained by using Nm samples in Sm. Given all the S =
∑M

j=1 Nj

weighted samples in the M sets, the complete estimator IS in Eq. (7) can be written as a convex

combination of the M partial IS estimators, I
(m)

Nm , i.e.,

IS =
1

∑M
j=1NjẐj

M∑

m=1

Nm∑

n=1

wm,nh(xm,n), (16)

=
1

∑M
j=1NjẐj

M∑

m=1

NmẐm

Nm∑

n=1

w̄m,nh(xm,n), (17)

=
1∑M

j=1Wm

M∑

m=1

WmI
(m)

Nm . (18)

The equation above shows that the summary weight Wm measures the importance of the m-th

estimator I
(m)

Nm . This confirms that Wm is a proper weight the group of samples Sm, and also
suggests another valid compression scheme.

Remark 1. In order to approximate only one specific moment I of π̄(x), we can summarize the

m-group with the pair {I(m)

Nm ,Wm}Mm=1, thus all the M partial estimators can be combined following
Eq. (18).

In this case, there is no loss of information w.r.t. storing all the weighted samples. However,
the approximation of other moments of π̄(x) is not possible. Figures 3-4 depict the graphical
representations of the two possible approaches for GIS.

4 GIS in other Monte Carlo schemes

4.1 Application in particle filtering

In Section 2.2, we have described the IS procedure in a batch way, i.e., generating directly a D-
dimensional vector x′ ∼ q(x) and then compute the weight π(x′)

q(x′)
. This procedure can be performed

sequentially if the target density is factorized. In this case, the method is known as Sequential
Importance Sampling (SIS). It is the basis of particle filtering, along with the use of the resampling
procedure. Below, we describe the SIS method.

9

(a)

SM

exM

Sm

exm

S1

ex1

.

Central Node

{ex1, W1}
{exm, Wm}

{exM , WM}

WMWmW1

(b)

SMSmS1
.

Central Node

WMWmW1

{I(1)

N1
, W1}

{I(m)

Nm
, Wm}

{I(M)

NM
, WM}

I
(M)

NM
I
(m)

Nm
I
(1)

N1

Figure 3: Graphical overview of GIS in a parallel/distributed framework. (a) The central node obtains
all the pairs {x̃m,Wm}Mm=1, and provides π̂(x|x̃1:M) or IM . Note that only M particles, x̃m ∈ RD, and
M scalar weights, Wm ∈ R, are transmitted, instead of S samples and S weights, with S =

∑M
m=1Nm.

(b) Alternatively, if we are interested only in a specific moment of the target, we can transmit the pairs
{I(m)

Nm ,Wm}Mm=1 and then combine them as in Eq. (18).

{Sm}M
m=1

b⇡(x|x1:M,1:Nm
)

IS

{exm, Wm}M
m=1

b⇡(x|ex1:M)

Moment Est.

Particle Approx.

{I(m)

Nm
, Wm}M

m=1

IS

None

eIM

Num. of particles S =
MX

m=1

Nm M  S M  S

Figure 4: Possible outputs of different GIS compression schemes. On the left, {Sm}Mm=1, no compression
is applied. In the center, {I(m)

Nm ,Wm}Mm=1, we can perfectly reconstruct the estimator IS in Eq. (16) where
S =

∑M
m=1Nm, but we cannot approximate other moments. Using {x̃(m)

Nm
,Wm}Mm=1, we always obtain a

lossy compression, but any moments of π̄(x) can be approximated, as shown in Eqs. (13)-(14).

10

4.1.1 Sequential Importance Sampling (SIS)

Let us that recall x = x1:D = [x1, x2, . . . , xD] ∈ X ⊆ RD×ξ where xd ∈ Rξ for all d = 1, . . . , D, and
let us consider a target pdf π̄(x) factorized as

π̄(x) =
1

Z
π(x) =

1

Z
γ1(x1)

D∏

d=2

γd(xd|x1:d−1), (19)

where γ1(x1) is a marginal pdf and γd(xd|x1:d−1) are conditional pdfs. We can also consider a
proposal pdf decomposed in the same way, q(x) = q1(x1)

∏D
d=2 qd(xd|xd−1). In a batch IS scheme,

given the n-th sample xn = x
(n)
1:D ∼ q(x), we assign the importance weight

w(xn) =
π(xn)

q(xn)
=
γ1(x

(n)
1)γ2(x

(n)
2 |x(n)

1) · · · γD(x
(n)
D |x

(n)
1:D−1)

q1(x
(n)
1)q2(x

(n)
2 |x(n)

1) · · · qD(x
(n)
D |x

(n)
1:D−1)

=
D∏

d=1

βd, (20)

where β
(n)
1 =

π(x
(n)
1)

q(x
(n)
1)

and β
(n)
d =

γd(x
(n)
d |x

(n)
1:d−1)

qd(x
(n)
d |x

(n)
1:d−1)

, with d = 2, . . . , D. Let us also denote the joint

probability of [x1, . . . , xd] as

π̄d(x1:d) =
1

Zd
πd(x1:d) =

1

Zd
γ1(x1)

d∏

j=2

γj(xj|x1:j−1), (21)

where Zd =
∫

Rd×ξ πd(x1:d)dx1:d. Note that π̄D(x1:D) ≡ π̄(x) and ZD ≡ Z. Thus, we can draw

samples generating sequentially each component x
(n)
d ∼ qd(xd|x(n)

1:d−1), d = 1, . . . , D, so that

xn = x
(n)
1:D ∼ q(x) = q1(x1)

∏D
d=2 qd(xd|xd−1), and compute recursively the corresponding IS weight

in Eq. (20). Indeed, considering the definition

w
(n)
d =

πd(x
(n)
1:d)

q1(x
(n)
1)
∏d

j=2 qj(x
(n)
j |x(n)

1:j−1)
(22)

we have the recursion w
(n)
d = w

(n)
d−1β

(n)
d =

∏d
j=1 β

(n)
j , with w

(n)
0 = 1, and we recall that

β
(n)
d =

γd(x
(n)
d |x

(n)
1:d−1)

qd(x
(n)
d |x

(n)
1:d−1)

. The SIS technique is also given in Table 3 by setting η = 0. Note also that

Ẑd = 1
N

∑N
n=1w

(n)
d is an unbiased estimator of Zd. Defining the normalized weights w̄

(n)
d =

w
(n)
dPN

i=1 w
(i)
d

,

in SIS we have another equivalent formulation of the same estimator as shown below.

Remark 2. In SIS, there are two possible formulations of the estimator of the normalizing constant
Zd =

∫
Rd×ξ πd(x1:d)dx1:d,

Ẑd =
1

N

N∑

n=1

w
(n)
d =

1

N

N∑

n=1

w
(n)
d−1β

(n)
d , (23)

Zd =
d∏

j=1

[
N∑

n=1

w̄
(n)
j−1β

(n)
j

]
. (24)

In SIS, both estimators are equivalent Zd ≡ Ẑd. See C for further details.

11

4.1.2 Sequential Importance Resampling (SIR)

The expression in Eq. (20) suggests a recursive procedure for generating the samples and
computing the importance weights, as shown in Steps 2a and 2b of Table 3. In Sequential
Importance Resampling (SIR), a.k.a., standard particle filtering, resampling steps are incorporated
during the recursion as in step 2(c)ii of Table 3 [18, 19]. In general, the resampling steps are
applied only in certain iterations in order to avoid the path degeneration, taking into account

an approximation ÊSS of the Effective Sampling Size (ESS) [31, 39]. If ÊSS is smaller than
a pre-established threshold, the particles are resampled. Two examples of ESS approximation

are ÊSS = 1PN
n=1(w̄

(n)
d)2

and ÊSS = 1

max w̄
(n)
d

where w̄
(n)
d =

w
(n)
dPN

i=1 w
(i)
d

. Note that, in both cases,

1 ≤ ÊSS ≤ N . Hence, the condition for the adaptive resampling can be expressed as ÊSS < ηN
where η ∈ [0, 1]. SIS is given when η = 0 and SIR for η ∈ (0, 1]. When η = 1, the resampling is
applied at each iteration and in this case SIR is often called bootstrap particle filter [18, 19, 20].
If η = 0, no resampling is applied, we only apply Steps 2a and 2b, and we have the SIS method
described above, that after D iterations is completely equivalent to the batch IS approach, since
wn = w(xn) ≡ w

(n)
D where xn = x1:D.

Partial resampling. In Table 3, we have considered that only a subset of R ≤ N particles are
resampled. In this case, step 2(c)iii including the GIS weighting is strictly required in order to
provide final proper weighted samples and hence consistent estimators. The partial resampling
procedure is an alternative approach to prevent the loss of particle diversity [38]. In the classical
description of SIR [61], we have R = N (i.e., all the particles are resampled) and the weight
recursion follows setting the unnormalized weights of the resampled particles to any equal value.
Since all the N particles have been resampled, the selection of this value has no impact in the
weight recursion and in the estimation of I.

Marginal likelihood estimators. Even in the case R = N , i.e., all the particle are resampled
as in the standard SIR method, without using the GIS weighting only the formulation Zd in Eq.
(24) provides a consistent estimator of Zd, since it involves the normalized weights w̄

(n)
d−1, instead

of the unnormalized ones, w
(n)
d−1.

Remark 3. If the GIS weighting is applied in SIR, both formulations Ẑd and Zd in Eqs. (23)-(24)

provide consistent estimator of Zd and they are equivalent, Ẑd ≡ Zd (as in SIS). See an exhaustive
discussion in C.
See DEMO-1 at https://github.com/lukafree/GIS.git.

GIS in Sequential Monte Carlo (SMC). The idea of summary sample and summary weight
have been implicitly used in different SMC schemes proposed in literature, for instance, for the
communication among parallel particle filters [6, 50, 58], and in the particle island methods
[64, 65, 67]. GIS also appears indirectly in particle filtering for model selection [22, 48, 63]
and in the so-called Nested Sequential Monte Carlo techniques [51, 52, 62].

12

https://github.com/lukafree/GIS.git

Table 3: SIR with partial resampling

1. Choose N the number of particles, R ≤ N the number of particles to be resampled, the

initial particles x
(n)
0 , with w

(n)
0 = 1, n = 1, . . . , N , an ESS approximation ÊSS [39] and

a constant value η ∈ [0, 1].

2. For d = 1, . . . , D:

(a) Propagation: Draw x
(n)
d ∼ qd(xd|x(n)

1:d−1), for n = 1, . . . , N .

(b) Weighting: Compute the weights

w
(n)
d = w

(n)
d−1β

(n)
d =

d∏

j=1

β
(n)
j , n = 1, . . . , N, (25)

where β
(n)
d =

γd(x
(n)
d |x

(n)
1:d−1)

qd(x
(n)
d |x

(n)
1:d−1)

.

(c) if ÊSS < ηN then:

i. Select randomly, without repetition, a set of particles S = {x(jr)
1:d }Rr=1 where

R ≤ N , jr ∈ {1, . . . , N} for all r, and jr 6= jk for r 6= k.

ii. Resampling: Resample R times within the set S according to the

probabilities w̄
(jr)
d =

w
(jr)
dPR

k=1 w
(jk)

d

, obtaining {x̄(jr)
1:d }Rr=1. Then, set x

(jr)
1:d = x̄

(jr)
1:d ,

for r = 1, . . . , R.

iii. GIS weighting: Compute ẐS = 1
R

R∑
r=1

w
(jr)
d and set w

(jr)
d = ẐS for all

r = 1, . . . , R.

3. Return {xn = x
(n)
1:D, wn = w

(n)
D }Nn=1.

4.2 Multiple Try Metropolis schemes as a Standard Metropolis-
Hastings method

The Metropolis-Hastings (MH) method, described in Section 2.1, is a simple and popular MCMC
algorithm [34, 35, 59]. It generates a Markov chain {xt}∞t=1 where π̄(x) is the invariant density.
Considering a proposal pdf q(x) independent from the previous state xt−1, the corresponding
Independent MH (IMH) scheme is formed by the steps in Table 4 [59].

Observe that α(xt−1,v
′) = min

[
1, w(v′)

w(xt−1)

]
in Eq. (26) involves the ratio between the

importance weight of the proposed sample v′ at the t-th iteration, and the importance weight
of the previous state xt−1. Furthermore, note that at each iteration only one new sample v′ is

13

Table 4: The Independent Metropolis-Hastings (IMH) algorithm

1. Choose an initial state x0.

2. For t = 1, . . . , T :

(a) Draw a sample v′ ∼ q(x).

(b) Accept the new state, xt = v′, with probability

α(xt−1,v
′) = min

[
1,
π(v′)q(xt−1)

π(xt−1)q(v′)

]
= min

[
1,

w(v′)

w(xt−1)

]
, (26)

where w(x) = π(x)
q(x)

(standard importance weight). Otherwise, set xt = xt−1.

3. Return {xt}Tt=1.

generated and compared with the previous state xt−1 by the acceptance probability α(xt−1,v
′)

(in order to obtain the next state xt). The Particle Metropolis-Hastings (PMH) method4 [3]
and the alternative version of the Independent Multiply Try Metropolis technique [43] (denoted
as I-MTM2) are jointly described in Table 5. They are two MCMC algorithms where at each
iteration several candidates {v1, . . . ,vN} are generated. After computing the IS weights w(vn), one
candidate is selected vj within the N possible values, i.e., j ∈ {1, . . . , N}, applying a resampling

step according to the probability mass w̄n = w(vn)PN
i=1 w(vi)

= w(vn)

N bZ′ , n = 1, . . . , N . Then the selected

sample vj is tested with a proper probability α(xt−1,vj) in Eq. (27).
The difference between PMH and I-MTM2 is the procedure employed for the generation of

the N candidates and for the construction of the weights. PMH employs a sequential approach,
whereas I-MTM2 uses a standard batch approach [43]. Namely, PMH generates sequentially the
components vj,k of the candidates, vj = [vj,1, . . . , vj,D]>, and compute recursively the weights
as shown in Section 4.1. Since resampling steps are often used, then the resulting candidates
v1, . . . ,vN are correlated, whereas in I-MTM2 they are independent. I-MTM2 coincides with
PMH if the candidates are generated sequentially but without applying resampling steps, so that
I-MTM2 can be considered a special case of PMH.

Note that w̃(vj) = Ẑ ′ and w̃(xt−1) = Ẑt−1 are the GIS weights of the resampled particles
vj and xt−1 respectively, as stated in Definition 1 and Theorem 1.5 Hence, considering the GIS

4PMH is used for filtering and smoothing a variable of interest in state-space models (see, for instance, Figure
12). The Particle Marginal MH (PMMH) algorithm [3] is an extension of PMH employed in order to infer both
dynamic and static variables. PMMH is described in D.

5Note that the number of candidates per iteration is constant (N), so that Wt

Wt−1
= N ew(vj)

N ew(xt−1)
= ew(vj)ew(xt−1)

.

14

Table 5: PMH and I-MTM2 techniques

1. Choose an initial state x0 and Ẑ0.

2. For t = 1, . . . , T :

(a) Draw N particles v1, . . . ,vN from q(x) and weight them with the proper
importance weight w(vn), n = 1, . . . , N , using a sequential approach (PMH),

or a batch approach (I-MTM2). Thus, denoting Ẑ ′ = 1
N

∑N
n=1w(vn), we obtain

the particle approximation π̂(x|v1:N) = 1

N bZ′∑N
n=1w(vn)δ(x− vn).

(b) Draw vj ∼ π̂(x|v1:N).

(c) Set xt = vj and Ẑt = Ẑ ′, with probability

α(xt−1,vj) = min

[
1,

Ẑ ′

Ẑt−1

]
. (27)

Otherwise, set xt = xt−1 and Ẑt = Ẑt−1.

3. Return {xt}Tt=1.

theory, we can write

α(xt−1,vj) = min

[
1,

Ẑ ′

Ẑt−1

]
= min

[
1,

w̃(vj)

w̃(xt−1)

]
, (28)

which has the form of the acceptance function of the classical IMH method in Table 4. Therefore,
PMH and I-MTM2 algorithms can be also summarized as in Table 6.

Remark 4. The PMH and I-MTM2 algorithms take the form of the classical IMH method
employing the equivalent proposal pdf q̃(x) in Eq. (29) (depicted in Figure 5; see also A), and
using the GIS weight w̃(x̃′) of a resampled particle x̃′ ∼ q̃(x), within the acceptance function
α(xt, x̃

′).

5 Novel MCMC techniques based on GIS

In this section, we provide two examples of novel MCMC algorithms based on GIS. First of all,
we introduce a Metropolis-type method producing a chain of sets of weighted samples. Secondly,
we present a PMH technique driven by M parallel particle filters. In the first scheme, we exploit
the concept of summary weight and all the weighted samples are stored. In the second one, both
concepts of summary weight and summary particle are used. The consistency of the resulting
estimators and the ergodicity of both schemes is ensured and discussed.

15

Table 6: Alternative description of PMH and I-MTM2

1. Choose an initial state x0.

2. For t = 1, . . . , T :

(a) Draw x̃′ ∼ q̃(x), where

q̃(x) =

∫

XN

[
N∏

i=1

q(vi)

]
π̂(x|v1:N)dv1:N , (29)

is the equivalent proposal pdf associated to a resampled particle [33, 38].

(b) Set xt = x̃′, with probability

α(xt−1, x̃
′) = min

[
1,

w̃(x̃′)

w̃(xt−1)

]
. (30)

Otherwise, set xt = xt−1.

3. Return {xt}Tt=1.

5.1 Group Metropolis Sampling

Here, we describe an MCMC procedure that yields a sequence of sets of weighted samples. All
the samples are then employed for a joint particle approximation of the target distribution. The
Group Metropolis Sampling (GMS) is outlined in Table 7. Figures 6(a)-(b) give two graphical
representations of GMS outputs St = {xn,t = vn, ρn,t = wn}Nn=1 (with N = 4 in both cases).
Note that the GMS algorithm uses the idea of summary weight for comparing sets. Let us
denote as ρn,t the importance weights assigned to the samples xn,t contained in the current set St.
Given the generated sets St = {xn,t, ρn,t}Nn=1, for t = 1, . . . , T , GMS provides the global particle
approximation

π̂(x|x1:N,1:T) =
1

T

T∑

t=1

N∑

n=1

ρn,t∑N
i=1 ρi,t

δ(x− xn,t), (31)

=
1

T

T∑

t=1

N∑

n=1

ρ̄n,tδ(x− xn,t), (32)

where ρ̄n,t = ρn,tPN
i=1 ρi,t

. Thus, the estimator of a specific moment of the target is

ĨNT =
1

T

T∑

t=1

N∑

n=1

ρ̄n,th(xn,t) =
N∑

n=1

ρ̄n,tĨ
(n)
T =

1

T

T∑

t=1

Ĩ
(t)
N , (33)

16

−10 −5 0 5 10
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

x

eq(x)

q(x)

⇡̄(x)

vn ⇠ q(x)
n = 1, . . . , N

ex0 ⇠ b⇡(x|v1:N)
ex0 ⇠ eq(x)v1:N

Figure 5: (Left) Graphical representation of the generation of one sample x′ from the equivalent
proposal pdf q̃(x) in Eq. (29).(Right) Example of the equivalent density q̃(x) (solid line) with
N = 2. The target, π̄(x), and proposal, q(x), pdfs are shown with dashed lines. See DEMO-3 at
https://github.com/lukafree/GIS.git.

where we have denoted

Ĩ
(n)
T =

1

T

T∑

t=1

h(xn,t), Ĩ
(t)
N =

N∑

n=1

ρ̄n,th(xn,t). (34)

See also E for further details. If the N candidates at step 2a, v1, . . . ,vN , and the associated
weights, w1, . . . , wN , are built sequentially by a particle filtering method, we have a Particle GMS
(PGMS) algorithm (see Section 6.4) and marginal versions can be also considered (see D).

Relationship with IMH. The acceptance probability α in Eq. (35) is the extension of the
acceptance probability of IMH in Eq. (26), by considering the proper GIS weighting of a set of
weighted samples. Note that, in this version of GMS, all the sets contain the same number of
samples.

Relationship with MTM methods. GMS is strictly related to Multiple Try Metropolis
(MTM) schemes [12, 46, 47, 43] and Particle Metropolis Hastings (PMH) techniques [3, 43]. The
main difference is that GMS uses no resampling steps at each iteration for generating summary
samples, indeed GMS uses the entire set. However, considering a sequential of a batch procedure
for generating the N tries at each iteration, we can recover an MTM (or the PMH) chain by the
GMS output applying one resampling step when St 6= St−1,

x̃t =





ṽt ∼
N∑

n=1

ρ̄n,tδ(x− xn,t), if St 6= St−1,

x̃t−1, if St = St−1,

(36)

for t = 1, . . . , T . Namely, {x̃t}Tt=1 is the chain obtained by one run of the MTM (or PMH)
technique. Figure 6(b) provides a graphical representation of a MTM chain recovered by GMS
outputs.

17

https://github.com/lukafree/GIS.git

Table 7: Group Metropolis Sampling

1. Build an initial set S0 = {xn,0, ρn,0}Nn=1 and Ẑ0 = 1
N

∑N
n=1 ρn,0.

2. For t = 1, . . . , T :

(a) Draw N samples, v1, . . . ,vN ∼ q(x) following a sequential or a batch procedure.

(b) Compute the weights, wn = π(vn)
q(vn)

, n = 1, . . . , N ; define S ′ = {vn, wn}Nn=1; and

compute Ẑ ′ = 1
N

∑N
n=1wn.

(c) Set St = {xn,t = vn, ρn,t = wn}Nn=1, i.e., St = S ′, and Ẑt = Ẑ ′, with probability

α(St−1,S ′) = min

[
1,

Ẑ ′

Ẑt−1

]
. (35)

Otherwise, set St = St−1 and Ẑt = Ẑt−1.

3. Return {St}Tt=1, or {Ĩ(t)
N }Tt=1 where Ĩ

(t)
N =

N∑
n=1

ρn,tPN
i=1 ρi,t

h(xn,t).

Ergodicity. As also discussed above, (a) the sample generation, (b) the acceptance probability
function and hence (c) the dynamics of GMS exactly coincides with the corresponding steps of
PMH or MTM (with a sequential or batch particle generation, respectively). Hence, the ergodicity
of the chain is ensured [12, 47, 3, 43]. Indeed, we can recover the MTM (or PMH) chain as shown
in Eq. (36).

Recycling samples. The GMS algorithm can be seen as a method of recycling auxiliary
weighted samples in MTM schemes (or PMH schemes, if the candidates are generated by SIR).
However, GMS does not recycle all the samples generated at the step 2a of Table 7. Indeed, when
a set is rejected, GMS discards these samples and repeats the previous set. Therefore, GMS also
decides which samples will be either recycled or not. In [13], the authors show how recycling
and including the samples rejected in one run of a standard MH method into a unique consistent
estimator. GMS can be considered an extension of this technique where N ≥ 1 candidates are
drawn at each iteration.

Iterated IS. GMS can be also interpreted as an iterative importance sampling scheme where
an IS approximation of N samples is built at each iteration and compared with the previous
IS approximation. This procedure is iterated T times and all the accepted IS estimators Ĩ

(t)
N

are finally combined to provide a unique global approximation of NT samples. Note that the
temporal combination of the IS estimators is obtained dynamically by the random repetitions
due to the rejections in the MH test. Hence, the complete procedure for weighting the samples

18

generated by GMS can be interpreted as the composition of two weighting schemes: (a) by an
importance sampling approach building {ρn,t}Nn=1 and (b) by the possible random repetitions due
to the rejections in the MH-type test.

Connection with dynamic weighting schemes. For its hybrid nature between an IS method
and a MCMC technique, GMS could recall the dynamic weighting schemes proposed in [68]. The
authors in [68] have proposed different kinds of moves considering weighted samples, that are
suitable according to the so-called “invariance with respect to the importance weights” condition.
However, these moves are completely different from the GMS scheme. The dynamic of GMS is
totally based on standard ergodic theory, indeed, we can recover a standard MCMC chain from
the GMS output, as shown in Eq. (36).

Consistency of the GMS estimator. Recovering the MTM chain {x̃t}Tt=1 as in Eq. (36),

the estimator obtained by the recovered chain, ĨT = 1
T

∑T
t=1 h(x̃t), is consistent. Namely,

ĨT converges almost-surely to I = Eπ̄[h(x)] as T → ∞, since {x̃t}Tt=1 is an ergodic chain

[59].6 For St 6= St−1, note that Ebπ[h(x̃t)|St] =
∑N

n=1 ρ̄n,th(xn,t) = Ĩ
(t)
N in Eq. (34), where

π̂(x|x1:N,t) =
∑N

n=1 ρ̄n,tδ(x − xn,t). If St = St−1, then Ebπ[h(x̃t)|St] = Ebπ[h(x̃t−1)|St−1] = Ĩ
(t−1)
N

and, since Ĩ
(t)
N = Ĩ

(t−1)
N , we have again Ebπ[h(x̃t)|St] = Ĩ

(t)
N . Therefore, we have

E[ĨT |S1:T] =
1

T

T∑

t=1

Ebπ[h(x̃t)|St] (37)

=
1

T

T∑

t=1

Ĩ
(t)
N = ĨNT , (38)

whee the last equality comes from Eq. (33). Thus, the GSM estimator ĨNT in Eq. (33) can

be expressed as ĨNT = E[ĨT
∣∣S1:T], where S1:T represents all the weighted samples obtained by

GMS and ĨT = 1
T

∑T
t=1 h(x̃t) is the estimator obtained by a given MTM chain recovered by using

Eq. (36). Hence, ĨNT is consistent for T → ∞ since ĨT is consistent, owing to the MTM chain

is ergodic. Furthermore, fixing T , the GMS estimator ĨNT in Eq. (33) is also consistent when
N → ∞, due to the standard IS arguments [35]. The consistency can be also shown considering
GMS as the limit case of an in finite number of recovered parallel IMTM2 chains, as in Eq. (36),
as shown in E.

5.2 Distributed Particle Metropolis-Hastings algorithm

The PMH algorithm is an MCMC technique particularly designed for filtering and smoothing a
dynamic variable in a state-space model [3, 43] (see for instance Figure 12). In PMH, different

6The estimator ĨT = 1
T

∑T
t=1 h(x̃t) considers only the samples {x̃t}Tt=1 obtained after applying several resampling

steps and thus recovering a MTM chain, following Eq. (36). Observe also that, unlike the previous estimator, Ĩ(n)
T

in Eq. (34) considers all the GMS output samples xn,t’s, and then each of Ĩ(n)
T is weighted according to the

corresponding weight ρ̄n,t, in order to provide the final complete estimator ĨNT , as shown in Eq. (33).

19

(a)

St�1 St+1St

(b)

t

x x x x

St St+1 St+2 St+3

ext

ext+1 ext+2

ext+3

Figure 6: (a) Chain of sets St = {xn,t, ρn,t}Nn=1 generated by the GMS method (graphical representation
with N = 4). (b) Graphical examples of GMS outputs, St, St+1, St+2 and St+3, where St+2 = St+1. The
weights of the samples are denoted by the size of the circles. A possible recovered MTM chain is also
depicted with solid line, where the states are x̃τ with τ = t, t+ 1, t+ 2, t+ 3 and x̃t+2 = x̃t+1.

trajectories obtained by different runs of a particle filter (see Section 4.1) are compared according
to suitable MH-type acceptance probabilities, as shown in Table 5. In this section, we show how
several parallel particle filters (for instance, each one consider a different proposal pdf) can drive
a PMH-type technique.
The classical PMH method uses a single proposal pdf q(x) = q1(x1)

∏D
d=2 qd(xd|x1:d−1), employed

in single SIR method in order to generate new candidates before of the MH-type test (see Table
5). Let us consider the problem of tracking a variable of interest x = [x1, . . . , xD]> ∈ RD×ξ with
target pdf π(x) = π1(x1)

∏D
d=2 πd(xd|x1:d−1). We assume that M independent processing units are

available jointly with a central node as shown Fig. 7. We use M parallel particle filters, each one
with a different proposal pdf, qm(x) = qm,1(x1)

∏D
d=2 qm,d(xd|x1:d−1), one per each processor. Then,

after one run of the parallel particle filters, we obtain M particle approximations π̂m(x). Since,
we aim to reduce the communication cost to the central node (see Figs. 3 and 7), we consider

that each machine only transmits the pair {Ẑm, x̃m}, where x̃m ∼ π̂m(x) (we set N1 = . . . = NM ,
for simplicity). Applying the GIS theory, then it is straightforward to outline the method, called
Distributed Particle Metropolis-Hastings (DPMH) technique, shown in Table 8.

The method in Table 8 has the structure of a Multiple Try Metropolis (MTM) algorithm using
different proposal pdfs [12, 47]. More generally, in step 2a, the scheme described above can even
employ different kinds of particle filtering algorithms. In step 2b, M total resampling steps are
performed,one per processor. Then, one resampling step is performed in the central node (step
2c). Finally, the resampled particle is accepted as new state with probability α in Eq. (39).

20

Table 8: Distributed Particle Metropolis-Hastings algorithm

1. Choose an initial state x0 and Ẑm,0 for m = 1, . . . ,M (e.g., both obtained with a first
run of a particle filter).

2. For t = 1, . . . , T :

(a) (Parallel Processors) Draw N particles vm,1, . . . ,vm,N from qm(x) and
weight them with IS weights w(vm,n), n = 1, . . . , N , using a particle filter

(or a batch approach), for each m = 1, . . . ,M . Thus, denoting Ẑm =
1
N

∑N
n=1w(vm,n), we obtain the M particle approximations π̂m(x) = π̂(x|vm,1:N) =

1

N bZm
∑N

n=1w(vm,n)δ(x− vm,n).

(b) (Parallel Processors) Draw x̃m ∼ π̂(x|vm,1:N), for m = 1, . . . ,M .

(c) (Central Node) Resample x̃ ∈ {x̃1, . . . , x̃M} according to the pmf
bZmPM
j=1

bZj ,
m = 1, . . . ,M , i.e., x̃ ∼ π̂(x|x̃1, . . . , x̃M).

(d) (Central Node) Set xt = x̃ and Ẑm,t = Ẑm, for m = 1, . . . ,M , with probability

α(xt−1, x̃) = min

[
1,

∑M
m=1 Ẑm∑M

m=1 Ẑm,t−1

]
. (39)

Otherwise, set xt = xt−1 and Ẑm,t = Ẑm,t−1, for m = 1, . . . ,M .

Ergodicity. The ergodicity of DPMH is ensured since it can be interpreted as a standard PMH
method considering a single particle approximation7

π̂(x|v1:M,1:N) =
M∑

m=1

Ẑm∑M
j=1 Ẑj

π̂(x|vm,1:N) =
M∑

m=1

Wmπ̂(x|vm,1:N), (40)

and then we resample once, i.e., draw x̃ ∼ π̂(x|v1:M,1:N). Then, the proper weight of this resampled

particle is Ẑ = 1
M

∑M
m=1 Ẑm, so that the acceptance function of the equivalent classical PMH

method is α(xt−1, x̃) = min
[
1,

bZbZt−1

]
= min

[
1,

1
M

PM
m=1

bZm
1
M

PM
m=1

bZm,t−1

]
, where Ẑt−1 = 1

M

∑M
m=1 Ẑm,t−1 (see

Table 5).

Using partial IS estimators. If we are interested in approximating only one moment of the
target pdf, as shown in Figures 3-4, at each iteration we can transmit the M partial estimators

7This particle approximation can be interpreted as being obtained by a single particle filter splitting the particles
in M disjoint sets and then applying the partial resampling described in Section 4.1, i.e., performing resampling
steps within the sets. See also Eq. (79).

21

I
(m)

N and combine them in the central node as in Eq. (18), obtaining Ĩ ′NM = 1PM
j=1

bZj
∑M

m=1 ẐmI
(m)

N .

Then, a sequence of estimators, Ĩ
(t)
NM , is created according to the acceptance probability α in Eq.

(39). Finally, we obtain the global estimator

ĨNMT =
1

T

T∑

t=1

Ĩ
(t)
NM . (41)

This scheme is depicted in Figure 7(b).

Benefits. The main advantage of the DPMH scheme is that the generation of samples can be
parallelized (i.e., fixing the computational cost, DPMH allows the use of M processors in parallel)
and the communication to the central node requires the transfer of only M particles, x̃′m, and M

weights, Ẑ ′m, instead of NM particles and NM weights. Figure 7 provides a general sketch of
DPMH. Its marginal version is described in D. Another benefit of DPMH is that different types
of particle filters can be jointly employed, for instance, different proposal pdfs can be used.

Special cases and extensions. The classical PMH method is as a special case of the proposed
algorithm of Table 8 when M = 1. If the partial estimators are transmitted to the central node,
as shown in Figure 7(b), DPMH coincides with PGMS when M = 1. Adaptive versions of DPMH
can be designed in order select automatically the best proposal pdf among the M densities, based

of the weights Wm =
bZmPM
j=1

bZj , m = 1, . . . ,M . For instance, Figure 13(b) shows that DPMH is

able to detect the best scale parameters within the M used values.

(a)

Central Node

PF-1PF-2 PF-M

↵(xt�1, ex) = min

"
1,

PM
m=1

bZmPM
m=1

bZm,t�1

#

{ex1, bZ1} {ex2, bZ2} {exM , bZM}

xt

ex ⇠ b⇡(x|ex1:M)

(b)

Central Node

PF-1PF-2 PF-M

{I(1)

N , bZ1} {I(2)

N , bZ2} {I(M)

N , bZM}

eI(t)
NM

↵(eI(t�1)
NM , eI 0NM) = min

"
1,

PM
m=1

bZmPM
m=1

bZm,t�1

#

eI 0
NM =

MX

m=1

bZmPM
j=1

bZj

I
(m)

N

Figure 7: Graphical representation of Distributed Particle Metropolis-Hastings (DPMH) method, (a)
for estimating a generic moment, or (b) for estimating of a specific moment of the target.

22

6 Numerical Experiments

In this section, we test the novel techniques considering several experimental scenarios and three
different applications: hyperparameters estimation for Gaussian Processes (D = 2), two different
localization problems,8 and the online filtering of a remote sensing variable called Leaf Area
Index (LAI; D = 365). We compare the novel algorithms with different benchmark methods
such adaptive MH algorithm, MTM and PMH techniques, parallel MH chains with random walk
proposal pdfs, IS schemes, and the Adaptive Multiple Importance Sampling (AMIS) method.

6.1 Hyperparameter tuning for Gaussian Process (GP) regression
models

We test the proposed GMS approach for the estimation of hyperparameters of a Gaussian process
(GP) regression model [5], [57]. Let us assume observed data pairs {yj, zj}Pj=1, with yj ∈ R and
zj ∈ RL. We also denote the corresponding P ×1 output vector as y = [y1, . . . , yP]> and the L×P
input matrix as Z = [z1, . . . , zP]. We address the regression problem of inferring the unknown
function f which links the variable y and z. Thus, the assumed model is y = f(z) + e, where
e ∼ N(e; 0, σ2), and that f(z) is a realization of a GP [57]. Hence f(z) ∼ GP(µ(z), κ(z, r)) where
µ(z) = 0, z, r ∈ RL, and we consider the kernel function

κ(z, r) = exp

(
−

L∑

`=1

(z` − r`)2

2δ2

)
. (42)

Given these assumptions, the vector f = [f(z1), . . . , f(zP)]> is distributed as p(f |Z, δ, κ) =
N (f ; 0,K), where 0 is a P × 1 null vector, and Kij := κ(zi, zj), for all i, j = 1, . . . , P , is a P × P
matrix. Therefore, the vector containing all the hyperparameters of the model is x = [δ, σ], i.e.,
all the parameters of the kernel function in Eq. (42) and standard deviation σ of the observation
noise. In this experiment, we focus on the marginal posterior density of the hyperparameters,
π̄(x|y,Z, κ) ∝ π(x|y,Z, κ) = p(y|x,Z, κ)p(x), which can be evaluated analytically, but we cannot
compute integrals involving it [57]. Considering a uniform prior within [0, 20]2, p(x) and since
p(y|x,Z, κ) = N (y; 0,K + σ2I), we have

log [π(x|y,Z, κ)] = −1

2
y>(K + σ2I)−1y − 1

2
log
[
det
(
K + σ2I

)]
, (43)

where clearly K depends on δ [57]. The moments of this marginal posterior cannot be computed
analytically. Then, in order to compute the Minimum Mean Square Error (MMSE) estimator

x̂ = [δ̂, σ̂], i.e., the expected value E[X] with X ∼ π̄(x|y,Z, κ), we approximate E[X] via Monte
Carlo quadrature. More specifically, we apply a the novel GMS technique and compare with
an MTM sampler, a MH scheme with a longer chain and a static IS method. For all these
methodologies, we consider the same number of target evaluations, denoted as E, in order to
provide a fair comparison.

8The first problem also provides the automatic tuning of the sensor network (D = 8), whereas the second one
is a bidimensional positioning problem considering real data (D = 2).

23

We generated P = 200 pairs of data, {yj, zj}Pj=1, according to the GP model above setting
δ∗ = 3, σ∗ = 10, L = 1, and drawing zj ∼ U([0, 10]). We keep fixed these data over the different
runs, and the corresponding posterior pdf is given in Figure 9(b). We computed the ground-

truth x̂ = [δ̂ = 3.5200, σ̂ = 9.2811] using an exhaustive and costly grid approximation, in order
to compare the different techniques. For both GMS, MTM and MH schemes, we consider the
same adaptive Gaussian proposal pdf qt(x|µt, λ

2I) = N (x|µt, λ
2I), with λ = 5 and µt is adapted

considering the arithmetic mean of the outputs after a training period, t ≥ 0.2T , in the same
fashion of [30] (µ0 = [1, 1]>). First, we test both techniques fixing T = 20 and varying the number
of tries N . Then, we set N = 100 and vary the number of iterations T . Figure 8 (log-log plot)
shows the Mean Square Error (MSE) in the approximation of x̂ averaged over 103 independent
runs. Observe that GMS always outperforms the corresponding MTM scheme. These results
confirm the advantage of recycling the auxiliary samples drawn at each iteration during an MTM
run. In Figure 9(a), we show the MSE obtained by GMS keeping invariant the number of target
evaluations E = NT = 103 and varying N ∈ {1, 2, 10, 20, 50, 100, 250, 103}. As a consequence, we
have T ∈ {103, 500, 100, 50, 20, 10, 4, 1}. Note that the case N = 1, T = 103, corresponds to an
adaptive MH (A-MH) method with a longer chain, whereas the case N = 103, T = 1, corresponds
to a static IS scheme (both with the same posterior evaluations E = NT = 103). We observe that
the GMS always provides smaller MSE than the static IS approach. Moreover, GMS outperforms
A-MH with the exception of two cases where T ∈ {1, 4}.

(a)

101 102 103

100

N

MSE

MTM
GMS

(b)

101 102

100

T

MSE

MTM
GMS

Figure 8: MSE (loglog-scale; averaged over 103 independent runs) obtained with the MTM and GMS
algorithms (using the same proposal pdf and the same values of N and T) (a) as function of N with
T = 20 and (b) as function of T with N = 100.

24

(a)

100 101 102 103

100

N

Static IS

A-MH (T = 1000)

(b)

x2

x1

Figure 9: (a) MSE (loglog-scale; averaged over 103 independent runs) of GMS (circles) versus the
number of candidates N ∈ {1, 2, 10, 20, 50, 100, 250, 103}, but keeping fixed the total number of posterior
evaluations E = NT = 1000, so that T ∈ {1000, 500, 100, 50, 20, 10, 4, 1}. The MSE values the extreme
cases N = 1, T = 1000, and N = 1000, T = 1, are depicted with dashed lines. In first case, GMS
coincides with an adaptive MH scheme (due the adaptation of the proposal, in this example) with a
longer chain. The second one represents a static IS scheme (clearly, using the sample proposal than
GMS). We can observe the benefit of the dynamic combination of IS estimators obtained by GMS. (b)
Posterior density π(x|y,Z, κ).

25

6.2 Localization of a target and tuning of the sensor network

We consider the problem of positioning a target in R2 using a range measurements in a wireless
sensor network [1, 32]. We also assume that the measurements are contaminated by noise with
different unknown power, one per each sensor. This situation is common in several practical
scenarios. Actually, even if the sensors have the same construction features, the noise perturbation
of each the sensor can vary with the time and depends on the location of the sensor. This occurs
owing to different causes: manufacturing defects, obstacles in the reception, different physical
environmental conditions (such as humidity and temperature) etc. Moreover, in general, these
conditions change along time, hence it is necessary that the central node of the network is able
to re-estimate the noise powers jointly with position of the target (and other parameters of the
models if required) whenever a new block of observations is processed. More specifically, let us
denote the target position with the random vector Z = [Z1, Z2]>. The position of the target is then
a specific realization Z = z. The range measurements are obtained from NS = 6 sensors located
at h1 = [3,−8]>, h2 = [8, 10]>, h3 = [−4,−6]>, h4 = [−8, 1]>, h5 = [10, 0]> and h6 = [0, 10]> as
shown in Figure 10(a). The observation models are given by

Yj = 20 log (||z− hj||) +Bj, j = 1, . . . , NS, (44)

where Bj are independent Gaussian random variables with pdfs, N (bj; 0, λ2
j), j = 1, . . . , NS. We

denote λ = [λ1, . . . , λNS] the vector of standard deviations. Given the position of the target
z∗ = [z∗1 = 2.5, z∗2 = 2.5]> and setting λ∗ = [λ∗1 = 1, λ∗2 = 2, λ∗3 = 1, λ∗4 = 0.5, λ∗5 = 3, λ∗6 = 0.2]
(since NS = 6), we generate NO = 20 observations from each sensor according to the model in
Eq. (44). Then, we finally obtain a measurement matrix Y = [yk,1, . . . , yk,NS] ∈ RdY , where
dY = NONS = 120, k = 1, . . . , NO. We consider uniform prior U(Rz) over the position [z1, z2]>

withRz = [−30×30]2, and a uniform prior over λj, so that λ has prior U(Rλ) withRλ = [0, 20]NS .
Thus, the posterior pdf is

π̄(x|Y) = π̄(z,λ|Y) = `(y|z1, z2, λ1, . . . , λNS)
2∏

i=1

p(zi)

NS∏

j=1

p(λj), (45)

=



NO∏

k=1

NS∏

j=1

1√
2πλ2

j

exp

(
− 1

2λ2
j

(yk,j + 10 log (||z− hj||)2

)
 Iz(Rz)Iλ(Rλ), (46)

where x = [z,λ]> is a vector of parameters of dimension D = NS + 2 = 8 that we desire to infer,
and Ic(R) is an indicator variable that is 1 if c ∈ R, otherwise is 0.

Our goal is to compute the Minimum Mean Square Error (MMSE) estimator, i.e., the expected
value of the posterior π̄(x|Y) = π̄(z,λ|Y). Since the MMSE estimator cannot be computed
analytically, we apply Monte Carlo methods for approximating it. We compare GMS, the
corresponding MTM scheme, the Adaptive Multiple Importance Sampling (AMIS) technique [15],
and N parallel MH chains with a random walk proposal pdf. For all of them we consider Gaussian
proposal densities. For GMS and MTM, we set qt(x|µt, σ

2I) = N (x|µt, σ
2I) where µt is adapted

considering the empirical mean of the generated samples after a training period, t ≥ 0.2T [30],
µ0 ∼ U([1, 5]D) and σ = 1. For AMIS, we have qt(x|µt,Ct) = N (x|µt,Ct), where µt is as

26

previously described (with µ0 ∼ U([1, 5]D)) and Ct is also adapted using the empirical covariance
matrix, starting C0 = 4I. We also test the use of N parallel Metropolis-Hastings (MH) chains
(we also consider the case of N = 1, i.e., a single chain), with a Gaussian random-walk proposal
pdf, qn(µn,t|µn,t−1, σ

2I) = N (µn,t|µn,t−1, σ
2I) with µn,0 ∼ U([1, 5]D) for all n and σ = 1.

We fix the total number of evaluations of the posterior density as E = NT = 104. Note that,
generally, the evaluation of the posterior is the most costly step in MC algorithms (however,
AMIS has the additional cost of re-weighting all the samples at each iteration according to
the deterministic mixture procedure [9, 15, 24]). We recall that T denotes the total number
of iterations and N the number of samples drawn from each proposal at each iteration. We
consider x∗ = [z∗,λ∗]> as the ground-truth and compute the Mean Square Error (MSE) in the
estimation obtained with the different algorithms. The results are averaged over 500 independent
runs and they are provided in Tables 9, 10, and 11 and Figure 10(b). Note that GMS outperforms
AMIS for each a pair {N, T} (keeping fixed E = NT = 104), and GMS also provides smaller MSE
values than N parallel MH chains (the case N = 1 corresponds to a unique longer chain). Figure
10(b) shows the MSE versus N maintaining E = NT = 104 for GMS and the corresponding MTM
method. This figure again confirms the advantage of recycling the samples in a MTM scheme.

Table 9: Results GMS.

MSE 1.30 1.24 1.22 1.21 1.22 1.19 1.31 1.44

N 10 20 50 100 200 500 1000 2000
T 1000 500 200 100 50 20 10 5
E NT = 104

MSE range Min MSE= 1.19 ——— Max MSE= 1.44

Table 10: Results AMIS [15].

MSE 1.58 1.57 1.53 1.48 1.42 1.29 1.48 1.71
N 10 20 50 100 200 500 1000 2000
T 1000 500 200 100 50 20 10 5
E NT = 104

MSE range Min MSE= 1.29 ——— Max MSE= 1.71

6.3 Target localization with real data

In this section, we test the proposed techniques in real data application. More specifically, we
consider again a positioning problem in order to localize a target in a bidimensional space using
range measurements [1, 53].

27

Table 11: Results N parallel MH chains with random-walk proposal pdf.

MSE 1.42 1.31 1.44 2.32 2.73 3.21 3.18 3.15

N 1 5 10 50 100 500 1000 2000
T 104 2000 1000 200 100 20 10 5
E NT = 104

MSE range Min MSE= 1.31 ——— Max MSE=3.21

(a)

−10 −5 0 5 10
−10

−5

0

5

10

x1

x 2

(b)

500 1000 1500 2000

100.1

100.2

N

MTM
GMS

Figure 10: (a) Sensor network: the location of the sensors (antennas) and the target (circle) in the
numerical example. The solid line represents the different unknown variances of the sensors. (b) MSE
(log-scale) versus the number of candidates N ∈ {50, 200, 500, 1000, 2000} obtained by GMS and the
corresponding MTM algorithm, keeping fixed the total number of evaluations E = NT = 104 of the
posterior pdf, so that T ∈ {200, 50, 20, 10, 5}.

6.3.1 Setup of the Experiment

We have designed a network of four nodes. Three of them are placed at fixed positions and play the
role of sensors that measure the strength of the radio signals transmitted by the target. The other
node plays the role of the target to be localized. All nodes are bluetooth devices (Conceptronic
CBT200U2A) with a nominal maximum range of 200 m. The deployment of the network is given
in Figure 11(a). We consider a square monitored area of 4 × 4 m and place the sensors at fixed
positions h1 = [h1,1 = 0.5, h1,2 = 1], h2 = [h2,1 = 3.5, h2,2 = 1] and h3 = [h3,1 = 2, h3,2 = 3], with
all coordinates in meters. The target is located at p = [p1 = 2.5, p2 = 2].

The measurement equation describes the relationship between the observed radio signal
strength yi obtained by the i-th sensor, and the target position p = [p1, p2] (see [56]), and is
given by

yi = l − 10γ log

[√
(p1 − hi,1)2 + (p2 − hi,2)2

d0

]
+ θi (dB), (47)

28

0 2 4
−1

0

1

2

3

4

5

h1 h2

h3

p

x 2

x1

(a)

0 1 2 3 4
−70

−60

−50

−40

−30

(b)

distance (m)

po
w

er
 (d

B)

Figure 11: (a) Experimental setup: sensors over a rectangular surveillance area of 4 times 4 meters.
The sensors are shown with triangles (denoted by hi) while the target that must be localized is depicted
with a cross (denoted by p). (b) The least squares regression to adjust the parameters l and γ. The
points indicate the measurements collected by the sensors at different distances, and the solid curve
denotes the function l̂ − 10γ̂ log

[
d
d0

]
with d0 = 0.3, l̂ = −27.08 dB and γ̂ = 1.52.

where γ is a parameter that depends on the physical environment (for instance, in an open space
γ ≈ 2), and the constant l is the mean power received by each sensor when the target is located

at a reference distance d0. The measurement noise is Gaussian, N(θi; 0, σ2) ∝ exp
{
− θ2i

2σ2

}
with

i = 1, 2, 3. In this experiment, the reference distance has been set to d0 = 0.3 m. Unlike in the
previous numerical example, here the parameters l, γ, and σ2 have been tuned in advance by
least square regression using 200 measurements with the target placed at known distances from
each sensor. As a result, we have obtained l̂ = −27.08, γ̂ = 1.52, and σ̂ = 4.41. Figure 11(b)

shows the measurements obtained at several distances and the fitted curve l̂− 10γ̂ log
[
d
d0

]
, where

d =
√

(p1 − hi,1)2 + (p2 − hi,2)2.

6.3.2 Posterior density, algorithms and results

Assume we collect M independent measurements from each sensor, considering the observation
model in Eq. (47). Let y = [y1,1, . . . , y1,M , y2,1, . . . , y2,M , y3,1, . . . , y3,M] denote the measurement
vector where yi,j is the j-th observation of the i-th sensor. The the likelihood is

p(y|p) =
3∏

i=1

M∏

m=1

N
(
yi,m|l̂ − 10γ̂ log

(
||p− hi||/d0

)
, σ̂2
)
, p ∈ [0, 4]× [0, 4]. (48)

We set p(y|p) = 0 if p /∈ [0, 4]× [0, 4]. We assume a Gaussian prior for each component of p with
mean 1.5 and variance 0.5. Hence, the posterior density is given by p(p|y) ∝ p(y|p)p(p) where p(p)
denotes the bidimensional Gaussian prior pdf over the position p. Our goal is to approximate the
expected value of the posterior p(p|y). We collect M = 10 measurements from each Conceptronic
CBT200U2A devices, and compute the ground-truth (i.e., the expected value) with a costly
determinist grid. Then, we apply GMS and the corresponding MTM scheme, considering the same

29

bidimensional proposal density q(p|µ, λ2I) = N (p|µ, λ2I) where µ ∼ U([0, 4] × [0, 4]) (randomly
chosen at each independent run) and λ =

√
2. We set N = 50 and T = 100. We compute the

Mean Square Error (MSE) with respect to the ground-truth obtained with GMS and MTM, in
500 different independent runs. The averaged MSE values are 1.81 for the GMS method and 2.2
for the MTM scheme. Therefore, GMS outperforms the corresponding MTM technique also in
this experiment.

6.4 Tracking of biophysical parameters

We consider the challenging problem of estimating biophysical parameters from remote sensing
(satellite) observations. In particular, we focus on the estimation of the Leaf Area Index (LAI).
It is important to track evolution of LAI through time in every spatial position on Earth because
LAI plays an important role in vegetation processes such as photosynthesis and transpiration,
and is connected to meteorological/climate and ecological land processes [14]. Let us denote LAI
as xd ∈ R+ (where d ∈ N+ also represents a temporal index) in a specific region at a latitude
of 42◦ N [29]. Since xt > 0, we consider Gamma prior pdfs over the evolutions of LAI and
Gaussian perturbations for the “in-situ” received measurements, yt. More specifically, we assume
the state-space model (formed by propagation and measurement equations),

{
gd(xd|xd−1) = G

(
xd

∣∣∣xd−1

b
, b
)

= 1
cd
x

(xd−1−b)/b
d exp

(
−xd

b

)
,

`d(yd|xd) = N (yd|xd, λ2) = 1√
2πλ2

exp
(
− 1

2λ2 (yd − xd)2
)
,

(49)

for d = 2, . . . , D, with initial probability g1(x1) = G(x1|1, 1), where b, λ > 0 and cd > 0 is a
normalizing constant. Note that the expected value of the Gamma pdf above is xd−1 and the
variance is b.

First Experiment. Considering that all the parameters of the model are known, the posterior
pdf is

π̄(x|y) ∝ `(y|x)g(x) =

[
D∏

d=2

`d(yd|xd)
][(

D∏

d=2

gd(xd|xd−1)

)
g1(x1)

]
, (50)

with x = x1:D ∈ RD. For generating the ground-truth (i.e., the trajectory x∗ = x∗1:D =
[x∗1, . . . , x

∗
D]), we simulate the temporal evolution of LAI in one year (i.e., 1 ≤ d ≤ D = 365)

by using a double logistic function (as suggested in the literature [29]), i.e.,

xd = a1 + a2

(
1

1 + exp(a3(d− a4))
+

1

1 + exp(a5(d− a6))
+ 1

)
, (51)

with a1 = 0.1, a2 = 5, a3 = −0.29, a4 = 120, a5 = 0.1 and a6 = 240 as employed in
[29]. In Figure 12, the true trajectory x1:D is depicted with dashed lines. The observations
y = y2:D are then generated (each run) according to yd ∼ `d(yd|xd) = 1√

2πλ2
exp

(
− 1

2λ2 (yd − xd)2
)
.

First of all, we test the standard PMH, the particle version of GMS (PGMS), and DPMH

30

(fixing λ = 0.1). For DPMH, we use M = 4 parallel filters with different scale parameters
b = [b1 = 0.01, b2 = 0.05, b3 = 0.1, b4 = 1]>. Figure 12 shows the estimated trajectories
x̂t = x̂1:D,t = 1

t

∑t
τ=1 x̃τ (averaged over 2000 runs) obtained by DPMH with N = 5 at

t ∈ {2, 10, 100}, in one specific run. Figure 13(a) depicts the evolution of the MSE obtained by
DPMH as a function of T and considering different values of N ∈ {5, 7, 10, 20}. The performance
of DPMH improves as T and N grow, as expected. DPMH detects the best parameters among
the four values in b, following the weights Wm (see Figure 13(b)) and DPMH takes advantage of
this ability. Indeed, we compare DPMH with N = 10, T = 200, and M = 4 using b, with M = 4
different standard PMH and PGMS algorithms with N = 40 and T = 200 (clearly, each one driven
by a unique filter, M = 1) in order to keep the total number of evaluation of the posterior fixed,
E = NMT = 8 · 103, each one using a parameter bm, m = 1, . . . ,M . The results, averaged over
2000 runs, are shown in Table 12. In terms of MSE, DPMH always outperforms the 4 possible
standard PMH methods. PGMS using two parameters, b2 and b3, provides better performance,
but DPMH outperforms PGMS averaging the 4 different MSEs obtained by PGMS. Moreover,
due to the parallelization, in this case DPMH can save ≈ 15% of the spent computational time.

Second Experiment. Now we consider also the parameter λ unknown, so that the complete
variable of interest [x, λ] ∈ RD+1. Then the posterior is π̄(x, λ|y) ∝ `(y|x, λ)g(x, λ) according
to the model Eq. (49), where g(x, λ) = g(x)gλ(λ) and gλ(λ) is a uniform pdf in [0.01, 5]. Then
we test the marginal versions of the PMH and DPMH with qλ(λ) = gλ(λ) (see D), for estimating
[x∗, λ∗] where x∗ = x∗1:D is given by Eq. (51) and λ∗ = 0.7. Figure 14 shows the MSE in estimation
of λ∗ (averaged over 1000 runs) obtained by DPMMH as function of T and different number of
candidates, N ∈ {5, 10, 20} (with again M = 4 and b = [b1 = 0.01, b2 = 0.05, b3 = 0.1, b4 = 1]>).
Table 13 compares the standard PMMH and DPMMH for estimating λ∗ (we set E = NMT =
4 · 103 and T = 100). Averaging the results of PMMH, we can observe that DPMMH outperforms
the standard PMMH in terms of smaller MSE and smaller computational time.

(a) t = 2

0 100 200 300
9

10

11

12

13

14

15

16

17

k

Est
True

(b) t = 10

0 100 200 300
9

10

11

12

13

14

15

16

17

k

Est
True

(c) t = 100

0 100 200 300
9

10

11

12

13

14

15

16

17

k

Est
True

Figure 12: Output of DPMH (with N = 5, λ = 0.1 and b = [0.01, 0.05, 0.1, 1]>) at different iterations
(a) t = 2, (b) t = 10, and (c) t = 100, in one specific run. The true values, x∗ = x∗1:D, are shown dashed
lines whereas the estimated trajectories by DPMH, x̂t = x̂1:D,t, with solid lines.

31

(a)

100 101 102
10−2

10−1

100

101

T

N=5
N=7
N=10
N=20

(b)

0 0.2 0.4 0.6 0.8 1
0

0.5

1
N=5

0 0.2 0.4 0.6 0.8 1
0

0.5

1

σm

N=20

W 1

W 2

W 2

W 3

W 3

W 4

W 4W 1

bm

Figure 13: (a) MSE in estimation of the trajectory (averaged over 2000 runs) obtained by DPMH as
function T and different values of N ∈ {5, 7, 10, 20}. As expected, we can see that the performance of
DPMH improves as T and N grow. (b) Averaged values of the normalized weights Wm = bZmPM

j=1
bZj (with

N = 5 and N = 10) associated to each filter. DPMH is able to detect the best variances (b2 and b3) of
the proposal pdfs among the values b1 = 0.01, b2 = 0.05, b3 = 0.1 and b4 = 1 (as confirmed by Table 12).

101 102

10−1

100

T

N=5
N=10
N=20

Figure 14: MSE in estimation of λ∗ = 0.7 (averaged over 1000 runs) obtained by DPMMH as function
T and different values of N ∈ {5, 10, 20}.

32

Table 12: Comparison among PMH, PGMS and DPMH with E = NMT = 8 · 103 and T = 200
(λ = 0.1), estimating the trajectory x∗ = x∗1:D.

Proposal Var

Standard PMH PGMS DPMH
N = 40 N = 40 N = 10
(M = 1) (M = 1) M = 4
MSE MSE MSE

b1 = 0.01 0.0422 0.0380

0.0108
b2 = 0.05 0.0130 0.0100
b3 = 0.1 0.0133 0.0102
b4 = 1 0.0178 0.0140
Average 0.0216 0.0181 0.0108

Norm. Time 1 1 0.83

Table 13: Comparison among PMMH and DMPMH with E = NMT = 4 · 103 and T = 100, for
estimating λ∗ = 0.7.

Proposal Var

PMMH DPMMH
N = 40 N = 10
(M = 1) M = 4
MSE MSE

b1 = 0.01 0.0929

0.0234
b2 = 0.05 0.0186
b3 = 0.1 0.0401
b4 = 1 0.0223

Average 0.0435 0.0234

Norm. Time 1 0.85

7 Conclusions

In this work, we have described the Group Importance Sampling (GIS) theory and its application
in other Monte Carlo schemes. We have considered the use of GIS in SIR (a.k.a., particle filtering),
showing that GIS is strictly required if the resampling procedure is applied only in a subset of the
current population of particles. Moreover we have highlighted that, in the standard SIR method,
if GIS is applied there exists two equivalent estimators of the marginal likelihood (one of them is
an estimator of the marginal likelihood only if the GIS weighting is used), exactly as in Sequential
Importance Sampling (SIS). We have also shown that the Independent Multiple Try Metropolis
(I-MTM) schemes and the Particle Metropolis-Hastings (PMH) algorithm can be interpreted as a
classical Metropolis-Hastings (MH) method taking into account the GIS approach.

Furthermore, two novel methodologies based on GIS have been introduced. One of them (GMS)
yields a Markov chain of weighted samples and can be also considered an iterative importance

33

sampler. The second one (DPMH) is a distributed version of the PMH where different parallel
particle filters can be jointly employed. These filter cooperate for driving the PMH scheme. Both
techniques have been applied successfully in three different numerical experiments (tuning of the
hyperparameters for GPs, two localization problems in a wireless sensor network (one with real
data), and the tracking of the Leaf Area Index), comparing them with several benchmark methods.
Marginal versions of GMS and DPMH have been also discussed and tested in the numerical
applications. Three Matlab demos have been also given in order to facilitate the comprehension
of the reader. As a future line, we plan to design an adaptive DPMH scheme in order to select
online the best particle filters among the M run in parallel, and parsimoniously distribute the
computational effort.

Acknowledgements

This work has been supported by the European Research Council (ERC) through the ERC
Consolidator Grant SEDAL ERC-2014-CoG 647423.

References

[1] A. M. Ali, K. Yao, T. C. Collier, E. Taylor, D. Blumstein, and L. Girod. An empirical study of
collaborative acoustic source localization. Proc. Information Processing in Sensor Networks
(IPSN07), Boston, April 2007.

[2] C. Andrieu, N. de Freitas, A. Doucet, and M. Jordan. An introduction to MCMC for machine
learning. Machine Learning, 50:5–43, 2003.

[3] C. Andrieu, A. Doucet, and R. Holenstein. Particle Markov chain Monte Carlo methods. J.
R. Statist. Soc. B, 72(3):269–342, 2010.

[4] M. Bédard, R. Douc, and E. Mouline. Scaling analysis of multiple-try MCMC methods.
Stochastic Processes and their Applications, 122:758–786, 2012.

[5] C. Bishop. Pattern Recognition and Machine Learning. Springer, 2006.

[6] M. Bolić, P. M. Djurić, and S. Hong. Resampling algorithms and architectures for distributed
particle filters. IEEE Transactions Signal Processing, 53(7):2442–2450, 2005.

[7] S. P. Brooks and A. Gelman. General methods for monitoring convergence of iterative
simulations. J. Comput. Graph. Statist., 7(4):434–455, 1998.

[8] M. F. Bugallo, V. Elvira, L. Martino, D. Luengo, J. Miguez, and P. M. Djuric. Adaptive
importance sampling: The past, the present, and the future. IEEE Signal Processing
Magazine, 34(4):60–79, 2017.

[9] M. F. Bugallo, L. Martino, and J. Corander. Adaptive importance sampling in signal
processing. Digital Signal Processing, 47:36–49, 2015.

34

[10] B. Calderhead. A general construction for parallelizing Metropolis-Hastings algorithms.
Proceedings of the National Academy of Sciences of the United States of America (PNAS),
111(49):17408–17413, 2014.

[11] J. Candy. Bayesian signal processing: classical, modern and particle filtering methods. John
Wiley & Sons, England, 2009.

[12] R. Casarin, R. V. Craiu, and F. Leisen. Interacting multiple try algorithms with different
proposal distributions. Statistics and Computing, 23(2):185–200, 2013.

[13] G. Casella and C. P. Robert. Rao-Blackwellisation of sampling schemes. Biometrika, 83(1):81–
94, 1996.

[14] J. M. Chen and T. A Black. Defining leaf area index for non-flat leaves. Plant, Cell and
Environment, 15:421–429, 1992.

[15] J. M. Cornuet, J. M. Marin, A. Mira, and C. P. Robert. Adaptive multiple importance
sampling. Scandinavian Journal of Statistics, 39(4):798–812, December 2012.

[16] R. V. Craiu and C. Lemieux. Acceleration of the Multiple Try Metropolis algorithm using
antithetic and stratified sampling. Statistics and Computing, 17(2):109–120, 2007.

[17] M. A. Dangl, Z. Shi, M. C. Reed, and J. Lindner. Advanced Markov chain Monte Carlo
methods for iterative (turbo) multiuser detection. In Proc. 4th International Symposium on
Turbo Codes and Related Topics in connection with 6th International ITG-Conference on
Source and Channel Coding (ISTC), April 2006.

[18] P. M. Djurić, J. H. Kotecha, J. Zhang, Y. Huang, T. Ghirmai, M. F. Bugallo, and J. Mı́guez.
Particle filtering. IEEE Signal Processing Magazine, 20(5):19–38, September 2003.

[19] A. Doucet, N. de Freitas, and N. Gordon, editors. Sequential Monte Carlo Methods in Practice.
Springer, New York (USA), 2001.

[20] A. Doucet and A. M. Johansen. A tutorial on particle filtering and smoothing: fifteen years
later. technical report, 2008.

[21] A. Doucet and X. Wang. Monte Carlo methods for signal processing. IEEE Signal Processing
Magazine, 22(6):152–170, Nov. 2005.

[22] C. C. Drovandi, J. McGree, and A. N. Pettitt. A sequential Monte Carlo algorithm to
incorporate model uncertainty in Bayesian sequential design. Journal of Computational and
Graphical Statistics, 23(1):3–24, 2014.

[23] V. Elvira, L. Martino, D. Luengo, and M. Bugallo. Efficient multiple importance sampling
estimators. IEEE Signal Processing Letters, 22(10):1757–1761, 2015.

[24] V. Elvira, L. Martino, D. Luengo, and M. F. Bugallo. Generalized multiple importance
sampling. arXiv:1511.03095, 2015.

35

[25] V. Elvira, L. Martino, D. Luengo, and M. F. Bugallo. Heretical multiple importance sampling.
IEEE Signal Processing Letters, 23(10):1474–1478, 2016.

[26] W. J. Fitzgerald. Markov chain Monte Carlo methods with applications to signal processing.
Signal Processing, 81(1):3–18, January 2001.

[27] D. Gamerman and H. F. Lopes. Markov Chain Monte Carlo: Stochastic Simulation for
Bayesian Inference. Chapman & Hall/CRC Texts in Statistical Science, 2006.

[28] A. Gelman and D. B. Rubin. Inference from iterative simulation using multiple sequences.
Statistical Science, 7(4):457–472, 1992.

[29] J. L. Gomez-Dans, P. E. Lewis, and M. Disney. Efficient emulation of radiative transfer
codes using Gaussian Processes and application to land surface parameter inferences. Remote
Sensing, 8(2), 2016.

[30] H. Haario, E. Saksman, and J. Tamminen. An adaptive Metropolis algorithm. Bernoulli,
7(2):223–242, April 2001.

[31] J. H Huggins and D. M Roy. Convergence of sequential Monte Carlo based sampling methods.
arXiv:1503.00966, 2015.

[32] A. T. Ihler, J. W. Fisher, R. L. Moses, and A. S. Willsky. Nonparametric belief propagation for
self-localization of sensor networks. IEEE Transactions on Selected Areas in Communications,
23(4):809–819, April 2005.

[33] R. Lamberti, Y. Petetin, F. Septier, and F. Desbouvries. An improved sir-based sequential
Monte Carlo algorithm. In IEEE Statistical Signal Processing Workshop (SSP), pages 1–5,
2016.

[34] F. Liang, C. Liu, and R. Caroll. Advanced Markov Chain Monte Carlo Methods: Learning
from Past Samples. Wiley Series in Computational Statistics, England, 2010.

[35] J. S. Liu. Monte Carlo Strategies in Scientific Computing. Springer, 2004.

[36] L. Martino. A review of multiple try MCMC algorithms for signal processing. Digital Signal
Processing, 75:134 – 152, 2018.

[37] L. Martino, V. Elvira, and G. Camps-Valls. Group Metropolis Sampling. European Signal
Processing Conference (EUSIPCO), pages 1–5, 2017.

[38] L. Martino, V. Elvira, and F. Louzada. Weighting a resampled particle in Sequential Monte
Carlo. IEEE Statistical Signal Processing Workshop, (SSP), 122:1–5, 2016.

[39] L. Martino, V. Elvira, and M. F. Louzada. Effective Sample Size for importance sampling
based on the discrepancy measures. Signal Processing, 131:386–401, 2017.

36

[40] L. Martino, V. Elvira, D. Luengo, and J. Corander. MCMC-driven adaptive multiple
importance sampling. Interdisciplinary Bayesian Statistics Springer Proceedings in
Mathematics & Statistics (Chapter 8), 118:97–109, 2015.

[41] L. Martino, V. Elvira, D. Luengo, and J. Corander. Layered adaptive importance sampling.
Statistics and Computing, 27(3):599–623, 2017.

[42] L. Martino, V. Elvira, D. Luengo, J. Corander, and F. Louzada. Orthogonal parallel MCMC
methods for sampling and optimization. Digital Signal Processing, 58:64–84, 2016.

[43] L. Martino, F. Leisen, and J. Corander. On multiple try schemes and the Particle Metropolis-
Hastings algorithm. viXra:1409.0051, 2014.

[44] L. Martino and F. Louzada. Issues in the Multiple Try Metropolis mixing. Computational
Statistics, 32(1):239–252, 2017.

[45] L. Martino and J. Mı́guez. A novel rejection sampling scheme for posterior probability
distributions. Proc. of the 34th IEEE ICASSP, April 2009.

[46] L. Martino, V. P. Del Olmo, and J. Read. A multi-point Metropolis scheme with generic
weight functions. Statistics & Probability Letters, 82(7):1445–1453, 2012.

[47] L. Martino and J. Read. On the flexibility of the design of multiple try Metropolis schemes.
Computational Statistics, 28(6):2797–2823, 2013.

[48] L. Martino, J. Read, V. Elvira, and F. Louzada. Cooperative parallel particle filters for on-line
model selection and applications to urban mobility. Digital Signal Processing, 60:172–185,
2017.

[49] L. Martino, J. Read, and D. Luengo. Independent doubly adaptive rejection Metropolis
sampling. IEEE International Conference on Acoustics, Speech, and Signal Processing
(ICASSP), pages 1–5, 2014.

[50] J. Mı́guez and M. A. Vázquez. A proof of uniform convergence over time for a distributed
particle filter. Signal Processing, 122:152–163, 2016.

[51] C. A. Naesseth, F. Lindsten, and T. B. Schon. Nested Sequential Monte Carlo methods.
Proceedings of theInternational Conference on Machine Learning, 37:1–10, 2015.

[52] C. A. Naesseth, F. Lindsten, and T. B. Schon. High-dimensional filtering using nested
sequential Monte Carlo. arXiv:1612.09162, pages 1–48, 2016.

[53] N. Patwari, A. O. Hero, M. Perkins, N. S. Correal, and R. J. O’Dea. Relative location
estimation in wireless sensor networks. IEEE Transactions Signal Processing, 51(5):2137–
2148, 2003.

37

[54] M. Pereyra, P. Schniter, E. Chouzenoux, J. C. Pesquet, J. Y. Tourneret, A. Hero, and
S. McLaughlin. A survey on stochastic simulation and optimization methods in signal
processing. IEEE Sel. Topics in Signal Processing, 10(2):224–241, 2016.

[55] J. G. Propp and D. B. Wilson. Exact sampling with coupled Markov chains and applications
to statistical mechanics. Random Structures Algorithms, 9:223–252, 1996.

[56] T. S. Rappaport. Wireless Communications: Principles and Practice (2nd edition). Prentice-
Hall, Upper Saddle River, NJ (USA), 2001.

[57] C. E. Rasmussen and C. K. I. Williams. Gaussian processes for machine learning. MIT Press,
2006.

[58] J. Read, K. Achutegui, and J. Mı́guez. A distributed particle filter for nonlinear tracking in
wireless sensor networks. Signal Processing, 98:121 – 134, 2014.

[59] C. P. Robert and G. Casella. Monte Carlo Statistical Methods. Springer, 2004.

[60] J.J.K.O. Ruanaidh and W.J. Fitzgerald. Numerical Bayesian Methods Applied to Signal
Processing. Springer, New York, 2012.

[61] D. B. Rubin. Using the SIR algorithm to simulate posterior distributions. in Bayesian
Statistics 3, ads Bernardo, Degroot, Lindley, and Smith. Oxford University Press, Oxford,
1988., 1988.

[62] R. Bassi Stern. A statistical contribution to historical linguistics. Phd Thesis, 2015.

[63] I. Urteaga, M. F. Bugallo, and P. M. Djurić. Sequential Monte Carlo methods under model
uncertainty. In 2016 IEEE Statistical Signal Processing Workshop (SSP), pages 1–5, 2016.

[64] C. Verg, C. Dubarry, P. Del Moral, and E. Moulines. On parallel implementation of sequential
Monte Carlo methods: the island particle model. Statistics and Computing, 25(2):243–260,
2015.

[65] C. Verg, P. Del Moral, E. Moulines, and J. Olsson. Convergence properties of weighted
particle islands with application to the double bootstrap algorithm. arXiv:1410.4231, pages
1–39, 2014.

[66] X. Wang, R. Chen, and J. S. Liu. Monte Carlo Bayesian signal processing for wireless
communications. Journal of VLSI Signal Processing, 30:89–105, 2002.

[67] N. Whiteley, A. Lee, and K. Heine. On the role of interaction in sequential Monte Carlo
algorithms. Bernoulli, 22(1):494–529, 2016.

[68] W. H. Wong and F. Liang. Dynamic weighting in Monte Carlo and optimization. Proceedings
of the National Academy of Sciences (PNAS), 94(26):14220–14224, 1997.

38

A Proper weighting of a resampled particle

Let us consider the particle approximation of π̄ obtained by the IS approach drawing N particles
xn ∼ q(x), n = 1 . . . , N , i.e.,

π̂(x|x1:N) =
N∑

n=1

w̄(xn)δ(x− xn) =
N∑

n=1

w(xn)∑N
i=1w(xi)

δ(x− xn) =
1

NẐ

N∑

n=1

w(xn)δ(x− xn). (52)

where

Ẑ = Ẑ(x1:N) =
1

N

N∑

i=1

w(xi). (53)

Given the set of particles x1:N ∼
∏N

n=1 q(xn), a resampled particle is generated as x̃′ ∼ π̂(x|x1:N).

Let us denote the joint pdf Q̃(x,x1:N) = π̂(x|x1:N)
[∏N

i=1 q(xi)
]
. The marginal pdf q̃(x) of a

resampled particle x̃′, integrating out x1:N (i.e., x̃′ ∼ q̃(x)), is

q̃(x) =

∫

XN
Q̃(x,x1:N)dx1:N (54)

=

∫

XN
π̂(x|x1:N)

[
N∏

i=1

q(xi)

]
dx1:N , (55)

=

∫

XN

[
1

NẐ(x1:N)

N∑

j=1

w(xj)δ(x− xj)

][
N∏

i=1

q(xi)

]
dx1:N , (56)

=
N∑

j=1

∫

XN

1

NẐ(x1:N)
w(xj)

[
N∏

i=1

q(xi)

]
δ(x− xj)dx1:N , (57)

=
N∑

j=1



∫

XN−1

w(x)

NẐ(x1:j−1,x,xj+1:N)


q(x)

N∏

i=1
i 6=j

q(xi)


 dx¬j


 , (58)

=
N∑

j=1



∫

XN−1

w(x)

NẐ


q(x)

N∏

i=1
i 6=j

q(xi)


 dx¬j


 , (59)

where we have used the integration property of the delta function δ(x − xj), i.e, given a generic
function f(v), we have

∫
X f(v)δ(x − v)dv = f(x) with x ∈ X and, in the last equality, we have

39

just used the simplified notation Ẑ = Ẑ(x1:N) = Ẑ(x1:j−1,x,xj+1:N). Moreover, since w(x) = π(x)
q(x)

,

q̃(x) = π(x)
N∑

j=1



∫

XN−1

1

NẐ




N∏

i=1
i 6=j

q(xi)


 dx¬j


 , (60)

= π(x) ·N
∫

XN−1

1

NẐ




N∏

i=1
i 6=j

q(xi)


 dx¬j, (61)

= π(x)

∫

XN−1

1

Ẑ




N∏

i=1
i 6=j

q(xi)


 dx¬j, j ∈ {1, . . . , N}, (62)

where we have used that all the N integrals within the sum are equals, due to the symmetry of
the integrand function with respect to the N − 1 integration variables. Therefore, the standard
IS weight of a resampled particle, x̃′ ∼ q̃(x), is

w(x̃′) =
π(x̃′)

q̃(x̃′)
. (63)

However, generally q̃(x) cannot be evaluated, hence the standard IS weight cannot be computed
[33, 38, 51], [41, App. C1]. An alternative is to use the Liu’s definition of proper weighting in Eq.
(9) and look for a weight function ρ(x̃) = ρ(x̃|x1:N) such that

E eQ(x,x1:N)[ρ(x|x1:N)h(x)] = cEπ̄[h(x)], (64)

where Q̃(x,x1:N) = π̂(x|x1:N)
[∏N

i=1 q(xi)
]
. Below, we show that a suitable choice is

ρ(x̃|x1:N) = Ẑ(x1:N) =
1

N

N∑

i=1

w(xi), (65)

since it holds in Eq. (64).

Proof. Note that

E eQ(x,x1:N)[ρ(x|x1:N)h(x)] =

∫

X

∫

XN
ρ(x|x1:N)h(x)Q̃(x,x1:N)dxdx1:N , (66)

=

∫

X

∫

XN
h(x)ρ(x|x1:N)π̂(x|x1:N)

[
N∏

i=1

q(xi)

]
dxdx1:N . (67)

Recalling that π̂(x|x1:N) = 1

N bZ ∑N
j=1w(xj)δ(x − xj), where Ẑ = Ẑ(x1:N) = 1

N

∑N
n=1w(xn) and

40

w(xn) = π(xn)
q(xn)

, we can rearrange the expectation above as

E eQ(x,x1:N)[ρ(x|x1:N)h(x)] =

∫

X
h(x)




N∑

j=1



∫

XN−1

ρ(x|x1:N)
w(x)

NẐ


q(x)

N∏

i=1
i 6=j

q(xi)


 dx¬j





 dx,(68)

=

∫

X
h(x)π(x)




N∑

j=1



∫

XN−1

ρ(x|x1:N)
1

NẐ




N∏

i=1
i 6=j

q(xi)


 dx¬j





 dx,(69)

where x¬j = [x1, . . . ,xj−1,xj+1, . . . ,xN]. If we choose ρ(x|x1:N) = Ẑ and replace it in the
expression above, we obtain

E eQ(x,x1:N)[ρ(x|x1:N)h(x)] =

∫

X
h(x)π(x)




N∑

j=1



∫

XN−1

Ẑ
1

NẐ




N∏

i=1
i 6=j

q(xi)


 dx¬j





 dx, (70)

=

∫

X
h(x)π(x)N

1

N
dx, (71)

=

∫

X
h(x)π(x)dx (72)

= cEπ̄[h(x)], (73)

where c = Z, that is the normalizing constant of π(x). Note that Eq. (73) coincides with (64).
2

B Particle approximation by GIS

Let us consider S samples xm,n ∼ qm(x), where S =
∑M

m=1Nm, and weight them wm,n = π(xm,n)

qm(xm,n)

with m = 1, . . . ,M and n = 1, . . . , Nm. Moreover, let us define two types of normalized weights,
one within the m-th group

w̄m,n =
wm,n∑N
k=1wm,k

=
wm,n

NmẐm
, (74)

and the other one considering all the S samples,

r̄m,n =
wm,n∑M

j=1

∑Nj
k=1 wj,k

=
wm,n∑M
j=1NjẐj

. (75)

The complete particle approximation of the target distribution is

π̂(x|x1:M,1:N) =
1

∑M
j=1

∑Nj
k=1wj,k

M∑

m=1

Nm∑

n=1

wm,nδ(x− xm,n), (76)

=
M∑

m=1

Nm∑

n=1

r̄m,nδ(x− xm,n). (77)

41

Note that it can be also rewritten as

π̂(x|x1:M,1:N) =
1

∑M
j=1 NjẐj

M∑

m=1

NmẐm

N∑

n=1

w̄m,nδ(x− xm,n), (78)

=
1

∑M
j=1 NjẐj

M∑

m=1

NmẐmπ̂(x|xm,1:N), (79)

=
M∑

m=1

Wmπ̂(x|xm,1:N), (80)

where π̂(x|xm,1:N) are the m-th particle approximation and Wm = Nm bZmPM
j=1Nj

bZj is the normalized

weight of the m-th group. If we resample M times x̃m ∼ π̂(x|xm,1:N) exactly one sample per
group, we obtain the particle approximation of Eq. (13), i.e.,

π̂(x|x̃1:M) =
M∑

m=1

Wmδ(x− x̃m). (81)

Since π̂(x|x1:M,1:N) is a particle approximation of the target distribution π̄ (converging to the
distribution for N → ∞), then π̂(x|x̃1:M) is also a particle approximation of π̄ (converging for
N →∞ and M →∞).Therefore, any estimator of the moments of π̄ obtained using the summary
weighted particles as in Eq. (14) is consistent.

C Estimators of the marginal likelihood in SIS and SIR

The classical IS estimator of the normalizing constant Zd =
∫

Rd×η πd(x1:d)dx1:d at the d-th iteration
is

Ẑd =
1

N

N∑

n=1

w
(n)
d =

1

N

N∑

n=1

w
(n)
d−1β

(n)
d , (82)

=
1

N

N∑

n=1

[
d∏

j=1

β
(n)
j

]
. (83)

An alternative formulation, denoted as Zd, is often used

Zd =
d∏

j=1

[
N∑

n=1

w̄
(n)
j−1β

(n)
j

]
(84)

=
d∏

j=1

[∑N
n=1w

(n)
j∑N

n=1w
(n)
j−1

]
= Ẑ1

d∏

j=2

[
Ẑj

Ẑj−1

]
= Ẑd. (85)

42

where we have employed w̄
(n)
j−1 =

w
(n)
j−1PN

i=1 w
(i)
j−1

and w
(n)
j = w

(n)
j−1β

(n)
j with w

(n)
0 = 1 [19, 20]. Therefore,

given Eq. (85), in SIS these two estimators Ẑd in Eq. (82) and Zd in Eq. (84) are equivalent
approximations of the d-th marginal likelihood Zd [48]. Furthermore, note that Zd can be written
in a recursive form as

Zd = Zd−1

[
N∑

n=1

w̄
(n)
d−1β

(n)
d

]
. (86)

C.1 Estimators of the marginal likelihood in particle filtering

Sequential Importance Resampling (SIR) (a.k.a., particle filtering) combines the SIS approach
with the application of the resampling procedure corresponding to step 2(c)ii of Table 3. If the
GIS weighting is not applied, in SIR only

Zd =
d∏

j=1

[
N∑

n=1

w̄
(n)
j−1β

(n)
j

]
. (87)

is a consistent estimator of Zd. In this case, Ẑd = 1
N

∑N
n=1 w

(n)
d is not a possible alternative without

using GIS. However, considering the proper GIS weighting of the resampled particles (the step

2(c)iii of Table 3), then Ẑd is also a consistent estimator of Zd and it is equivalent to Zd. Below,
we analyze three cases considering a resampling applied to the entire set of particles:

• No Resampling (η = 0): this scenario corresponds to SIS where Ẑd, Zd are equivalent as
shown in Eq. (85).

• Resampling at each iteration (η = 1): using the GIS weighting, w
(n)
d−1 = Ẑd−1 for all n

and for all d, and replacing in Eq. (82) we have

Ẑd = Ẑd−1

[
1

N

N∑

n=1

β
(n)
d

]
, (88)

=
1

N

d∏

j=1

[
N∑

n=1

β
(n)
j

]
. (89)

Since the resampling is applied to the entire set of particles, we have w̄
(n)
d−1 = 1

N
for all n.

Replacing it in the expression of Zd in (86), we obtain

Zd =
1

N

d∏

j=1

[
N∑

n=1

β
(n)
j

]
, (90)

that coincides with Ẑd in Eq. (89).

43

• Adaptive resampling (0 < η < 1): for the sake of simplicity, let us start considering a
unique resampling step applied at the k-th iteation with k < d. We check if both estimators
are equal at d-th iteration of the recursion. Due to Eq. (85), we have Zk ≡ Ẑk,

9 since before

the k-th iteration no resampling has been applied. With the proper weighting w
(n)
k = Ẑk for

all n, at the next iteration we have

Ẑk+1 =
1

N

N∑

n=1

w
(n)
k β

(n)
k+1 = Ẑk

[
1

N

N∑

n=1

β
(n)
k+1

]
, (91)

and using Eq. (86), we obtain

Zk+1 = Zk

[
N∑

n=1

1

N
β

(n)
k+1

]
= Ẑk

[
1

N

N∑

n=1

β
(n)
k+1

]
, (92)

so that the estimators are equivalent also at the (k + 1)-th iteration, Zk+1 ≡ Ẑk+1. Since
we are assuming no resampling steps after the k-th iteration and until the d-th iteration, we
have that Zi ≡ Ẑi for i = k + 2, . . . , d due to we are in a SIS scenario for i > k (see Eq.
(85)). This reasoning can be easily extended for different number of resampling steps.

Figure 15 summarizes the expressions of the estimators in the extreme cases of η = 0 and
η = 1. Note that the operations of sum and product are inverted. See DEMO-1 at https:

//github.com/lukafree/GIS.git.

Zd ⌘ bZd =
1
N

NX

n=1

2
4

dY

j=1

�
(n)
j

3
5 .

No Resampling (⌘ = 0)

SIS bootstrap particle filter

Zd = bZd =
1
N

dY

j=1

"
NX

n=1

�
(n)
j

#

Always Resampling (⌘ = 1)

Figure 15: Expressions of the marginal likelihood estimators Zd and Ẑd in two extreme scenarios:
without resampling and applying resampling at each iterations. Note that in the formulations above the
operations of sum and product are inverted.

D Particle Marginal Metropolis-Hastings (PMMH)

algorithms

Let us consider x = x1:D = [x1, x2, . . . , xD] ∈ X ⊆ RD×ξ where xd ∈ Rξ for all d = 1, . . . , D and
an additional model parameter θ ∈ Rdθ to be inferred as well. Assuming a prior pdf gθ(θ) over θ,

9We consider to compute the estimators before the resampling.

44

https://github.com/lukafree/GIS.git
https://github.com/lukafree/GIS.git

and a factorized complete posterior pdf π̄c(x,θ)

π̄c(x,θ) =
gθ(θ)π(x|θ)

Z(θ)
∝ πc(x,θ) = gθ(θ)π(x|θ), (93)

where π(x|θ) = γ1(x1|θ)
∏D

d=2 γd(xd|x1:d−1,θ) and Z(θ) =
∫

Rdθ gθ(θ)π(x|θ)dθ. Moreover, let us

the denote as π̂(x|v1:N ,θ) = 1

N bZ(θ)

∑N
n=1w(vn|θ)δ(x − vn) a particle approximation of π(x|θ)

obtained by one run of a particle filter approach, and Ẑ(θ) = 1
N

∑N
n=1 w(vn|θ) is an unbiased

estimator of Z(θ). The Marginal PMH (PMMH) technique is then summarized in Table 14.
PMMH is often used for both smoothing and parameter estimation in state-space models. Note
that if qθ(θ|θt−1) = gθ(θ) then the acceptance function becomes

α = min

[
1,

Ẑ(θ′)

Ẑ(θt−1)

]
. (94)

Table 14: Particle Marginal MH (PMMH) algorithm

1. Choose x0, θ0, and obtain a first estimation Ẑ(θ0).

2. For t = 1, . . . , T :

(a) Draw θ′ ∼ qθ(θ|θt−1) and vj ∼ π̂(x|v1:N ,θ
′) = 1

N bZ(θ′)

∑N
n=1 w(vn|θ′)δ(x − vn)

(where π̂ is obtained with one run of a particle filter).

(b) Set θt = θ′, xt = vj, with probability

α = min

[
1,

Ẑ(θ′)gθ(θ
′)qθ(θt−1|θ′)

Ẑ(θt−1)gθ(θt−1)qθ(θ|θt−1)

]
. (95)

Otherwise, set θt = θ′ and xt = xt−1.

3. Return {xt}Tt=1 and {θt}Tt=1.

Distributed Particle Marginal Metropolis-Hastings (DPMMH). We can easily design
a marginal version of DPMH in Section 5.2, drawing θ′ ∼ qθ(θ|θt−1) and run M particle filters
addressing the target pdf π̄(x|θ′). The algorithm follows the steps in Table 14 with the difference
that M parallel particle filters are used, and in this case the acceptance probability is

α = min


1,

[∑M
m=1 Ẑm(θ′)

]
gθ(θ

′)qθ(θt−1|θ′)
[∑M

m=1 Ẑm(θt−1)
]
gθ(θt−1)qθ(θ|θt−1)


 . (96)

45

E GMS as infinite parallel IMTM2 chains

In this section, we show how the GMS can be interpreted as the use of infinite number of dependent
parallel IMTM2 chains. We have already seen that we can recover an I-MTM2 chain from the
GMS outputs applying one resampling step for each t when St 6= St−1, i.e.,

x̃t =





ṽt ∼
N∑

n=1

ρn,t∑N
i=1 ρi,t

δ(x− xn,t), if St 6= St−1,

x̃t−1, if St = St−1,

(97)

for t = 1, . . . , T . The sequence {x̃t}Tt=1 is a chain obtained by one run of an I-MTM2 technique.
Note that (a)the sample generation, (b) the acceptance probability function and hence (c) the
dynamics of GMS exactly coincide with the corresponding steps of I-MTM2 (or PMH; depending
on candidate generation procedure). Hence, the ergodicity of the recovered chain is ensured.
Parallel chains from GMS outputs. We can extend the previous consideration for generation
C parallel I-MTM2 chains. Indeed, we resample independently C times (instead of only one)
within the set of accepted candidates at the t-th iteration {x1,t, . . . ,xN,t} , i.e.,

x̃
(c)
t =





ṽ
(c)
t ∼

N∑

n=1

ρn,t∑N
i=1 ρi,t

δ(x− xn,t), if St 6= St−1,

x̃
(c)
t−1, if St = St−1,

(98)

for c = 1, . . . , C, where the super-index denotes the c-th chain (similar procedures have been
suggested in [10, 42]). Clearly, the resulting C parallel chains are not independent, and there is an
evident loss in the performance w.r.t. the case of independent parallel chains (IPCs). However, at
each iteration, the number of target evaluations per iteration is only N instead of NC, as in the
case of IPCs. Note that that each chain in ergodic, so that each estimator Ĩ

(c)
T = 1

T

∑T
t=1 h(x̃

(c)
t)

is consistent for T →∞. As a consequence, the arithmetic mean of consistent estimators,

ĨC,T =
1

C

C∑

c=1

Ĩ
(c)
T =

1

CT

T∑

t=1

C∑

c=1

h(x̃
(c)
t), (99)

is also consistent, for all values of C ≥ 1.
GMS as limit case. Let us consider the case St 6= St−1 (the other is trivial), at some iteration

t. In this scenario, the samples of the C parallel I-MTM2 chains, x̃
(1)
t ,x̃

(2)
t ,...,x̃

(C)
t , are obtained

by resampled independently C samples from the set {x1,t, . . . ,xN,t} according to the normalized

weights ρ̄n,t = ρn,tPN
i=1 ρi,t

, for n = 1, . . . , N . Recall that the samples x̃
(1)
t ,x̃

(2)
t ,...,x̃

(C)
t , will be used in

the final estimator ĨC,T in Eq. (99).
Let us denote as #j the number of times that a specific candidate xj,t (contained in the set

{xn,t}Nn=1) has been selected as state of one of C chains, at the t iteration. As C → ∞, The
fraction #j

C
approaches exactly the corresponding probability ρ̄j,t. Then, for C → ∞, we have

46

that the estimator in Eq. (99) approaches the GMS estimator, i.e.,

ĨT = lim
C→∞

ĨC,T =
1

T

T∑

t=1

N∑

n=1

ρ̄n,th(xn,t). (100)

Since ĨC,T as T →∞ is consistent for all values of C, then the GMS estimator ĨT is also consistent
(and can be obtained as C →∞).

47

	Introduction
	Problem statement and background
	Markov Chain Monte Carlo (MCMC) algorithms
	Importance Sampling
	Concept of proper weighting

	Group Importance Sampling: weighting a set of samples
	GIS in other Monte Carlo schemes
	Application in particle filtering
	Sequential Importance Sampling (SIS)
	Sequential Importance Resampling (SIR)

	Multiple Try Metropolis schemes as a Standard Metropolis-Hastings method

	Novel MCMC techniques based on GIS
	Group Metropolis Sampling
	Distributed Particle Metropolis-Hastings algorithm

	Numerical Experiments
	Hyperparameter tuning for Gaussian Process (GP) regression models
	Localization of a target and tuning of the sensor network
	Target localization with real data
	Setup of the Experiment
	Posterior density, algorithms and results

	Tracking of biophysical parameters

	Conclusions
	Proper weighting of a resampled particle
	Particle approximation by GIS
	Estimators of the marginal likelihood in SIS and SIR
	Estimators of the marginal likelihood in particle filtering

	Particle Marginal Metropolis-Hastings (PMMH) algorithms
	 GMS as infinite parallel IMTM2 chains

