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A new independent derivation of general theory of relativity using only special relativity principles
is shown. Some solutions are derived and discussed.

INTRODUCTION

In general relativity (GR), the curvature of spacetime
is directly related to the stress-energy tensor. This pro-
vides a rigorous geometric description for the gravita-
tional phenomena. Yet, the theory is geometrically very
complicated. Different attempts for alternatives have
been made [1–3], but the consistency with special rel-
ativity (SR) is confused.

In the present paper [4], we provide an independent
derivation of the theory, using only SR principles: we
find that the first SR postulate naturally corresponds to
the conservation of geometric momenta, and the second
to the constancy of the speed of light globally.

The result of the approach is that a new equations for
the gravitation theory are discovered, which naturally
lead to he usual metrics found through GR.

In fact, we do not find Einstein equations, but new
formula (relating the spacetime interval with the stress-
energy tensor), which self-sufficiently reproduces the
geodesics found through GR: the Schwarzschild and
Reissner-Nordstrom metrics. The results simplify the
theory of gravitation very much, since the curvature in
use is that of lines (not surfaces). Moreover, new insights
into the quantitative description of quantum gravity are
provided: the approach we present here fundamentally
based on the notion of local coordinates, which can lead
to new key-concepts about gravitational waves.

RIEMANN GEOMETRY

Riemann manifold is the global space on which Ein-
stein equations solutions are represented. Each point,
say p, in it corresponds to the center, say Ol(p), of a local
frame. Each local frame has its own local basis, with re-
spect to the gravity center. For a global observer at the
gravity center, say O, this basis is the coordinates ba-
sis. The location in the global space is defined by curved
coordinates, say {xµ}, whereas in the local frames the
flat coordinates are used instead, say {Xµ}. At a point
M , the coordinates basis can be defined using the par-
tial derivative of the global position with respect to the
curved coordinates as: eµ = ∂µOM. Of course, this basis
is tangential to the lines of curved coordinates.

Einstein realized that local frames correspond to the

case of SR, whereas the general motion in the global
space (which corresponds to a continuous jumping be-
tween infinite Minkowski spaces) corresponds to the gen-
eral case of the theory, he called general relativity. The
idea is that: for a local observer in free-fall (moving
along a given geodesic), the space with respect to him
is Minkowskian. This called Einstein equivalence prin-
ciple (EEP). Einstein equations are the constraints that
define the geodesics, as such, define EEP.

The result of the theory is that:matter distorts space-
time, and beings living in spacetime follow distorted
paths.

GLOBAL RELATIVITY

SR is the local description of spacetime. For the global
observer, the local frame changes at each new point on
the geodesic. This leads to the general case of the theory:
global relativity.

Let us make the argument more clear. In a local frame
Ol(p), the local observer measures the infinitesimal inter-
val as:

ds2 = gµν(X)dXµdXν (1)

where gµν(X) is the Minkowskian metric. With re-
spect to the global observer, in the general case, each
infinitesimal element in the coordinates is split as:

dxµ = fµν (x)dXν (2)

where fµν (x) = ∂xµ

∂Xν . In the global space, the coor-
dinates are curved; therefore, the relations between the
coordinates are not linear. Moreover, each coordinate is
parametrized with the parameter of the embedded curve
(geodesic) as: xµ(τ). Furthermore, each coordinate may
(generally) construct three planes, e.g. for x1, we have:{

(x1, x2), (x1, x3), (x1, x4)
}

; therefore, each coordinate
may generally construct three curves by eliminating the
parameter τ between the couples, e.g. for x1(τ), we have:{

(x1(τ), x2(τ)), (x1(τ), x3(τ)), (x1(τ), x4(τ))
}

; each cou-
ple corresponds to a curve. We use the polar coordinates
for each couple, with the choice that the coordinate that
construct the planes plays the role of the rho-coordinate,
e.g. for

{
(x1, x2), (x1, x3), (x1, x4)

}
, the coordinate x1
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plays the role of the rho-coordinate. These planes are
used to parametrize the general form of the curve in the
global space; hence, they determine the explicit form of
the curvature.

Since the coordinates Xµ are flat, in the general case,
we write

dXi = ωidT i, i = 1, 3. (3)

That is, the theory (generally) is described with three
constants. Therefore

dxµ = fµν (x)dXν = (gµν (X) + gµ4 (X)ωρδ
ρ
ν) dXν (4)

where ωρ = 1
ωρ , ω1 = 1 (Note that {xν} locally reduce

to {Xν} and the relations between the coordinates {Xν}
are linear).

An important note to mention is that the differential
elements used here are not infinitesimal in the mathemat-
ical sense, but in the context of EEP. That is, they cor-
respond (physically) to sufficiently small region of space.

Clearly, the quantities {fµ4 (x)} correspond to curva-
tures (of curved lines in 2d spaces), as such, they corre-
spond to accelerations; therefore, multiplying these with
the differential element of the time coordinate dτ , we get
elements of velocity in the same/opposite direction of the
µ-axis.

Of course, ds
dτ is invariant, as such, the square

gµν(X)X
µ

dτ
dXν

dτ = M . Since the components of this four-
vector are the velocity, thus by adopting constants for
these components, we get a geometric stress-energy ten-
sor; its physical interpretation is simple: it represents
locally the four-vector of impulsion-energy (caused by
gravity) of the test particle under study.

But, how the picture is, for the global observer? The
answer is simple; we just apply SR principles. The first
SR postulate corresponds to the conservation of momen-
tum, and the second corresponds to the constancy of
speed of light (as it is measured by the local and global
observers). The result is that we find the generalized geo-
metric stress-energy tensor, say Gµν . The gravity theory,
therefore, lies in the equation

ds2 = Gµνdx
µdxν . (5)

It is clear that Gµν reduces to Mµν locally. Consider-
ing the general case by adding the stress-energy tensor of
ordinary matter gives the final form of the gravity equa-
tion:

ds2 = Ĝµνdx
µdxν (6)

where Ĝµν corresponds to the matter-geometry stress-
energy tensor as it is measured by the global observer.
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FIG. 1. A circular geodesic; the continuous path (black) cor-
responds to the global observer; the discrete path (red) cor-
responds to the local observer; the straight path (green) cor-
responds to the local R-axis; with its orthogonal axis they
construct the local plane. This representation corresponds to

the arc âb. Each arc in the curve has the same description

Evidently, the last equation defines the metric of space-
time, together with the geodesic equations (Note that
the geodesics equations are closely to the local coordi-
nate [5]), the curved paths can be determined explicitly.

THE SPHERICAL SYMMETRIC CASE

For the case of spherical symmetric gravitational field,
the orbits are circles. A circular orbit can be represented
locally (which depends on the position on the curve;
and it takes discrete description as in Regge geometry)
and globally (continuously; which we get by taking the
lengths of the edges in the discretization to zero; as it
looks globally) in a contextual form, see Fig. 1. In this
case:

fr4 (x) =
−1

r
(7)

This is the usual curvature of a circular curve in two
dimensional space (r, ϕ). This leads to

(dxr)2 =

(
1− 1

r

)
(dXr)2 = k(r)d(Xr)2 (8)

For dxt, we use the spacetime diagram (as in SR) to-
gether with the last equation, we get the result:

f t4(x) =
−1
r

k(r)
(9)

which gives
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(dxt)2 =
1

k(r)
(dXt)2 (10)

By replacing these equations in Eq (1), we get
the spherical symmetric solution of Einstein equations
(Schwarzschild solution):

ds2 = −(dXt)2 + (dXr)2 + (rdθ)2 + (r sin(θ)dϕ)2 (11)

= −k(r)(dxt)2 +
1

k(r)
(dxr)2 + (rdθ)2 + (r sin(θ)dϕ)2 (12)

This completes the derivation in question.
Note that the derivation of Eq. (10) can be extracted

straightforwardly using the postulate of the constancy of
the speed of light of SR, without using the spacetime di-
agram (i.e. the last derivation fundamentally reflects the
speed of light constancy postulate): it is clear that the
element of velocity dr

dτ is tangent to the spherical sym-
metric geodesic, thus locally this element corresponds to
a uniform straight motion (with respect to the observer
at this local frame). With respect to the global observer
(at the gravity center), this element has an additional
contribution (due to the curvature of the curve fr4 (x),
see above); the picture is illustrated in Fig. 1. On the
other hand, the distance traveled by light (of course, with
the constant of speed c) with respect to the local observer
is dXr, and with respect to the global observer, the dis-
tance is dxr. At the same time, the speed of light is the
same with respect to both the local and global observers
(the constancy of speed of light postulate). Therefore,
the time (with respect to the global observer) must pass
slowly when it is compared with its passage with respect
to the local observer.

This can be visualized as follows: the light travels
through a longer distance (with respect to the local ob-
server) than the distance with respect to the global ob-
server (due to the contraction in length), see Fig 1. At
the same time, the starting point of traveling (which is
r with respect to the global observer; and R = 0 with
respect to the local observer; note that the differential in
coordinates here is not in the mathematical sense, but
in the context of Einstein equivalence principle) and the
final one (which is r + dr with respect to the global ob-
server; and dR with respect to the local observer) are
the same with respect to both local and global observers
(this is obvious; the local frames construct atlas, with
are glued together in a consistent way to cover the global
Riemann manifold). Therefore, the only way these con-
ditions are satisfied is that the speed of the time-passage
(with respect to the two observers) is different.

One may be wondered that: in GR, some solutions
naturally involve non-diagonal metrics. Naturally, if the
curves corresponding to the curvatures fµ4 (x) depend on
the corresponding three curved coordinates, then (when
we apply the second SR postulate) new constraints are
considered, as such, relations between coordinates are re-

sulted, which lead finally (when we compute the square
of infinitesimal coordinates elements) to those terms be-
ing discussed: if we suppose that the additional in-
finitesimal length of the curve with respect to the global
observer, say dl, depends on more than one variable:
dl = a(x)µdx

µ. The metric, therefore, is expected to
have the form:

ds2 = b(x)dt2 + (c(x)ρdl
ρ)2 (13)

where a(x), b(x), c(x) are functions depend on x, Thus,
we can see that (in the form of the metric) (c(x)ρdl

ρ)2

reproduces the general case.

REISSNER-NORDSTROM SOLUTION

In the case of gravitational field of a charged, non-
rotating, spherically symmetric gravity source, the met-
ric is extracted by taking into account the Hamiltonian
terms, say Tϕϕ or Tθθ, of the electric charge, say q, and
the that of cosmological constant,say Λ. Their Hamilto-
nian terms are given by [6]: for Λ, Tϕϕ = −r2Λ; for q,
Tϕϕ = χ

r2 , where χ is a constant.
First, let us clarify more the expression of the

geometry-matter stress-energy tensor Ĝµν : (a) the first
term corresponds to the contributions of the Minkowski
local frame and the induced spacetime (from the curva-
ture), (b) the second corresponds to the usual matter
stress-energy tensor. That is

Ĝµν = Gµν + Tµν (14)

This leads to the formula (using the above analysis)

(dxr)2 = (1− 1

r
+
χ

r2
−Λr2)(dXr)2 = K(r)(dXr)2 (15)

For the element of time, we proceed as above, evidently
this gives

(dxt)2 =
1

K(r)
(dXt)2 (16)

which completes the derivation being discussed:
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ds2 = −(dXt)2 + (dXr)2 + (rdθ)2 + (r sin(θ)dϕ)2 = −K(r)(dxt)2 +
1

K(r)
(dxr)2 + (rdθ)2 + (r sin(θ)dϕ)2 (17)

THE GEOMETRIC STRESS-ENERGY TENSOR:
GENERALIZATION

Here, we derive the Reissner-Nordstrom Solution geo-
metrically, with a nice physical-mathematical realization.

Electric Charge Constant

If the sphere-area (formed by the couple (ϕ, θ), with
radius r) is expanding, then the curvature element fr4 (x)
will naturally have an additional contribution (because
of the curvature of the expanding sphere), which leads
to the contribution of the electric charge Hamiltonian in
the geodesic, exactly as above.

The generalization in this study is that the term fr4 (x)

is replaced with f̂r4 (x) such that: f̂r4 (x) = fr4 (x)+F θϕ4 (x).
This is for the this particular case. In the general case,
however, the equation Eq (2) becomes:

dxµ = fµν (x)dXν + Fµν (x)dXν (18)

where

F iν(x) =
1

2
∂ν

(
Xj ∧Xkε

ijk
)
, F 4

ν (x) = 0, (19)

where i, j, k = 1, 3, Fµν (x) are Gauss (or Riemann) cur-
vatures of the surfaces, and εijk is Levi-Civita tensor.

Cosmological Constant

If the space is charged with a surface-distribution of
energy (hypothetically), then the Hamiltonian will take

the form: G22 = 4πΛr2 where Λ is the constant of distri-
bution. Evidently, this leads to the term of cosmological
constant found above. Note that: we have considered
the surface-distribution because of the fact that locally
we are dealing with a one-form quantity (i.e. infinitesimal
charts in the manifold), therefor, globally the case corre-
sponds to a volumetric distribution with a given constant.
This is the constant used (in many sources) to interpret
the dark energy mysterious.

Note that, if the curvature is negative, the force is
attractive; if it is positive, the force is repulsive.

CONCLUSION

Einstein equivalence principle is the geometric realiza-
tion of special theory of relativity principles.
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