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Abstract: It is shown from the laws of conservation of energy and angular momentum that the gravitational energy 
of a bound state particle is dependent upon its geometric mean angular frequency. A classical interpretation for the 

intrinsic “spin” angular momentum of a particle is submitted that can be tested macroscopically with the 
Rarita−Schwinger equation for the orbit of Mercury. Librations in the relative obliquity of planetary bodies are 

shown to be analogous to the Larmor precession of atomic particles. Schrodinger's concept of a bound state 
electron's zitterbewegung is hypothesized to be the librations in the electron's relative obliquity.
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INTRODUCTION

It is well known that the angular momentum L of a bound state particle in an eccentric orbit is 
equivalent at the extreme points of its orbit:

where m is a particle's mass, v is its tangential velocity, and r is its orbital radius. We also know from 
the law of conservation of energy that 

where G is Newton's gravitational constant and M is the mass of a primary body. 

A PARTICLE'S NON−RELATIVISTIC GRAVITATIONAL ENERGY

Rearranging Eq. 2 and removing the common factor m,

Substituting the values of vmin and vmax from Eq. (1) in Eq. (3),

and upon rearrangement of the radii, 
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From orbital mechanics we know the semi−major axis a and semi−minor axis b of a particle's orbit are 
equivalent to its arithmetic and geometric mean distances from the focus respectively. The sum of the 
inverse extreme radii in Eq. (5) is therefore,

Combining Eqs. (5 & 6),

from which a particle's angular momentum L is,

Since L is a conserved quantity and a particle's geometric mean distance b = √rminrmax, a particle's 
geometric mean tangential velocity vb is,

A particle's non−relativistic gravitational energy U(b, t) can then be defined from Eqs. (7 & 9) as, 

where ωb is a particle's geometric mean angular frequency.

A CLASSICAL INTERPRETATION OF “SPIN”

We can see from the equation of time graph to the left that 
the frequency of Earth's obliquity (mauve dashed curve) is 
roughly twice the frequency of its eccentricity (blue 
dash−dot curve). The superposition of the orthogonal 
temporal waves (red curve) can be graphed parametrically 
as a Lissajous figure that can be observed from the Earth's 
surface as the solar analemma: 



where A and B are the amplitudes of the eccentric and oblique temporal waves respectively, δ is the 
observational angle of the Lissajous figure, and the “spin” ratio s = fE : fO ≈ 1:2 (for Earth's orbit), 
where fE and fO are the frequencies of the Earth's eccentricity and obliquity respectively. 

The visual appearance of a Lissajous figure is dependent upon the “height−to−width” ratio A : B and 
the spin ratio s (a circle resulting when A = B, s = 1:1, and δ = π:2). We can see from the visual 
appearance of the solar analemmas of other planets in our system, 

that a planet's spin ratio s can vary between ≈ 1:1 to 1:2, analogous to the spin of bosons and fermions 
in electrodynamics. It can also be deduced from Eq. (11) that s = 2:1, δ = π:2 results in,

which is a horizontally offset version of the parametric equation for a parabola. This could explain why 
particles with s ≥ 2 have not been observed in atomic nuclei. The planet Mercury, with s ≈ 3:2, would 
be analogous to a composite gravitino; theoretically governed by the Rarita−Schwinger equation[1],

where ϵµκρν is the alternating symbol, γ5 and γκ are Dirac matrices, m is the gravitino's mass, and ψν is a 
vector−valued spinor that has additional components compared to the Dirac equation spinor[2]. With the 
values in Eq. (11) set to A = B, s = 3:2, δ = π:2, the Lissajous figure for a gravitino would be:
    

THE ORIGIN OF A PLANET'S OBLIQUE ANGULAR FREQUENCY

It is proposed that a planet's oblique angular frequency ῶ = 2πfO (Larmor precession)[3] is caused by the 
torque τ induced on its magnetic moment mP by the total magnetic field B of the system[4,5,6,7],

where the last term describes the Einstein−de Haas[4] and Barnett[5] effects, γ is a planet's gyromagnetic 
ratio, J is its total (gyromagnetic) angular momentum[3], Morb is its orbital magnetization[6,7] and Mspin is 
its spin magnetization[5]. Isolating the oblique angular frequency ῶ[3] to one side in Eq. (14) yields,



where µ0 is the magnetic constant and θi is the azimuthal angle from the polar axis of each of the 
magnetic dipole moments mi within the system. 

The oblique angular frequency ῶ (Larmor precession) for planets with s ≈ 1:2 (analogous to composite 
fermions) could theoretically be described with the Bargmann−Michel−Telegdi (BMT) equation[8],

where mP is the planet's magnetic moment, uτ is its four−velocity, and Fτσ is the “gravitomagnetic” 
field−strength tensor. Assuming the coefficient 2 in the BMT equation is a particle's inverse spin ratio  
ṩ = 2 = 1:s, the coefficient would be ṩ = 1 for bosons and ṩ = 2/3 for gravitinos.

CONCLUSION

It was discovered by Schrodinger[9] from analysis of solutions to the Dirac equation[2] that the energy of 
a bound state electron oscillates with an angular frequency ῶe [9,10] equivalent to,

where c is the speed of light in a vacuum, me is an electron's mass, and ћ is Planck's reduced constant. 
Schrodinger referred to this as an electron's “zitterbewegung” (wiggling motion). It is hypothesized that 
an electron's zitterbewegung is the angular frequency of its obliquity ῶ[3,10], and the reason ῶ differs by 
a factor of 2 from the Planck−Einstein relation is because fermions are s = 1:ṩ = 1:2 particles. 

Since an electron's angular momentum is quantized in units of ћ, and we know from Einstein's special 
theory of relativity that E = mc2, the energy of a bound state electron's orbit could be interpreted from 
Eqs. (10 & 17) as being its gravitational (potential) energy,

Since a particle's angular momentum L is dependent upon its geometric mean distance b (Eq. 8), the 
oscillations in an electron's energy states could be interpreted as oscillations in ωb relative to b (the 
gravitational energy U(b, t) radius is normalized to b instead of ∞). 

With this interpretation of Eq. (18), the relative consistency observed in the stellar orbital speeds of 
spiral galaxies could be explained if the geometric mean angular frequency ωb of the stars increase 
proportionately with their distance from the galactic nucleus. Geological records[11] indicate our Sun 
oscillates relative to the plane of our galaxy in ≈ 31 ± 1 Myr cycles during its ≈ 225 − 250 Myr orbit, 
which could provide physical evidence for this hypothesis[12].  
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