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Abstract. In this work, we introduce the n-irreducible sequents and the n-irreducible num-

bers defined with the help of the second order logic. We give many concrete examples of

n-irreducible numbers and n-irreducible sequents with the Peano’s axioms and the axioms

of the real numbers. Shortly, a sequent is n-irreducible iff the sequent is composed by some

closed hypotheses and a n-irreducible formula (a close formula with one internal variable

such that the formula is only true when we set that variable to the unique natural number

n), and it does not exist some strict sub-sequent which are composed by some closed sub-

hypotheses and some sub-m-irreducible formula with m > 1. The definition is motivated

by the intuition that the “Nature’s hypotheses”do not carry natural numbers or ”hidden

natural numbers” except for the numbers 0 and 1, i.e., they can be used in a n-irreducible

sequent. Moreover, we postulate at second order of logic that the “Nature’s hypotheses”are

not chosen randomly: the “Nature’s hypotheses”has the propriety to give the largest n-

irreducible number NZ ∼ 22.205×1061 among a finite number of n-irreducible sequents. The

Collatz conjecture, the Goldbach’s conjecture, the Polignac’s conjecture, the Firoozbakht’s

conjecture, the Oppermann’s conjecture, the Agoh-Giuga conjecture, the generalized Fer-

mat’s conjecture and the Schinzel’s hypothesis H are reviewed with this new (second order

logic) n-irreducible axiom. Finally, two open questions remain: Can we prove that a natural

number is not n-irreducible? If a n-irreducible number n is found with a function symbol f

where its outputs values are only 0 and 1, can we always replace the function symbol f by

a another function symbol f̃ such that f̃ = 1 − f and the new sequent is still n-irreducible?
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1. Introduction

The present article is motivated by the consequences (in number theory and in funda-

mental physics) of the definition of a n-irreducible number, the definition of a n-irreducible

sequent, the (second order logic) n-irreducible axiom which states the existence of the largest

n-irreducible number NZ among a finite number of n-irreducible sequent and the (second

order logic) n-irreducible hypothesis on the “Nature’s hypotheses”(the required hypotheses

to explain the physical measurements) which states that the “Nature’s hypotheses”are the

hypotheses of a NZ-irreducible sequent. The first set of consequences are: the Collatz con-

jecture, the Goldbach’s conjecture, the Polignac’s conjecture, the Firoozbakht’s conjecture,

the Oppermann’s conjecture, the Agoh-Giuga conjecture, the generalized Fermat’s conjecture

(which requires computational resources which are not reached today even for checking the

simple case: a = 2 and b = 1) and the Schinzel’s hypothesis H (which requires computa-

tional resources impossible to reach:
(
π (NZ) 2NZ

)NZ cases) are solved by the (second order

logic) n-irreducible axiom. To prove the previous conjectures, it requires almost unaccessible

computational resources for checking about NZ ∼!
(

3× 4× (2N)N
2
)
∼ 22.205×1061 cases with

N = 7 since the number of atoms in the visible universe is 2× 1079. A universe-sized quan-

tum computer would perform ”only” 22×1079 operations. The second set of consequences

are the “Nature’s hypotheses”generated by a NZ-irreducible hypothesis on the “Nature’s

hypotheses”.

From researches in fundamental physics, the n-irreducible numbers and the n-irreducible

sequents definitions arise from the intuition that the “Nature’s hypotheses”do not carry nat-

ural numbers or ”hidden natural numbers” except for 0 and 1, i.e. the “Nature’s hypothe-

ses”can be used in a n-irreducible sequent. Shortly, a sequent is n-irreducible iff the sequent

is composed by some closed hypotheses and a n-irreducible formula (a close formula with one

internal variable such that the formula is only true when we set that variable to the unique

natural number n), and it does not exist some strict sub-sequent which are composed by

some closed sub-hypotheses and some sub-m-irreducible formula with m > 1. Moreover, we

postulate (at second order of logic) that the “Nature’s hypotheses”are not chosen randomly:

the “Nature’s hypotheses”are the hypotheses which give the largest n-irreducible number

NZ ∼ 22.205×1061 among a finite number of NZ-irreducible sequents.

The article is organized as follow: firstly, we present the notations used throughout

this article. Secondly, we define what is an explicit sub-formula in order to define what is

a n-irreducible number and a n-irreducible sequent. Thirdly, we present some n-irreducible

number examples. Fourthly, we present the Collatz conjecture, the Goldbach’s conjecture,

the Polignac’s conjecture, the Firoozbakht’s conjecture, the Oppermann’s conjecture, the
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Agoh-Giuga conjecture, the generalized Fermat’s conjecture and the Schinzel’s hypothesis H

as n-irreducible sequents. Fifthly, we present the (second order logic) n-irreducible axiom,

the (second order logic) hypothesis on the “Nature’s hypotheses”and their consequences.

Sixthly, we ask ourselves two open questions about the n-irreducible numbers. Seventhly, we

present some larger n-irreducible number examples. Eighthly, we present some n-irreducible

number examples with the axioms of the real numbers and ninethly, the conclusion and the

acknowledgment.

2. Notations

In the present article:

1- In general, the variable xn ≡ ||...|︸︷︷︸
n times

[ ] ||...|︸︷︷︸
n times

with the unique variable label number

0 ≤ n, can be replaced in explicit sub-formulas by xn′ ≡ ||...|︸︷︷︸
n′ times

[ ] ||...|︸︷︷︸
n′ times

with the

unique variable label number 0 ≤ n′ ≤ n.

In general, the function notation fn(xn0 , ..., xnm) should be read:

fn(t1, t2, ..., tn) ≡ ||...|︸︷︷︸
n times

(t1, t2, ..., tn) ||...|︸︷︷︸
n times

(2.1)

where 0 ≤ n is a unique function label number. The previous function notion which

can be replaced in explicit sub-formulas by the following one:

fn′(t
′
1, t
′
2, ..., t

′
n) ≡ ||...|︸︷︷︸

n′ times

(t′1, t
′
2, ..., t

′
n) ||...|︸︷︷︸

n′ times

(2.2)

In general, the relation notation Rn(t1, t2, ..., tn) should be read:

Rn(t1, t2, ..., tn) ≡ ||...|︸︷︷︸
n times

(t1, t2, ..., tn) ||...|︸︷︷︸
n times

(2.3)

where 0 ≤ n is a unique relation label number. The previous relation notion which

can be replaced in explicit sub-formulas by the following one:

Rn′(t′1, t′2, ..., t′n) ≡ ||...|︸︷︷︸
n′ times

(t′1, t
′
2, ..., t

′
n) ||...|︸︷︷︸

n′ times

(2.4)

The notation do not need to distinguish between function and relation since the func-

tions can not be some arguments of the boolean operator and the relations are always

some arguments of the boolean operators.

In general, the logic operators of the truth table should be read:

B00 ∧ ¬A ∧ ¬B ∨B01 ∧ ¬A ∧B∨
B10 ∧A ∧ ¬B ∨B11 ∧A ∧B

≡ (A,B)B00B01B10B11(2.5)
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The logic operator (A,B)B00B01B10B11 can be replaced by A or B in explicit sub-

formulas. The 8 logic operators:

(A,B)FFFF ≡ F ≡F (A,B)F

(A,B)TTTT ≡ T ≡T (A,B)F

(A,B)FFTT ≡ A ≡A (A,B)A

(A,B)FTFT ≡ B ≡B (A,B)B

(A,B)TTFF ≡ ¬A ≡Ā (A,B)Ā

(A,B)TFTF ≡ ¬B ≡B̄ (A,B)B̄

(A,B)FTFF ≡ ¬A ∧B ≡ A8 B ≡8 (A,B)8

(A,B)TFTT ≡ A ∨ ¬B ≡ A← B ≡← (A,B)←(2.6)

are not necessary since we can write every formulas with the other 8 logic operators:

(A,B)TFFF ≡ ¬ (A ∨B) ≡∨̄ (A,B)∨̄

(A,B)FFTF ≡ A→ B ≡→ (A,B)→

(A,B)FFFT ≡ ¬ (A ∧B) ≡∧̄ (A,B)∧̄

(A,B)FTTF ≡ A YB ≡Y (A,B)Y

(A,B)TFFT ≡ ¬ (A YB) ≡Ȳ (A,B)Ȳ

(A,B)FFFT ≡ A ∧B ≡∧ (A,B)∧

(A,B)TTFT ≡ A9 B ≡9 (A,B)9

(A,B)TTTF ≡ A ∨B ≡∨ (A,B)∨(2.7)

In general, the logic quantifier notation should be read:

∃xA ≡∃ (x,A)∃

@xA ≡@ (x,A)@

∀xA ≡∀ (x,A)∀

6 ∀xA ≡6 ∀ (x,A)6 ∀(2.8)

We count the number of symbols with minimal symmetric notation:

- 2 symbols for the variables

- 2 symbols for the functions

- 32 symbols for the boolean operators

- 8 symbols for the quantifications

- 1 symbol | for enumeration

- 1 symbol ` for sequent

We have a total of 46 symbols with this minimal symmetric notation.

2- We omit some parentheses to improve the readability but they are necessary for

writing the related explicit formulas and explicit sub-formulas.



AN INTRODUCTION TO THE n-IRREDUCIBLE SEQUENTS AND THE n-IRREDUCIBLE NUMBER 5

3- If the formula φ is previously defined, the formula φ[y/x] is a shortcut for the formula

φ written with the variable y instead of the variable x with respect to the explicit

sub-formulas of φ[y/x].

3. Definitions

Let consider a language L of first order logic which contains the language needed for the

Peano hypotheses (except the recursion hypothesis).

Let introduce the necessary preliminary definitions and lemmas:

1- Preliminary definitions and lemmas about the explicit sub-formulas of a formula φ:

a- A formula φ containing l pair of parentheses is an explicit formula iff the ith

opening parenthesis and the corresponding ith closing parenthesis are labeled

unambiguously with respect to the other parentheses with an injection finj :

{1, ..., l} ⊂ N −→ N such that: ...

(
finj(i)

....

)
finj(i)

... .. Moreover the function

b- Preliminary lemma:

Every formula φ can be written as an explicit formula.

c- An explicit formula ψ is an explicit sub-formula of a formula φ iff the formula

ψ is an explicit formula and ψ is a sub-sequence of the symbol sequence of the

formula φ written as an explicit formula.

Remark: an explicit sub-formula ψ of a formula φ may contain a function symbol

f of arity strictly smaller than the function symbol f in the formula φ. Roughly

speaking, an explicit sub-formula can be written by removing the same number

of argument for each function symbol f of the original formula.

d- Preliminary lemma about the explicit sub-formulas of a formula φ:

An explicit sub-formula of an explicit sub-formula of a formula φ is an explicit

sub-formula of the formula φ.

2- Preliminary definition about the n-irreducible formulas:

A formula φn−irreducible is a n-irreducible formula iff φn−irreducible is a closed formula

and a formula φ exists such that:

φn−irreducible ≡ φ[fs(...fs(︸ ︷︷ ︸
n times

c0 )...)︸︷︷︸
n times

/x]
∧ ∃!y

(
φ[y/x]

)
.(3.1)

We rewrite the previous equation without the shortcut symbol ∃!:

φn−irreducible ≡ φ[fs(...fs(︸ ︷︷ ︸
n times

c0 )...)︸︷︷︸
n times

/x]
∧ ¬∃y∃y′

(
¬y = y′ ∧ φ[y/x] ∧ φ[y′/x]

)
.(3.2)

The main definition of the present article, the following sequent:

Γ ` φn−irreducible ,(3.3)

where ` means ”it exists a model such that the n-irreducible formula φn−irreducible is verified

under the hypotheses Γ”,
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is a n-irreducible sequent and n is a n-irreducible number iff:

1- the hypotheses Γ are closed formulas and the formula φn−irreducible is a n-irreducible

formula (see the equation 3.1),

2- and for every closed and explicit sub-formula ∆ of the hypotheses Γ and for every

m-irreducible formula ψm−irreducible where ψ is an explicit sub-formula of the formula

φ, we have the following relation:

∆ ` ψm−irreducible and m = c0(3.4)

or

∆ ` ψm−irreducible and m = fs (c0)(3.5)

or

∆ ≡ Γ and ψm−irreducible ≡ φn−irreducible(3.6)

or it exists a model such that,

∆ 0 ψm−irreducible(3.7)

Important remark: for all n-irreducible numbers in the present article, we include the

Peano hypotheses inside the n-irreducible hypotheses Γ or either the following Peano

sub-hypotheses:

∀x∃y (x = fs (y))(3.8)

∀x1...∀xn
((
φ[c0/x0,x1,...,xn] ∧ ∀x0

(
φ[x0,x1,...,xn] → φ[fs(x0),x1,...,xn]

))
→
(
∀x0φ[x,x1,...,xn]

))
with φ = φ̃ ∨ ¬x0 < 0, from the following Peano hypotheses:

∀x (¬fs (x) = c0)

(3.9)

∀x∃y (¬x = c0 → x = fs (y))

∀x1...∀xn
((
φ[c0/x0,x1,...xn] ∧ ∀x0

(
φ[x0,x,...,xn] → φ[fs(x0),x1,...,xn]

))
→
(
∀x0φ[x0,x1,...,xn]

))
.

If we use the Peano sub-hypotheses above, we use the integers rather than the natural

numbers. The use of Peano hypotheses in a n-irreducible sequent with respect to the

Peano sub-hypotheses should be motivated by other definitions like the prime number

function definition.

4. Some n-irreducible number examples

We give in this section some examples of n-irreducible numbers. Firstly, we write the

preliminary formulas satisfied by the following function symbols:

0- If required, we add to the hypotheses of the n-irreducible sequents the following

formulas satisfied by the ordering function symbol R<:

∀x∀y (∃z (x = f+ (y, z) ∧ ¬z = c0)→ R< (x, y) = True)

∀x∀y (¬∃z (x = f+ (y, z) ∧ ¬z = c0)→ R< (x, y) = False)(4.1)
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1- If required, we add to the hypotheses of the n-irreducible sequents the following

formulas satisfied by the prime function symbol fPrime:

∀x (∃y∃z (y < x ∧ z < x ∧ x = f× (y, z))→ fPrime (x) = c0)

∀x (¬∃y∃z (y < x ∧ z < x ∧ x = f× (y, z))→ fPrime (x) = fs (c0)) .(4.2)

Important remark: If we use the prime function fprime in a n-irreducible sequent,

we should use the Peano hypotheses (natural numbers) rather than the Peano sub-

hypotheses (integers). Using the above prime function fprime with the Peano sub-

hypotheses implies that all strictly positive integers are prime numbers and all nega-

tive integers are not prime numbers.

Trivially, 0 and 1 are n-irreducible numbers with the following formulas φ:

φ ≡ x = c0 and φ ≡ x = fs (c0) .(4.3)

2 is a n-irreducible number with the following formula φ:

φ ≡ x = f+ (fs (c0) , fs (c0))(4.4)

or for instance, the following formula φ:

φ ≡ ∀y (y < x→ (y = c0 ∨ y = fs (c0))) ∧ ¬∃x′
(
x < x′ ∧ ∀y

(
y < x′ → (y = c0 ∨ y = fs (c0))

))
.

(4.5)

If we would like to include the Peano hypotheses (except the recursion hypothesis) for the

n-irreducible number 2, we should look at the following formula φ which requires the multi-

plication hypothesis:

φ =∃y∃z (x = f× (y, z) ∧ (fs(c0) < y ∨ fs(c0) < z))∧
¬∃x′

(
x < x′ ∧ ∃y∃z

(
x′ = f× (y, z) ∧ (fs(c0) < y ∨ fs(c0) < z)

))
.(4.6)

In order to prove that some other natural numbers are n-irreducible, we use the prime func-

tion fPrime (see 4.2).

3 is a n-irreducible number with the following formula φ (see 4.2):

φ ≡∀y (fPrime (y) = c0 → x < y) ∧ ¬∃x′
(
x < x′ ∧ ∀y

(
fPrime (y) = c0 → x′ < y

))
.(4.7)

4 is a n-irreducible number with the following formula φ (see 4.2):

φ ≡fPrime (x) = c0 ∧ ¬∃x′
(
x′ < x ∧ fPrime

(
x′
)

= c0

)
.(4.8)

6 is a n-irreducible number with the following formula φ:

φ = ∃y∃z (x = f× (y, z) ∧ y < z ∧ z < x) ∧ ¬∃x′∃y∃z
(
x′ < x ∧ x′ = f× (y, z) ∧ y < z ∧ z < x′

)(4.9)

5. Conjectures which induce monster n-irreducible numbers if

counterexamples exist

In the previous section, we introduced some n-irreducible numbers that are small and

easy to find. In this section, we examine how some monster n-irreducible numbers can be

produced if some conjectures are false. Firstly, we write the preliminary formulas satisfied

by the following function symbols:
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1- If required, we add to the hypotheses of the n-irreducible sequents the following

formulas satisfied by the unary inverse function symbol f−1
s :

∀x
(
¬x = c0 → fs

(
f−1
s (x)

)
= x

)
∀x
(
x = c0 → f−1

s (x) = c0

)
.(5.1)

2- If required, we add to the hypotheses of the n-irreducible sequents the following

formulas satisfied by the subtraction function symbol f−:

∀x∀y (y < x→ f+ (f− (x, y) , y) = x)

∀x∀y (¬y < x→ f− (x, y) = c0) .(5.2)

3- If required, we add to the hypotheses of the n-irreducible sequents the following

formulas satisfied by the twin prime function symbol fTwin (see 4.2 and 5.1):

∀x
((
fPrime

(
f−1
s (x)

)
= fs (c0) ∧ fPrime (fs (x)) = fs (c0)

)
→ fTwin (x) = fs (c0)

)
∀x
(
¬
(
fPrime

(
f−1
s (x)

)
= fs (c0) ∧ fPrime (fs (x)) = fs (c0)

)
→ fTwin (x) = c0

)
.(5.3)

4- If required, we add to the hypotheses of the n-irreducible sequents the following

formulas satisfied by the ceiling prime function symbol fCP (see 4.2):

∀x∃y (fCP (x) = y ∧ fPrime (y) = fs (c0) ∧ ¬∃z (x < z ∧ z < y ∧ fPrime (z) = fs (c0))) .

(5.4)

5- If required, we add to the hypotheses of the n-irreducible sequents the following

formulas satisfied by the function symbol fp−Prime which give the nth prime number

(see 4.2)

fp−Prime (fs (c0)) = c0

∀x (fp−Prime (fs (x)) = fCP (fp−Prime (x))) .(5.5)

6- If required, we add to the hypotheses of the n-irreducible sequents the following

formulas satisfied by the coprime function symbol fCoprime:

∀x∀x′
(
∃y∃z∃z′

(
¬y = fs (c0) ∧ x = f× (y, z) ∧ x′ = f×

(
y, z′

))
→ fCoprime

(
x, x′

)
= c0

)
∀x∀x′

(
¬∃y∃z∃z′

(
¬y = fs (c0) ∧ x = f× (y, z) ∧ x′ = f×

(
y, z′

))
→ fCoprime

(
x, x′

)
= fs (c0)

)
.

(5.6)

7- If required, we add to the hypotheses of the n-irreducible sequents the following

formulas satisfied by the power function symbol f∧:

∀x∀y (y = c0 → f∧ (x, y) = fs (c0))

∀x∀y (¬y = c0 → f∧ (x, fs (y)) = f× (f∧ (x, y) , x)) .(5.7)
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5.1. Collatz conjecture. The only conjecture where we use the Zermelo-Fraenkel axioms:

∀n (∃k (n = f× (2, k))→ f× (2, f (n))) = n

∀n (∃k (n = f+ (f× (2, k) + 1))→ f (n) = f+ (f×(3, n) , 1))

∀x (x ∈ g (1)↔ x = 1)

∀x (x ∈ g (f+ (n, 1))↔ (x ∈ g (n) ∨ f (x) = n))

∀n (¬f+ (h (n) , 1) ∈ g (n))

∀n∀n′
(
¬h (n) < n′ → n′ ∈ g (n)

)
∃n (h (x) = n) ∧ @n (h (x) < h (n))(5.8)

5.2. Goldbach’s conjecture. If required, we add to the hypotheses of the n-irreducible sequents

the following formulas satisfied by the sub-function symbol gGoldbach−1 and the function sym-

bol fGoldbach−1 which gives the minimal number of prime numbers necessary to express a

natural number as a sum of prime number minus one (see 4.2 and 5.2):

∀x∀y (fPrime (y) = fs (c0)→ gGoldbach−1(x, y) = c0)

∀x∀y

(
fPrime (y) = c0 → ∃z

(z < y ∧ fPrime (z) = fs (c0) ∧ gGoldbach−1(x, y) = fs (gGoldbach−1(x, f− (y, z))) ∧ ¬∃z′(
z′ < y ∧ fPrime

(
z′
)

= fs (c0) ∧ gGoldbach−1(x, f−
(
y, z′

)
) < gGoldbach−1(x, f− (y, z))

))

∀x (fGoldbach−1(x) = gGoldbach−1(x, x)) .

(5.9)

If a first counterexample mZ exists for the Goldbach’s conjecture [Hel13], we can show that

mZ is a n-irreducible number with the following formula φ (see the previous equation):

φ ≡¬x = c0 ∧ ¬x = fs (c0) ∧ ∀y (y < x→ fGoldbach−1(y) < fGoldbach−1(x))∧
x < y → fGoldbach−1(x) = fGoldbach−1(y) .(5.10)

5.3. Polignac’s conjecture. If required, we add to the hypotheses of the n-irreducible sequents

the following formulas satisfied by the Polignac function symbol fPolignac which gives the

difference between the two next prime numbers of a natural number (see 5.2 and 5.4):

∀x (fPolignac (x) = f− (fCP (fCP (x)) , fCP (x))) .(5.11)

If a first counterexample mZ exists for the Polignac’s conjecture [dP51], we can show that

mZ is a n-irreducible number with following formula φ (see the previous equation):

φ ≡¬x = c0 ∧ ¬x = fs (c0)∧
∃y (fPolignac (x) = y ∧ ¬∃z (x < z ∧ fPolignac (x) = fPolignac (z)))∧
¬∃x′

(
x′ < x ∧ fPolignac

(
x′
)

= y ∧ ¬∃z
(
x′ < z ∧ fPolignac

(
x′
)

= fPolignac (z)
))

.(5.12)
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Since the set of prime numbers is infinite, the following explicit sub-formula will not work

(see 5.2 and 5.4):

∀x (fPolignac (x) = f− (fCP (x) , x)) .(5.13)

5.4. Firoozbakht’s conjecture. If a first counterexample mZ exists for the Firoozbakht’s con-

jecture [20004], we can show that mZ is a n-irreducible number with the following formula φ

(see 5.5):

φ ≡¬x = c0 ∧ ¬f∧ (fp−Prime (fs (x)) , x) < f∧ (fp−Prime (x) , fs (x))∧
∀x′
(
x′ < x→ f∧

(
fp−Prime

(
fs
(
x′
))
, x′
)
< f∧

(
fp−Prime

(
x′
)
, fs
(
x′
)))

.(5.14)

5.5. Oppermann’s conjecture. We define the first variant of the Oppermann’s conjecture

[vsOFS83]:

For all natural numbers x such that x > 1, there is at least one prime number between

x(x− 1) and x2.

If a first counterexample mZ exists for the Oppermann’s conjecture [vsOFS83], we can

show that mZ is a n-irreducible number with the following formula φ (see 4.2 and 5.1):

φ ≡¬x = c0 ∧ ¬x = fs (c0) ∧ ¬∃y
(
f×
(
x, f−1

s (x)
)
< y ∧ y < f× (x, x) ∧ fPrime (y) = fs (c0)

)
∧ ¬∃x′¬∃y

(
x′ < x ∧ f×

(
x′, f−1

s

(
x′
))
< y ∧ y < f×

(
x′, x′

)
∧ fPrime (y) = fs (c0)

)
.

(5.15)

If a first counterexample mZ exists for the Oppermann’s conjecture [vsOFS83] and the first

variant of the Oppermann’s conjecture [vsOFS83] is true, we can show that mZ is a n-

irreducible number with the following formula φ (see 4.2 and 5.1):

φ ≡ ¬x = c0 ∧ ¬x = fs (c0)∧

¬∃y∃y′
(
f×
(
x, f−1

s (x)
)
< y ∧ y < f× (x, x) ∧ f× (x, x) < y′ ∧ y′ < f× (x, fs (x))∧

fPrime (y) = fs (c0)) ∧ ¬∃x′¬∃y∃y′(
x′ < x ∧ f×

(
x′, f−1

s

(
x′
))
< y ∧ y < f×

(
x′, x′

)
∧ f×

(
x′, x′

)
< y′ ∧ y′ < f×

(
x′, fs

(
x′
)
∧

fPrime (y) = fs (c0))) .

(5.16)

5.6. Agoh-Giuga conjecture. If required, we add to the hypotheses of the n-irreducible se-

quents the following formulas satisfied by the Giuga sub-function symbol gGiuga and the

Giuga function symbol fGiuga(see 4.2, 5.1 and 5.7):

∀x (gGiuga (x, c0) = fs (c0))

∀x∀y
(
gGiuga (x, fs (y)) = f+

(
gGiuga (x, y) , f∧

(
y, f−1

s (x)
)))

∀x

(
(fPrime (x) = fs (c0)→ ∃y (fs (gGiuga (x, x)) = f× (x, y)))→ fGiuga = fs (c0)

)

∀x

(
¬ (fPrime (x) = fs (c0)→ ∃y (fs (gGiuga (x, x)) = f× (x, y)))→ fGiuga = c0

)
.(5.17)
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If mZ is the last natural number where the Agoh-Giuga conjecture [Giu51] is true, we can

show that mZ is a n-irreducible number with the following formula φ (see the previous

equation):

φ ≡ fGiuga (x) = c0 ∧ ¬∃x′
(
x′ < x ∧ fGiuga

(
x′
)

= c0

)
.(5.18)

5.7. Generalized Fermat’s conjecture. We define the generalized Fermat’s conjecture [Rie11]:

Let be some natural number a and c, there is an infinite number of natural numbers b

such that ab + cb is a prime number.

If mZ is the last number where the generalized Fermat’s conjecture [Rie11] for some

fixed natural number a and c is true and every explicit sub-formulas which are equivalent to

the Generalized Fermat’s conjecture [Rie11] with the fixed natural number a′ and c′ are true

, we can show that mZ is a monster n-irreducible number with the following formula φ (see

4.2 and 5.7):

φ ≡fPrime (f+ (f∧ (na, x) , f∧ (nc, x))) = fs (c0)∧
¬∃x′

(
x < x′ ∧ fPrime

(
f+

(
f∧
(
na, x

′) , f∧ (nc, x′))) = fs (c0)
)
∧

¬∃x′′
(
x′′ < x ∧ fPrime

(
f+

(
f∧
(
na, x

′′) , f∧ (nc, x′′))) = fs (c0)∧

¬∃x′
(
x′′ < x′ ∧ fPrime

(
f+

(
f∧
(
na, x

′′) , f∧ (nc, x′′))) = fs (c0)
))

,(5.19)

where na = fs(...fs(︸ ︷︷ ︸
a times

c0 )...)︸︷︷︸
a times

and nc = fs(...fs(︸ ︷︷ ︸
c times

c0 )...)︸︷︷︸
c times

.

If we can show that the generalized Fermat’s conjecture is true for many fixed natural

numbers a and c, we can show that mZ is a n-irreducible number with the following formula

φ (see 4.2 and 5.7):

φ ≡∃y

(
fPrime (f+ (f∧ (na, y) , f∧ (x, y))) = fs (c0)∧

¬∃x′
(
x < x′ ∧ fPrime

(
f+

(
f∧ (na, y) , f∧

(
x′, y

)))
= fs (c0)

))
∧

¬∃x′′∃y

(
x′′ < x ∧ fPrime

(
f+

(
f∧ (na, y) , f∧

(
x′′, y

)))
= fs (c0)∧

¬∃x′
(
x′′ < x′ ∧ fPrime

(
f+

(
f∧ (na, y) , f∧

(
x′, y

)))
= fs (c0)

))
.(5.20)

If we can show that the generalized Fermat’s conjecture is true for many fixed natural numbers

a, we can show that mZ is a n-irreducible number with the following formula φ (see 4.2 and
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5.7):

φ ≡∃y∃z

(
fPrime (f+ (f∧ (x, y) , f∧ (z, y))) = fs (c0)∧

¬∃x′
(
x < x′ ∧ fPrime

(
f+

(
f∧
(
x′, y

)
, f∧ (z, y)

))
= fs (c0)

))
∧

¬∃x′′∃y∃z

(
x′′ < x ∧ fPrime

(
f+

(
f∧
(
x′′, y

)
, f∧ (z, y)

))
= fs (c0)∧

¬∃x′
(
x′′ < x′ ∧ fPrime

(
f+

(
f∧
(
x′, y

)
, f∧ (z, y)

))
= fs (c0)

))
.(5.21)

5.8. Schinzel’s hypothesis H. If required, we add to the hypotheses of the n-irreducible se-

quents the following formulas satisfied by the r polynomials function symbol fi,Schinzel of

maximal degree d (see 5.7):

∀x ((5.22)

f1,Schinzel (x) = f+ (f+ (...f+ (f× (a10, f∧ (x, b0)) , f× (a11, f∧ (x, b1))) ...) , f× (a1d, f∧ (x, bd)))

...

fr,Schinzel (x) = f+ (f+ (...f+ (f× (ar0, f∧ (x, b0)) , f× (ar1, f∧ (x, b1))) ...) , f× (ard, f∧ (x, bd)))

)

where aij = fs(...fs(︸ ︷︷ ︸
a(i,j) times

c0 )...)︸︷︷︸
a(i,j) times

and bi = fs(...fs(︸ ︷︷ ︸
i times

c0 )...)︸︷︷︸
i times

.

Since the r polynomials fi,Schinzel are irreducible, the polynomial coefficients aij satisfy

the first following constraint (see the previous equation):

(@xf1,Schinzel (x) = c0) ∧ ... ∧ (@xfr,Schinzel (x) = c0) .(5.23)

Since the product of the r polynomials fi,Schinzel has not a fixed prime divisor, the polynomial

coefficients aij satisfy the second following constraint (see 5.23):

@x∀y∃z

(
fPrime (x) = fs (c0)∧

f× (f× (...f× (f1,Schinzel (y) , f2,Schinzel (y)) ...) , fr,Schinzel (y)) = f× (x, z)

)
.(5.24)

If mZ is the last number where the Schinzel’s hypothesis H [Guy04] for some fixed polynomial

is true and every explicit sub-formulas which are equivalent to the Schinzel’s hypothesis H

[Guy04] for some fixed polynomials are true, we can show that mZ is a monster n-irreducible

number with the following formula φ (see 4.2 and 5.23):

φ ≡fPrime (f1,Schinzel (x)) = fs (c0) ∧ ... ∧ fPrime (fr,Schinzel (x)) = fs (c0)∧

@x′
(
x < x′ ∧ fPrime

(
f1,Schinzel

(
x′
))

= fs (c0) ∧ ... ∧ fPrime
(
fr,Schinzel

(
x′
))

= fs (c0)
)
.

(5.25)
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We build new formulas for new monster n-irreducible numbers like in the generalized

Fermat’s conjecture:

If we can show that the Schinzel’s hypothesis H [Guy04] is true for a fixed number of

polynomial r, a fixed maximal degree d, many fixed polynomial coefficients aij and some

running polynomial coefficients aij , we can show that mZ is a monster n-irreducible number

with a formula φ.

We build new formulas for new monster n-irreducible numbers like in the generalized

Fermat’s conjecture:

If we can show that the Schinzel’s hypothesis H [Guy04] is true for a fixed number of

polynomial r, many maximal degrees d and the running polynomial coefficients aij , we can

show that mZ is a monster n-irreducible number with a formula φ.

Finally, we build new formulas for new monster n-irreducible numbers like in the gen-

eralized Fermat’s conjecture:

If we can show that the Schinzel’s hypothesis H [Guy04] is true for many numbers of

polynomial r, the running maximal degree d and the running polynomial coefficients aij , we

can show that mZ is a monster n-irreducible number with a formula φ.

6. The second order logic n-irreducible axiom and the second order logic

hypothesis on the “Nature’s hypotheses”

We introduce one important axiom on n-irreducible numbers and one important hy-

pothesis on the “Nature’s hypotheses”at second order logic for both of them:

The (second order logic) n-irreducible axiom:

There is a finite number of n-irreducible sequent and the largest n-irreducible number

is:

NZ ∼ 22.205×1061(6.1)

. The (second order logic) hypothesis on the “Nature’s hypotheses”:

the “Nature’s hypotheses”which explain the physical measurements are the hypotheses

of a NZ-irreducible sequent.

Some consequences:

1- The physical measurements confirm but do not prove that the “Nature’s hypotheses”,

the mathematical explorations over the n-irreducible numbers confirm but do not

prove that NZ is the largest n-irreducible number.

2- The Collatz conjecture, the Goldbach’s conjecture, the Polignac’s conjecture, the

Firoozbakht conjecture’s, the Oppermann’s conjecture, the Agoh-Giuga conjecture

can be checked with quantum computers with 2.205 × 1061 qubits or less (2 × 1079

atoms in the visible universe) since the computation can be fully parallel [LS14], the

generalized Fermat’s conjecture (which requires computational resources which are

far from what we can imagine technically even for the simplest case: a = 2 and b = 1)

and the Schinzel’s hypothesis H (which requires monster computational resources for

checking about
(
π (NZ) 2NZ

)NZ cases). . Moreover, 27 is a n-irreducible number if

the Goldbach’s conjecture is true.
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3- A article is under preparation in order to present the theory of everything where its

hypotheses are the hypotheses of a NZ-irreducible sequent (NZ would be the number

of Lagrangian terms but experimentally, we can only access to a very small fraction of

that terms) and to show that any obvious variant of the theory of everything requires

some hypotheses which give a n-irreducible number strictly smaller than NZ .

7. Some open questions about the n-irreducible sequents and the

n-irreducible numbers

1- Can we show that a natural number n is not n-irreducible? The difficulty is to prove

that there is no n-irreducible sequent among a infinite set of possible sequents which

give the n-irreducible number n.

2- If a n-irreducible number n is found with the help of a function symbol f where its

output values are only 0 and 1, can we replace the function symbol f by a function

symbol f̃ such that f̃ = 1− f and the new sequent is still n-irreducible?

3- In quantum field theories with gauge fields, the number of space-time dimensions

should be larger or equal to 4 in order to have a ”renormalizable” theory. Therefore

the Nature’s hypotheses are n-irreducible only if there are 4 space-time coordinates.

The Nature’s hypotheses with 5 space-time coordinates are not n-irreducible and one

specific spatial coordinate may be skipped at the multiple places where it is written

in the theory. From that example, we conclude that every sub-formulas should be

considered when we study some n-irreducible sequent. It confirms that the required

number of sub-sequents to explore in order check that a sequent is a n-irreducible

sequent is roughly exponential to its number of symbols in the general case. However,

for a specific n-irreducible sequent, some specific mathematical tools may be developed

in order to explore a set of sub-sequents in one time.

4- Does the logic operator Y is required in some n-irreducible sequent?

5- In the definition of a n-irreducible sequent:

∆ ` ψm−irreducible and m = c0 or m = fs (c0)(7.1)

to

∆ ` ψm−irreducible and m = S ∈ N(7.2)

Does the second order logic n-irreducible axiom holds for any S?
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If we investigate the case S = {0}, can we find an other relevant 1-irreducible se-

quent than the 1-irreducible sequents with the following formulas:

φ ≡ x = fs (c0)

φ ≡ c0 < x ∧ ¬∃x′
(
x′ < x ∧ c0 < x′

)
φ ≡ c0 < x ∧ x = f× (x, x)

φ ≡ ¬x = c0 ∧ ¬∃x′
(
x′ < x ∧ ¬c0 < x′

)
φ ≡ ¬c0 < x ∧ ¬∃x′

(
x′ < x ∧ ¬x′ = c0

)
φ ≡ ¬x = c0 ∧ ¬∃x′

(
x′ < x ∧ ¬x′ = c0

)
φ ≡ ¬x = c0 ∧ x = f× (x, x)

(7.3)

where x ∈ Z in the three first equations and x ∈ N in the four last equations?

If we investigate the case S = {}, can we find an other relevant 0-irreducible se-

quent than the 0-irreducible sequent with the following formula:

φ ≡ x = c0(7.4)

5- The second order logic n-irreducible axiom may be stronger? We may introduce the

following one instead:

The stronger (second order logic) n-irreducible axiom:

For all n-irreducible sequent, the following inequality holds :

n ≤ 2λ
a

(7.5)

where λ is the number of symbol in the n-irreducible sequent with the minimal sym-

metric notation.

The inequality is an equality for the NZ-irreducible sequents where their hypotheses

are the “Nature’s hypotheses”which explain the physical measurements:

Nz = 2λ
a
Z ↔ a = log (2, log (2, NZ)) /log (2, λZ)(7.6)

The numer of fields in the theory with the “Nature’s hypotheses”:

3× 4× (2N)N
2

∼ 1.735× 1057 with N=7 which gives a = 1.07169(7.7)

The consequences are: the NZ-irreducible sequents are equivalent and the number of

n-irreductible sequents is finite. We can derive a fixed upper bound for the number

of n-irreducible sequents and a derive a finite set of sequents where all n-irreductible

sequents are included.

A practical consequence for the Goldbach’s conjecture: the Goldbach’s n-irreducible

sequent has λGoldbach = 797 which is the sum of the pair parentheses number, the

variable labels, the function labels and the relation labels (without the Peano’s re-

cursive axiom). It gives a numerical upper bound for its n-irreducible number:

n ≤ 2.214× 10387 (the Glodbach’ conjecture is verified for: n ≤ 4× 1018).
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6- If we prove a sequent with the second order logic n-irreducible axiom, can we prove

it without it?

7- The Peano’s recursive axiom may not be longer required (which is a axiom over an

infinite number of formulas) and the (second order logic) n-irreducible axiom may be

sufficient.

8- Can we reduce the (second order logic) n-irreducible axiom to the following one:

The n-irreducible sequent with the “Nature’s hypotheses”is the n-irreducible sequent

with the largest sum of the pair parenthesis number, the variable label, the function

label and the relation labels.

8. Extra: some larger n-irreducible number examples

In this section, with the help of the formulas satisfied by the symbol function fPrime
joined to the hypotheses of some n-irreducible sequents, we try to reach the closest n-

irreducible number (1024 in the present section) to the largest one NZ ∼ 22.205×1061 . Firstly,

we write the preliminary formulas satisfied by the following function symbols:

1- If required, we add to the hypotheses of the n-irreducible sequents the following

formulas satisfied by the sub-function symbol gσ0−1 and the function symbol fσ0−1

which gives the number of proper divisor of a natural number:

∀x (gσ0−1(x, fs (c0)) = c0)

∀x∀y (∃z (x = f× (y, z))→ gσ0−1 (x, fs (y)) = fs (gσ0−1(x, y)))

∀x∀y (¬∃z (x = f× (y, z))→ gσ0−1 (x, fs (y)) = gσ0−1(x, y))

∀x (fσ0−1(x) = gσ0−1(x, x)) .(8.1)

2- If required, we add to the hypotheses of the n-irreducible sequents the following

formulas satisfied by the highly composite function symbol fHC (see the previous

equation):

∀x (∀y ((¬y = c0 ∧ y < x)→ fσ0−1 (y) < fσ0−1 (x))→ fHC(x) = fs (c0))

∀x (¬ (∀y (¬y = c0 ∧ y < x)→ fσ0−1 (y) < fσ0−1 (x))→ fHC(x) = c0) .(8.2)

3- If required, we add to the hypotheses of the n-irreducible sequents the following

formulas satisfied by the Euler’s totient sub-function symbol gΦ and the Euler’s totient

function symbol fΦ which gives the number of coprime numbers below it (see 5.6):

∀x (gΦ(x, fs (c0)) = c0)

∀x∀y (fCoprime (x, y) = fs (c0)→ gΦ (x, fs (y)) = fs (gΦ(x, y)))

∀x∀y (fCoprime (x, y) = c0 → gΦ (x, fs (y)) = gΦ(x, y))

∀x (fΦ(x) = gΦ(x, x))(8.3)

4- If required, we add to the hypotheses of the n-irreducible sequents the following formu-

las satisfied by the highly coprime function symbol fHCP (see the previous equation):

∀x (∀y ((¬y = c0 ∧ y < x)→ fΦ (y) < fΦ (x))→ fHCP (x) = fs (c0))

∀x (¬∀y ((¬y = c0 ∧ y < x)→ fΦ (y) < fΦ (x))→ fHCP (x) = c0) .(8.4)
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5- If required, we add to the hypotheses of the n-irreducible sequents the following

formulas satisfied by the sub-function symbol gσ1−1 and the function symbol fσ1−1

which gives the sum of divisors minus one of a natural number (see 5.1):

∀x (gσ1−1(x, fs (c0)) = c0)

∀x∀y
(
(¬y = fs (c0) ∧ ∃z (x = f× (y, z)))→ gσ1−1 (x, y) = f+

(
gσ1−1(x, f−1

s (y)), y
))

∀x∀y
(
¬ (¬y = fs (c0) ∧ ∃z (x = f× (y, z)))→ gσ1−1 (x, y) = gσ1−1(x, f−1

s (y))
)

∀x (fσ1−1(x) = gσ1−1(x, x)) .(8.5)

With the concept of complement, we can show that 10 is a n-irreducible number with the

following formula φ (see 8.2 and 8.4):

φ ≡ fHC (x) = c0 ∧ fHCP (x) = fs (c0) ∧ ¬∃y (y < x ∧ fHC (x) = c0 ∧ fHCP (x) = fs (c0))

(8.6)

and we can show that 24 is a n-irreducible number with the following formula φ (see 8.2 and

8.4):

φ ≡ fHC (x) = fs (c0) ∧ fHCP (x) = c0 ∧ ¬∃y (y < x ∧ fHC (x) = fs (c0) ∧ fHCP (x) = c0) .

(8.7)

In order to find much larger n-irreducible number, we use the concept of amicable numbers:

1- 220 is a n-irreducible number with the following formula φ (see 8.5):

φ ≡ ∃y (x < y ∧ fσ1−1 (x) = fσ1−1 (y)) ∧ ∀z (z < x→ ¬∃y (z < y ∧ fσ1−1 (z) = fσ1−1 (y))) .

(8.8)

2- 284 is a n-irreducible number with the following formula φ (see 8.5):

φ ≡ ∃y (y < x ∧ fσ1−1 (x) = fσ1−1 (y)) ∧ ∀z (z < x→ ¬∃y (y < z ∧ fσ1−1 (z) = fσ1−1 (y))) .

(8.9)

3- 503 is a n-irreducible number with the following formula φ (see 8.5):

φ ≡∃y∃z

(x = fσ1−1 (y) ∧ x = fσ1−1 (z)) ∧ ∀w (w < x→ ¬∃y∃z (w = fσ1−1 (y) ∧ w = fσ1−1 (z))) .

(8.10)

9. Extra bis: some n-irreducible number examples with the axioms of the

real numbers

In this section, with the help of the formulas satisfied by the axioms of the real num-

bers joined to the hypotheses of some n-irreducible sequents, we try to reach the closest n-

irreducible number (1024 in the present section) to the largest one NZ ∼ 22.205×1061 . Firstly,

we write the preliminary formulas satisfied by the following function symbols:

1- If required, we add to the hypotheses of the n-irreducible sequents the following

formulas satisfied by the natural number function symbol fN:

fN (c0) = fs (c0)

∀x (fN (x) = fs (c0)→ fN (fs (x)) = fs (c0))

∀x (fN (x) = c0 → fN (fs (x)) = c0) .(9.1)
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2- If required, we add to the hypotheses of the n-irreducible sequents the following

formulas satisfied by the integer part function symbol fIP (see the previous equation):

∀x (∃n (fN (n) = fs (c0) ∧ ¬n < x ∧ x < fs (n) ∧ fIP (x) = n)) .(9.2)

3- If required, we add to the hypotheses of the n-irreducible sequents the following

formulas satisfied by the ceiling function symbol fCeiling (see 9.1):

∀x (∃n (fN (n) = fs (c0) ∧ x < n ∧ ¬fs (n) < x ∧ fCeiling (x) = n)) .(9.3)

4- If required, we add to the hypotheses of the n-irreducible sequents the following

formulas satisfied by the negative function symbol f−

∀x∃y (f+ (x, y) = c0 ∧ f− (x) = y)

∀x¬∃y∃y′
(
¬y = y′ ∧ f+ (x, y) = c0 ∧ f+

(
x, y′

)
= c0

)
.(9.4)

5 If required, we add to the hypotheses of the n-irreducible sequents the following

formulas satisfied by the factorial function symbol f! (see 5.1 and 9.1):

∀n (fN (n) = fs (c0) ∧ n = c0 → f! (n) = fs (c0))

∀n

(
fN (n) = fs (c0) ∧ ¬n = c0 → f! (n) = f×

(
n, f!

(
f−1
s (n)

)))
.(9.5)

6 If required, we add to the hypotheses of the n-irreducible sequents the following

formulas satisfied by the exponential series function symbol gExp (see 5.1 and 5.7):

∀x (gExp (x, c0) = c0)

∀x∀y

(
gExp (x, fs (y)) = f+

(
gExp (x, y) , f× (f∧ (x, y) , f−1 (f! (y)))

))
.(9.6)

7 If required, we add to the hypotheses of the n-irreducible sequents the following

formulas satisfied by the exponential function symbol fExp (see 9.1 and the previous

equation):

∀ε∃N∀n

(
(0 < ε ∧N < n ∧ fN (N) = fs (c0) ∧ fN (n) = fs (c0))

→ (gExp (x, n) < fExp (x) ∧ fExp (x) < f+ (ε, gExp (x, n)))

)
.(9.7)

We suppose we can define the Lebesgue integral or the Riemann integral irreducibly in order

to define the function f√π/2 in a n-irreducible form (see 5.7, 9.1, 9.4 and 9.7):

∀n
(
fN (n) = fs (c0) ∧ ¬n = c0 → f√π/2 (n) =

∫ ∞
0

fExp (f− (f∧ (x, n))) dx

)
.(9.8)

We can define the real number
√
π/2 irreducibly with the following formula φ:

φ ≡ ∃n
(
fN (n) = fs (c0) ∧ x = f√π/2 (n)

)
∧ ¬∃n

(
fN (n) = fs (c0) ∧ f√π/2 (n) < x

)
.(9.9)

Sketch to prove that 5 and 7 are n-irreducible numbers: The (n− 1)-sphere of radius R and

center ~r can be defined irreducibly by imposing a maximum volume for a fixed surface in

Rn or a minimum surface for a fixed volume. By defining a n-irreducible n-cube with vertex
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coordinates (±1, ...,±1)︸ ︷︷ ︸
n times

and taking the biggest (n − 1)-sphere inside it, we can find the n

which maximize the volume V (n) or the surface S (n) of the (n− 1)-sphere: 5 or 7.

Therefore, we can also define irreducibly the real numbers 16π3/15 and 8π2/15 with the

following formula φ:

φ ≡ ∃n (fN (n) = fs (c0) ∧ x = S (n)) ∧ ¬∃n′
(
fN
(
n′
)

= fs (c0) ∧ x < S(n′)
)
,(9.10)

and the following formula φ

φ ≡ ∃n (fN (n) = fs (c0)→ x = V (n)) ∧ ¬∃n′
(
fN
(
n′
)

= fs (c0) ∧ x < V (n′)
)
.(9.11)

We can also define irreducibly the real number e with the following formula φ:

φ ≡ x = fExp (fs (c0)) .(9.12)

For some n-irreducible real numbers x and x′, we can show that n is a n-irreducible number

with the following formula φ:

φ ≡ ∃m∃p∃q (fN (n) = fs (c0) ∧ fN (m) = fs (c0) ∧ fN (p) = fs (c0) ∧ fN (q) = fs (c0)∧

f× (p, f∧ (x, n)) = f×
(
q, f∧

(
x′,m

))
∧ fCoprime (p, q) = fs (c0) ∧ fCoprime (m,n) = fs (c0)

)
.

(9.13)

For some n-irreducible real numbers x and x′, we can show that p is a n-irreducible number

with the following formula φ:

φ ≡ ∃n∃m∃q (fN (n) = fs (c0) ∧ fN (m) = fs (c0) ∧ fN (p) = fs (c0) ∧ fN (q) = fs (c0)∧

f× (p, f∧ (x, n)) = f×
(
q, f∧

(
x′,m

))
∧ fCoprime (p, q) = fs (c0) ∧ fCoprime (m,n) = fs (c0)

)
.

(9.14)

Therefore, from the n-irreducible real numbers,
√
π/2, 16π3/15, 8π2/15 and the help of the

two last formulas, we deduce that 2, 3, 4, 6, 15, 128 and 1024 are n-irreducible numbers.

With the help of the integer part function fIP and the ceiling function fCeiling on the n-

irreducible real number 8π2/15 and 16π3/15, we deduce that 5, 6, 33 and 34 are n-irreducible

numbers.

Finally, we can derive that 8 and 9 are n-irreducible numbers with the help of the

following prime exponential number function fPrimeExpPI and fPrimeExpCeiling:

∀n (fN(n) = fs(c0)→ fPrimeExpPI(n) = fPrime (fPI (fExp(n))) )(9.15)

∀n (fN(n) = fs(c0)→ fPrimeExpCeiling(n) = fPrime (fCeiling (fExp(n))) )(9.16)

7 is a n-irreducible number with the following formula φ:

∀m (¬n < m→ fPrimeExpPI(m) = fs(c0)) ∧ @n′∀m
(
n < n′ ∧ ¬n′ < m→ fPrimeExpPI(m) = fs(c0)

)(9.17)

20 is a n-irreducible number with the following formula φ:

∀m (m < n→ fPrimeExpPI(m) = fs(c0)) ∧ @n′∀m
(
n < n′ ∧m < n′ → fPrimeExpPI(m) = fs(c0)

)(9.18)

8 is a n-irreducible number with the following formula φ:

∀m (m < n→ fPrimeExpCeiling(m) = fs(c0))∧
@n′∀m

(
n < n′ ∧m < n′ → fPrimeExpCeiling(m) = fs(c0)

)
(9.19)
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10. A set of n-irreducible numbers

In this section, we insert every n-irreducible number derived in the present article inside

an only one set:

Sn−irreducible = {0, 1, 2, 3, 4, 5, 6, 7, 8, 10, 14, 15, 20, 24, 27, 31, 33, 34, 37, 128, 220, 284, 503, 1024}
(10.1)

11. The Riemann hypothesis

In this section, with the help of the formulas satisfied by the axioms of the complex

numbers and the new complex constant variable ci (c0 = f+ (fs (c0) , f× (ci, ci))) joined to

the hypotheses of some n-irreducible sequent, we propose a method to prove the Riemann

hypothesis.

1- If required, we add to the hypotheses of the n-irreducible sequents the following

formulas satisfied by the log function symbol fLog:

∀x (0 < x→ fExp (fLog (x)) = x)(11.1)

2- If required, we add to the hypotheses of the n-irreducible sequents the following

formulas satisfied by the real power function symbol f∧R (see 11.1):

∀x (0 < x→ f∧R (x, y) = fExp (f× (y, fLog (x))))(11.2)

3- If required, we add to the hypotheses of the n-irreducible sequents the following

formulas satisfied by the Riemann zeta series function symbol gζ (see 11.2)

∀x (x < 0→ gζ (x, c0) = c0)

∀x∀y

(
x < 0→ gζ (x, fs (y)) = f+

(
gζ (x, y) , f∧R (y, x)

))
.(11.3)

4- If required, we add to the hypotheses of the n-irreducible sequents the following

formulas satisfied by the Riemann zeta function symbol fζ (see 11.3 and the previous

equation):

∀x∀ε∃N∀n

(
(0 < ε ∧N < n ∧ fN (N) = fs (c0) ∧ fN (n) = fs (c0))

→ (gζ (x, n) < fζ (x) ∧ fζ (x) < f+ (ε, gζ (x, n)))

)
.(11.4)

We assume we can define irreducibly the homomorphic functions and the analytic continua-

tion. Therefore, we can define the holomorphic Riemann zeta function fζC.

From here, we define the function fζNTZ which enumerates the imaginary part of the none
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trivial zeros of the holomorphic zeta function fζ :

fζNTZ (c0) = c0

∀n (fN (n) = fs (c0)→ fζNTZ (n) < fζNTZ (fs(n)))

∀n (fN (n) = fs (c0)→ fζC (fζNTZ(n)) = c0)

¬∃a∃b∃n (fN (n) = fs (c0) ∧ fζC (f+ (a, f× (ci, b))) = c0 ∧ fζNTZ(n) < b ∧ b < fζNTZ(fs(n)))

(11.5)

With the help of the function fζNTZ , we can find four n-irreducible numbers (14,15,31,37)

derived from four n-irreducible sequents:

φ ≡ x = fIP (fζNTZ (fs (c0)))

(11.6)

φ ≡ x = fCeiling (fζNTZ (fs (c0)))

(11.7)

φ ≡ ∃n (fN (n) = fs (c0) ∧ x = fPrime (fCeiling (fζNTZ (fs (n))) = fs(c0))∧

¬∃n′
(
fN
(
n′
)

= fs (c0) ∧ 0 < n′ ∧ n′ < n ∧ fPrime (fCeiling (fζNTZ (fs (n))) = fs(c0))
))(11.8)

φ ≡ ∃n (fN (n) = fs (c0) ∧ x = fPrime (fIP (fζNTZ (fs (n))) = fs(c0))∧

¬∃n′
(
fN
(
n′
)

= fs (c0) ∧ c0 < n′ ∧ n′ < n ∧ fPrime (fIP (fζNTZ (fs (n))) = fs(c0))
))(11.9)

From the holomorphic Riemann zeta function fζC, if the Riemann hypothesis is false, we can

define a monster n-irreducible number mZ with the following n-irreducible sequent:

φ ≡ ∃a∃b∃n (fN (n) = fs (c0) ∧ x = n ∧ ¬f× (fs (fs(c0)) , a) = fs(c0) ∧ fζNTZ (fs (n)) = b∧

¬∃a′∃b′∃n′
(
fN
(
n′
)

= fs (c0) ∧ n′ < n ∧ ¬f×
(
fs (fs(c0)) , a′

)
= fs(c0) ∧ fζNTZ

(
fs
(
n′
))

= b′
))(11.10)

12. Conclusion

This article may open a new area in second order logic with some important conse-

quences in number theory and in fundamental physics if we do not notice contradictions

between the (second order logic) n-irreducible axiom and other well known axioms, and we

do not observe experimental contradictions between the hypotheses to produce the largest

n-irreducible number ever found and the experimental measurements. It is the first article

which gives a hint to solve the Collatz conjecture, the Goldbach’s conjecture, the Polignac’s

conjecture, the Firoozbakht’s conjecture, the Oppermann’s conjecture, the Agoh-Giuga con-

jecture with a quantum computer of 2.205× 1061 qubits or less (2× 1079 atoms in the visible

universe) and with only one (second order logic) n-irreducible axiom. The generalized Fer-

mat’s conjecture requires computational resources which are far from what we can imagine

technically even for the simplest case: a = 2 and b = 1 and the Schinzel’s hypothesis H

requires also monster computational resources for checking about
(
π (NZ) 2NZ

)NZ cases. It

is also the first article which gives a hint to generate the “Nature’s hypotheses”with only one

(second order logic) hypothesis.

Since I am not a mathematician and I am a lonely human, I may have overseen some

mistakes (especially, I could miss an explicit sub-formula in the present article since the
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number of sub-formulas is roughly 2n for a formula with n symbols or I do not noticed that

a sequent is not n-irreducible or my approach to the generalized Fermat’s conjecture and the

Schinzel’s hypothesis H are sensitive to some mistakes since it is one more level of abstraction

from the other prime conjectures). Moreover, NZ may change after the publication of the next

article about the theory of everything. Please send me an email (see it below the references)

for any mistake noticed in the present article. Every ideas or comments related to the present

article are also very welcome.
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