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First, we study several information theories based on quantum computing in a desirable noiseless
situation. (1) We present quantum key distribution based on Deutsch’s algorithm using an entangled
state. (2) We discuss the fact that the Bernstein-Vazirani algorithm can be used for quantum
communication including an error correction. Finally, we discuss the main result. We study the
Bernstein-Vazirani algorithm in a noisy environment. The original algorithm determines a noiseless
function. Here we consider the case that the function has an environmental noise. We introduce a
noise term into the function f(x). So we have another noisy function g(x). The relation between
them is g(x) = f(x) ± O(ǫ). Here O(ǫ) ≪ 1 is the noise term. The goal is to determine the noisy
function g(x) with a success probability. The algorithm overcomes classical counterpart by a factor
of N in a noisy environment.

PACS numbers: 03.67.Lx(Quantum computation architectures and implementations), 03.67.Ac(Quantum
algorithms, protocols, and simulations), 03.67.Dd(Quantum cryptography), 03.67.Hk(Quantum communica-
tion)

I. INTRODUCTION

Quantum mechanics (cf. [1—6]) gives approximate but
frequently remarkably accurate numerical predictions.
Much experimental data approximately fit to the quan-
tum predictions for the past some 100 years. We do
not doubt the correctness of the quantum theory. The
quantum theory also says new science with respect to
information theory. The science is called the quantum
information theory [6]. Therefore, the quantum theory
gives us very useful another theory in order to create
new information science and to explain the handling of
raw experimental data in our physical world.

As for the foundations of the quantum theory, Leggett-
type non-local variables theory [7] is experimentally in-
vestigated [8—10]. The experiments report that the quan-
tum theory does not accept Leggett-type non-local vari-
ables interpretation. However there are debates for the
conclusions of the experiments. See Refs. [11—13].

As for the applications of the quantum theory, im-
plementation of a quantum algorithm to solve Deutsch’s
problem [14] on a nuclear magnetic resonance quantum
computer is reported firstly [15]. Implementation of the
Deutsch-Jozsa algorithm on an ion-trap quantum com-
puter is also reported [16]. There are several attempts to
use single-photon two-qubit states for quantum comput-
ing. Oliveira et al. implement Deutsch’s algorithm with
polarization and transverse spatial modes of the electro-
magnetic field as qubits [17]. Single-photon Bell states
are prepared and measured [18]. Also the decoherence-
free implementation of Deutsch’s algorithm is reported
by using such single-photon and by using two logical
qubits [19]. More recently, a one-way based experimental

implementation of Deutsch’s algorithm is reported [20].
In 1993, the Bernstein-Vazirani algorithm was reported
[21]. It can be considered as an extended Deutsch-Jozsa
algorithm. In 1994, Simon’s algorithm was reported
[22]. Implementation of a quantum algorithm to solve
the Bernstein-Vazirani parity problem without entangle-
ment on an ensemble quantum computer is reported [23].
Fiber-optics implementation of the Deutsch-Jozsa and
Bernstein-Vazirani quantum algorithms with three qubits
is discussed [24]. Quantum learning robust against noise
is studied [25]. A quantum algorithm for approximating
the influences of Boolean functions and its applications is
recently reported [26]. It is discussed that the Deutsch-
Jozsa algorithm can be used for quantum key distribution
[27]. Transport implementation of the Bernstein-Vazirani
algorithm with ion qubits is more recently reported [28].

Quantum communication is the art of transferring a
quantum state from one place to another. Traditionally,
the sender is named Alice and the receiver Bob. The
basic motivation is that quantum states code quantum
information - called qubits in the case of 2-dimensional
Hilbert spaces and that quantum information allows one
to perform tasks that could only be achieved far less ef-
ficiently, if at all, using classical information.

On the other hand, the earliest quantum algorithm,
the Deutsch-Jozsa algorithm, is representative to show
that quantum computation is faster than classical coun-
terpart with a magnitude that grows exponentially with
the number of qubits. In 2015, it is discussed that the
Deutsch-Jozsa algorithm can be used for quantum key
distribution [27].

There are many researches concerning quantum com-
puting. In a real experiment, we cannot avoid an envi-
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ronmental noise. We address this problem by providing
more concrete way rather than [25].
In this paper, first, we study several information theo-

ries based on quantum computing in a noiseless environ-
ment. We present secure quantum key distribution based
on Deutsch’s algorithm. The security of the protocol is
based on it of Ekert 91 protocol [29].
Next, we study quantum communication including an

error correction based on the Bernstein-Vazirani algo-
rithm. The original algorithms determine a bit-strings.
Here we discuss the fact that the Bernstein-Vazirani algo-
rithm can be used for quantum communication including
an error correction. Let us explain the situation. Alice
has a bit-strings b = (b1, b2, . . . , bN ). Bob has another
bit-strings c = (c1, c2, . . . , cN ). The goal is to correct er-
rors of them. We have discussed the fact that the quan-
tum communication overcomes classical counterpart by
a factor of N in the protocol.
Finally, we study the Bernstein-Vazirani algorithm in

a noisy environment. The original algorithm determines
a noiseless function. Here we consider the case that the
function has an environmental noise. Let us explain the
situation. We introduce a noise term into the function
f(x). So we have another noisy function g(x). The rela-
tion between them is g(x) = f(x)±O(ǫ). Here O(ǫ)≪ 1
is the noise term. The goal is to determine the noisy func-
tion g(x) with a success probability. We discuss the fact
that the quantum algorithm overcomes classical counter-
part by a factor of N .
This paper is organized as follows:
In Sec. II, we review Deutsch’s algorithm along with

Ref. [6].
In Sec. III, we study Deutsch’s algorithm by using

another input state. In this case, we cannot perform
Deutsch’s algorithm.
In Sec. IV, we study Deutsch’s algorithm by using the

Bell state.
In Sec. V, we discuss the fact that Deutsch’s algorithm

can be used for quantum key distribution by using an
entangled state.
In Sec. VI, we review the Bernstein-Vazirani algorithm.
In Sec. VII, we study quantum communication based

on the Bernstein-Vazirani algorithm.
In Sec. VIII, we present an error correction based on

the Bernstein-Vazirani algorithm.
In Sec. IX, we present the Bernstein-Vazirani algorithm

in a noisy environment.
Section X concludes this paper.

II. A REVIEW OF DEUTSCH’S ALGORITHM

In this section, we review Deutsch’s algorithm along
with Ref. [6].
Quantum parallelism is a fundamental feature of many

quantum algorithms. It allows quantum computers to
evaluate the values of a function f(x) for many different

values of x simultaneously. Suppose

f : {0, 1} → {0, 1} (1)

is a function with a one-bit domain and range. A con-
venient way of computing this function on a quantum
computer is to consider a two-qubit quantum computer
which starts in the state

|x, y�. (2)

With an appropriate sequence of logic gates it is possible
to transform this state into

|x, y ⊕ f(x)�, (3)

where ⊕ indicates addition modulo 2. We give the trans-
formation defined by the map

|x, y� → |x, y ⊕ f(x)� (4)

a name, Uf .
Deutsch’s algorithm combines quantum parallelism

with a property of quantum mechanics known as inter-
ference. Let us use the Hadamard gate to prepare the
first qubit

|0� (5)

as the superposition

(|0�+ |1�)/
√
2, (6)

but let us prepare the second qubit as the superposition

(|0� − |1�)/
√
2, (7)

using the Hadamard gate applied to the state

|1�. (8)

The Hadamard gate is as

H =
1√
2
(|0��1|+ |1��0|+ |0��0| − |1��1|). (9)

Let us follow the states along to see what happens in this
circuit. The input state

|ψ0� = |01� (10)

is sent through two Hadamard gates to give

|ψ1� =
� |0�+ |1�√

2

� � |0� − |1�√
2

�
. (11)

A little thought shows that if we apply Uf to the state

|x�(|0� − |1�)/
√
2 (12)

then we obtain the state

(−1)f(x)|x�(|0� − |1�)/
√
2. (13)
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Applying Uf to |ψ1� therefore leaves us with one of the
two possibilities:

|ψ2� =






±
� |0�+ |1�√

2

� � |0� − |1�√
2

�
if f(0) = f(1)

±
� |0� − |1�√

2

� � |0� − |1�√
2

�
if f(0) �= f(1).

(14)

The final Hadamard gate on the qubits thus gives us

|ψ3� =






±|0�|1� if f(0) = f(1)

±|1�|1� if f(0) �= f(1).
(15)

so by measuring the first qubit we may determine f(0)⊕
f(1). This is very interesting indeed: the quantum circuit
gives us the ability to determine a global property of f(x),
namely f(0) ⊕ f(1), using only one evaluation of f(x)!
This is faster than is possible with a classical apparatus,
which would require at least two evaluations.

III. FAILING DEUTSCH’S ALGORITHM

In this section, we study Deutsch’s algorithm by using
another input state. In this case, we cannot perform
Deutsch’s algorithm as shown below.
The input state

|ψ0� = |10� (16)

is sent through two Hadamard gates to give

|ψ1� =
� |0� − |1�√

2

� � |0�+ |1�√
2

�
. (17)

We apply Uf to the following state

|0� − |1�√
2

|x�. (18)

If x = 1

|0�|1� − |1�|1�√
2

(19)

we have

|0�|f(0)� − |1�|f(1)�√
2

(20)

and if x = 0

|0�|0� − |1�|0�√
2

(21)

we have

|0�|f(0)� − |1�|f(1)�√
2

. (22)

Thus,

|0�(|f(0)�+ |f(0)�)− |1�(|f(1)�+ |f(1)�)√
2

. (23)

Applying Uf to |ψ1� therefore leaves us with one of the
two possibilities:

|ψ2� =






±
� |0� − |1�√

2

� � |0�+ |1�√
2

�
if f(0) = f(1)

±
� |0� − |1�√

2

� � |0�+ |1�√
2

�
if f(0) �= f(1).

(24)

The final Hadamard gate on the qubits thus gives us

|ψ3� =






±|1�|0� if f(0) = f(1)

±|1�|0� if f(0) �= f(1).
(25)

In this case we fail to perform Deutsch’s algorithm.

IV. DEUTSCH’S ALGORITHM USING THE

BELL STATE

In this section, we study Deutsch’s algorithm by using
the Bell state.
The input state

|ψ0� =
|10�+ |01�√

2
(26)

is sent through two Hadamard gates to give

|ψ1� =
1√
2
(

� |0� − |1�√
2

� � |0�+ |1�√
2

�

+

� |0�+ |1�√
2

� � |0� − |1�√
2

�
). (27)

Applying Uf to |ψ1� therefore leaves us with one of the
two possibilities:

|ψ2� = ±
1√
2
(

� |0� − |1�√
2

� � |0�+ |1�√
2

�

±
� |0�+ |1�√

2

� � |0� − |1�√
2

�
) (28)

if f(0) = f(1), or

|ψ2� = ±
1√
2
(

� |0� − |1�√
2

� � |0�+ |1�√
2

�

±
� |0� − |1�√

2

� � |0� − |1�√
2

�
). (29)

if f(0) �= f(1). The final Hadamard gate on the qubits
thus gives us

|ψ3� =






±|1�|0� ± |0�|1�√
2

if f(0) = f(1) entanglement

±|1�|0� ± |1�|1�√
2

if f(0) �= f(1) separable.

(30)
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so by measuring the qubits (by means of the Bell mea-
surement) we may determine f(0)⊕ f(1). The Bell mea-
surement is explained as follows: Alice and Bob prepare
the Bell basis

|Ψ+� =
|1�|0�+ |0�|1�√

2

|Ψ−� =
|1�|0� − |0�|1�√

2

|Φ+� =
|1�|1�+ |0�|0�√

2

|Φ−� =
|1�|1� − |0�|0�√

2
(31)

If the state |ψ3� is an entangled state, we have

|�ψ3|Ψ+�|2 = 1 or |�ψ3|Ψ−�|2 = 1 or

|�ψ3|Φ+�|2 = 1 or |�ψ3|Φ−�|2 = 1. (32)

Therefore the measurement outcome should be 1 if the
function is constant. If the state |ψ3� is a separable state,
we have

|�ψ3|Ψ+�|2 = 1/2 or |�ψ3|Ψ−�|2 = 1/2 or

|�ψ3|Φ+�|2 = 1/2 or |�ψ3|Φ−�|2 = 1/2. (33)

Therefore the measurement outcome should be not 1 if
the function is balanced.

V. QUANTUM KEY DISTRIBUTION BASED

ON DEUTSCH’S ALGORITHM

We discuss the fact that Deutsch’s algorithm can be
used for quantum key distribution by using an entangled
state.
Alice and Bob have promised to use a function f which

is of one of two kinds; either the value of f is constant
or balanced. To Eve, it is secret. Alice’s and Bob’s goal
is to determine with certainty whether they have chosen
a constant or a balanced function without information of
the function to Eve. If the function is constant the output
qubits are entangled, otherwise separable. Alice and Bob
perform the Bell measurement. Alice and Bob share one
secret bit if they determine the function f by getting
a suitable measurement outcome. The existence of Eve
destroys entanglement. The security of our protocol is
based on it of Ekert 91 protocol [29].

• First Alice prepares the entangled qubits, applies
the Hadamard transformation to the state, and
sends the output state described in the Bell state
to Bob.

• Next, Bob randomly picks a function “f” that is
either balanced or constant and Bob applies Uf .
He then sends the one qubit to Alice.

• Finally, Alice and Bob perform the Bell measure-
ment. She learns whether f was balanced or con-
stant. If the final qubits are entangled, then the
function is constant. If the final qubits are not
entangled, then the function is balanced - Alice
and Bob now share a secret bit of information (the
“type” of f(x)).

• The result of the Bell measurement is 1 if the func-
tion is constant.

• Alice and Bob compare a subset of all the results
of the Bell measurements when the function is con-
stant; all of them should be 1.

• The existence of Eve must destroy entanglement
(Ekert 91).

• Eve is detected in the following case; The result of
the Bell measurement is not 1 and the function is
constant.

In conclusion, we have shown that Deutsch’s algorithm
can be used for secure quantum key distribution. The
security is based on it of Ekert 91 protocol.

VI. A REVIEW OF THE

BERNSTEIN-VAZIRANI ALGORITHM

In this section, we review the Bernstein-Vazirani algo-
rithm. Suppose

f : {0, 1}N → {0, 1} (34)

is a function with a N -bit domain and a 1-bit range. We
assume the following case

f(x)= a · x =

N�

i=1

aixi(mod2)

= a1x1 ⊕ a2x2 ⊕ a3x3 ⊕ · · · ⊕ aNxN ,
a ∈ {0, 1}N (35)

The goal is to determine f(x). Let us follow the quantum
states through the Bernstein-Vazirani algorithm. The
input state is

|ψ0� = |0�⊗N |1�. (36)

After the Hadamard transformation on the state we have

|ψ1� =
�

x∈{0,1}N

|x�√
2N

� |0� − |1�√
2

�
. (37)

Next, the function f is evaluated (by Bob) using

Uf : |x, y� → |x, y ⊕ f(x)�, (38)

giving

|ψ2� = ±
�

x

(−1)f(x)|x�√
2N

� |0� − |1�√
2

�
. (39)
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Here

y ⊕ f(x) (40)

is the bitwise XOR (exclusive OR) of y and f(x). To
determine the result of the Hadamard transformation it
helps to first calculate the effect of the Hadamard trans-
formation on a state

|x�. (41)

By checking the cases x = 0 and x = 1 separately we see
that for a single qubit

H |x� =
�

z

(−1)xz |z�/
√
2. (42)

Thus

H⊗N |x1, . . . , xN �

=

�
z1,... ,zN

(−1)x1z1+···+xNzN |z1, . . . , zN �√
2N

. (43)

This can be summarized more succinctly in the very use-
ful equation

H⊗N |x� =
�

z(−1)x·z|z�√
2N

, (44)

where

x · z (45)

is the bitwise inner product of x and z, modulo 2. Using
this equation and (39) we can now evaluate |ψ3�,

|ψ3� = ±
�

z

�

x

(−1)x·z+f(x)|z�
2N

� |0� − |1�√
2

�
. (46)

Thus,

|ψ3� = ±
�

z

�

x

(−1)x·z+a·x|z�
2N

� |0� − |1�√
2

�
. (47)

We notice
�

x

(−1)x·z+a·x = 2Nδa,z. (48)

Thus,

|ψ3� = ±
�

z

�

x

(−1)x·z+a·x|z�
2N

� |0� − |1�√
2

�

= ±
�

z

2Nδa,z |z�
2N

� |0� − |1�√
2

�

= ±|a�
� |0� − |1�√

2

�

= ±|a1a2a3 · · · aN �
� |0� − |1�√

2

�
. (49)

Alice now observes

|a1a2a3 · · · aN �. (50)

Summarizing, if Alice measures |a1a2a3 · · ·aN � the func-
tion is

f(x1, x2, ..., xN )

= a1x1 ⊕ a2x2 ⊕ a3x3 ⊕ · · · ⊕ aNxN . (51)

VII. QUANTUM COMMUNICATION BASED

ON THE BERNSTEIN-VAZIRANI ALGORITHM

We study quantum communication based on the
Bernstein-Vazirani algorithm.
Alice and Bob have promised to select a func-

tion f(x1, x2, ..., xN ) = a1x1 ⊕ a2x2 ⊕ a3x3 ⊕ · · · ⊕
aNxN . Alice does not know a1, a2, ..., aN . Bob knows
a1, a2, ..., aN . Alice’s goal is to determine with certainty
what a1, a2, ..., aN Bob has chosen. In the classical the-
ory, Alice has to ask Bob N questions. In the quan-
tum theory, Alice has to ask Bob “one” question! Alice
prepares suitable N + 1 partite uncorrelated state, per-
forms the Hadamard transformation to the state, and
sends to the output state to Bob. And Bob performs the
Bernstein-Vazirani algorithm and inputs the information
of the a into the finall state. Alice asks him what state
is. Alice measures the finall state and she knows the a.
If the a is learned by Alice, Alice and Bob share N bits
of information, by one communication with each other.
The speed to share N bits improves by a factor of N
by comparing the classical case. This shows quantum
communication overcomes classical communication by a
factor of N .

• First Alice prepares the qubits in (37) and sends
the N + 1 qubits to Bob.

• Next, Bob picks N bits “a” and Bob applies Uf
Eq. (38) evolving the N +1 qubits to Eq. (39). He
then sends the N qubit to Alice.

• Finally, Alice applies the Hadamard transformation
to each of the qubits and measures. She learns

f(x) = a · x =
�N

i=1 aixi(mod2) = a1x1 ⊕ a2x2 ⊕
a3x3 ⊕ · · · ⊕ aNxN - Alice and Bob now share N
bits of information (the “type” of f(x)).

• In the classical case (without this quantum comput-
ing), Alice needs at least N -communication with
Bob to share N bits of information.

In conclusion, we have shown quantum communication
overcomes classical communication by a factor of N in
the Bernstein-Vazirani algorithm case.
However there may be an error between Alice’s bits-

strings and Bob’s one. In the next section, we discuss
an error correction based on the Bernstein-Vazirani algo-
rithm.

VIII. AN ERROR CORRECTION BASED ON

THE BERNSTEIN-VAZIRANI ALGORITHM

In this section, we present an error correction based on
the Bernstein-Vazirani algorithm. Suppose

f : {0, 1}N → {0, 1} (52)
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is a function with a N -bit domain and a 1-bit range. We
introduce two functions g(x) and h(x). The relation with
the function f(x) is as follows:

f(x) = g(x)⊕ h(x). (53)

We assume the following case

g(x) = b · x =

N�

i=1

bixi(mod2)

= b1x1 ⊕ b2x2 ⊕ b3x3 ⊕ · · · ⊕ bNxN ,

h(x) = c · x =

N�

i=1

cixi(mod2)

= c1x1 ⊕ c2x2 ⊕ c3x3 ⊕ · · · ⊕ cNxN ,

f(x) =

N�

i=1

(bi ⊕ ci)xi(mod2)

= (b1 ⊕ c1)x1 ⊕ (b2 ⊕ c2)x2 ⊕ (b3 ⊕ c3)x3 ⊕ · · ·
⊕(bN ⊕ cN )xN ,
bj , cj = 0, 1, xj = 0, 1. (54)

Alice has a bit-strings b = (b1, b2, . . . , bN ). Bob has an-
other bit-strings c = (c1, c2, . . . , cN ). We want to correct
errors of them.
Let us follow the quantum states through the algo-

rithm. The input state is

|ψ0� = |0�⊗N |1�. (55)

After the Hadamard transformation on the state we have

|ψ1� =
�

x∈{0,1}N

|x�√
2N

� |0� − |1�√
2

�
. (56)

Next, the function f is evaluated using

Uf : |x, y� → |x, y ⊕ f(x)�, (57)

giving

|ψ2� = ±
�

x

(−1)f(x)|x�√
2N

� |0� − |1�√
2

�
. (58)

After the Hadamard transformation, by using (58) we
can now evaluate |ψ3�,

|ψ3� = ±
�

z

�

x

(−1)x·z+f(x)|z�
2N

� |0� − |1�√
2

�
. (59)

We have

|ψ3� = ±
�

z

�

x

(−1)x·z+g(x)⊕h(x)|z�
2N

� |0� − |1�√
2

�

= ±
�

z

�

x

(−1)x·z+x·b⊕x·c|z�
2N

� |0� − |1�√
2

�

= ±
�

z

�

x

(−1)x·z+x·(b+c)|z�
2N

� |0� − |1�√
2

�
, (60)

where

b+ c = (b1 ⊕ c1, b2 ⊕ c2, . . . , bN ⊕ cN ). (61)

We notice
�

x

(−1)x·z+x·(b+c) = 2Nδ(b+c),z. (62)

Thus,

|ψ3� = ±
�

z

�

x

(−1)x·z+x·(b+c)|z�
2N

� |0� − |1�√
2

�

= ±
�

z

2Nδ(b+c),z|z�
2N

� |0� − |1�√
2

�

= ±|b+ c�
� |0� − |1�√

2

�

= ±|b1 ⊕ c1, b2 ⊕ c2, b3 ⊕ c3, . . . , bN ⊕ cN �

×
� |0� − |1�√

2

�
. (63)

Alice now observes

|b1 ⊕ c1, b2 ⊕ c2, b3 ⊕ c3, . . . , bN ⊕ cN �. (64)

Summarizing, if Alice measures |100 · · · 0� the relation is

b1 ⊕ c1 = 1, b2 ⊕ c2 = 0, . . . , bN ⊕ cN = 0. (65)

Thus there is an errors for the first bit:

b1 �= c1, b2 = c2, . . . , bN = cN . (66)

Hence Alice detects the error. In general, Alice can know
where such errors are.
If Alice measures |000 · · · 0� the relation is

b1 ⊕ c1 = 0, b2 ⊕ c2 = 0, . . . , bN ⊕ cN = 0. (67)

Thus Alice and Bob share N -bits of information.

b1 = c1, b2 = c2, . . . , bN = cN . (68)

We discuss the fact that the quantum error correction
overcomes classical counterpart by a factor of N in this
case.

IX. THE BERNSTEIN-VAZIRANI

ALGORITHM IN A NOISY ENVIRONMENT

In this section, we present the Bernstein-Vazirani al-
gorithm in a noisy environment. Suppose

f : {0, 1}N → {0, 1} (69)

is a noiseless function with a N -bit domain and a 1-bit
range. We introduce a noisy function g by using the
function f(x)

g(x) = f(x)±O(ǫ). (70)

Here O(ǫ)≪ 1 is the noise term.
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The noise is explained as follows. Suppose two qubits
are described by a superposition state and the value
of a function (f(1)) has an error. Then there must
be two error states. (For example, when we treat 100
bits and there are two errors, the error probability is
2/100=1/50).
Let us explain by using a quantum state:

|ψ� = |1�1 + |0�1√
2

|1�2 + |0�2√
2

=
|1�1|1�2 + |1�1|0�2 + |0�1|1�2 + |0�1|0�2

2
(71)

is the superposition state. The function f is evaluated
using

Uf : |x, y� → |x, y ⊕ f(x)�. (72)

Thus,

Uf |ψ� = Uf
|1, 1�+ |1, 0�+ |0, 1�+ |0, 0�

2
= (1/2)(|1, 1⊕ f(1)�+ |1, 0⊕ f(1)�
+|0, 1⊕ f(0)�+ |0, 0⊕ f(0)�). (73)

Therefore, there are two f(1)s in the output state. If
there is an error for f(1), then the following two states

|1, 1⊕ f(1)�, |1, 0⊕ f(1)� (74)

have an error, simultaneously. Thus the number of errors
is even. Here we globally treat such errors in a statistical
model.
We assume the following case

g(x) = a · x =

N�

i=1

a′ixi(mod2)±O(ǫ)

= a′1x1 ⊕ a′2x2 ⊕ a′3x3 ⊕ · · · ⊕ a′NxN
±ǫ(x1 + x2 · · ·+ xN ) = f(x)±O(ǫ),
aj = a

′
j ± ǫ, a′j = 0, 1, xj = 0, 1. (75)

We want to determine a1, a2, ..., aN with a success proba-
bility simultaneously so that we determine the noisy func-
tion g(x) with the success probability. It is the Bernstein-
Vazirani algorithm in a noisy environment.
Let us follow the quantum states through the algo-

rithm. The input state is

|ψ0� = |0�⊗N |1�. (76)

After the Hadamard transformation on the state we have

|ψ1� =
�

x∈{0,1}N

|x�√
2N

� |0� − |1�√
2

�
. (77)

Next, the function g is approximately evaluated using

Ug : |x, y� → |x, y ⊕ [g(x)]�. (78)

On a real line, [g(x)] is the nearest natural number from
g(x). Here we see [g(x)] = 0, 1 and

[g(x)] = f(x). (79)

We have

|ψ2� = ±
�

x

(−1)[g(x)]|x�√
2N

� |0� − |1�√
2

�
. (80)

After the Hadamard transformation, by using (80) we
can now evaluate |ψ3�,

|ψ3� = ±
�

z

�

x

(−1)x·z+[g(x)]|z�
2N

� |0� − |1�√
2

�
. (81)

So we have

|ψ3� = ±
�

z

�

x

(−1)x·z+g(x)±O(ǫ)|z�
2N

� |0� − |1�√
2

�
.(82)

We notice

(−1)±O(ǫ)|z� = (e±iπO(ǫ))|z� ≃ |z� (83)

because (e±iπO(ǫ)) ≃ 1.
Thus we have

|ψ3� ≃ ±
�

z

�

x

(−1)x·z+a·x|z�
2N

� |0� − |1�√
2

�
. (84)

In what follows, we evaluate
�

x(−1)x·z+a·x. We notice
�

x

(eiπ)x1z1+···+xNzN (eiπ)x1a1+···+xNaN

=
�

x

(eiπ)x1(z1+a1)+···+xN (zN+aN )

=
�

x1

(eiπ)x1(z1+a1) · · ·
�

xN

(eiπ)xN (zN+aN ). (85)

We have the following:
�

x1

(eiπ)x1(z1+a1) = (1 + (eiπz1)(eiπa1)). (86)

By checking the cases z1 = 0 and z1 = 1 separately we
see that

(1 + (eiπa1))|0�1 + (1− (eiπa1))|1�1

=2eiπa1/2
(e−iπa1/2 + (eiπa1/2)

2
|0�1

+2ieiπa1/2
(e−iπa1/2 − (eiπa1/2)

2i
|1�1

= 2(i)a1 cos(a1π/2)|0�1 − i(i)a12 sin(a1π/2)|1�1.
(87)

Thus we have

|ψ3� ≃ ±
�

z

�

x

(−1)x·z+a·x|z�
2N

� |0� − |1�√
2

�

= ±
�

z

(1 + (−1)z1eiπa1)) · · · (1 + (−1)zN eiπaN ))|z�
2N

×
� |0� − |1�√

2

�

= ±
	

j=1...N

[(i)aj cos(ajπ/2)|0�j − i(i)aj sin(ajπ/2)|1�j ]

×
� |0� − |1�√

2

�
. (88)
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We now observe a quantum state |100 · · · 1� with high
probability if

(a1 = 1± ǫ), | cos(a1π/2)|2 ≪ | sin(a1π/2)|2,
(a2 = ±ǫ), | cos(a2π/2)|2 ≫ | sin(a2π/2)|2,

(a3 = ±ǫ), | cos(a3π/2)|2 ≫ | sin(a3π/2)|2, ...,
(aN = 1± ǫ), | cos(aNπ/2)|2 ≪ | sin(aNπ/2)|2. (89)

Therefore, we present the Bernstein-Vazirani algorithm
in a noisy environment.
We introduce a success probability of finding a1: It

is the probability of detecting |1�1 if a1 = 1 ± ǫ. On
the other hand, an error probability of finding a1 is as
follows: It is the probability of detecting |0� if a1 = 1± ǫ.
In what follows, we evaluate the success probability of
the algorithm. It is the probability that we detect the
desirable quantum states for all a1, a2, . . . , aN .
The error probability for a1 is

| cos(a1π/2)|2 = E1. (90)

The error probability for a2 is

| sin(a2π/2)|2 = E2, (91)

and so on. The success probability for a1 is

| sin(a1π/2)|2 = 1− E1. (92)

The success probability for a2 is

| cos(a2π/2)|2 = 1− E2, (93)

and so on. The success probability S for the algorithm is

S = (1− E1)(1− E2) · · · (1− EN ). (94)

The algorithm we discussed determines a1, a2, ..., aN si-
multaneously with the success probability S. So we can

know the noisy function g(x) with the success probability
S.
We discuss the fact that the quantum algorithm over-

comes classical counterpart by a factor of N in the algo-
rithm over an environmental noise.

X. CONCLUSIONS

In conclusion, first, we have presented quantum key
distribution based on Deutsch’s algorithm by using an
entangled state. The idea of the security of the protocol
has been based on it of Ekert 91 protocol. The existence
of eavesdroppers must has destroyed entanglement.
Next, we have studied quantum communication in-

cluding an error correction. It has been based on the
Bernstein-Vazirani algorithm. The original algorithm has
determined a bit-strings. Here we have discussed the fact
that the Bernstein-Vazirani algorithm can be used for
quantum communication including an error correction.
Let us explain the situation. Alice has had a bit-strings
b = (b1, b2, . . . , bN ). Bob has had another bit-strings
c = (c1, c2, . . . , cN ). The goal has been to correct errors
of them. We have discussed the fact that the quantum
communication overcomes classical counterpart by a fac-
tor of N in the Bernstein-Vazirani algorithm.
Finally, we have studied the Bernstein-Vazirani algo-

rithm having an environmental noise. The original al-
gorithm has determined a noiseless function. Here we
have considered the case that the function has an envi-
ronmental noise. Let us explain the situation. We have
introduced a noise term into the original function f(x).
So we have had another noisy function g(x). The rela-
tion between them has been g(x) = f(x) ± O(ǫ). Here
O(ǫ)≪ 1 has been the noise term. The goal has been to
determine the noisy function g(x) with a success prob-
ability. We have discussed the fact that the quantum
algorithm overcomes classical counterpart by a factor of
N in the algorithm including the noise function case.
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