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Einstein Equivalence Principle is the cornerstone of general theory of relativity. Special relativity
is assumed to be verified at any point on the Riemann curved manifold. This leads to a mathematical
consistency between Einstein equations and special relativity principles.

INTRODUCTION

In general relativity (GR), the curvature of spacetime
is directly related to the stress-energy tensor. This pro-
vides a rigorous description for the gravitational phenom-
ena. Yet, the theory is geometrically very complicated.
Different attempts for alternatives have been made [1–
3], but the consistency with special relativity (SR) is
confused. In the present paper, we study the consis-
tency between the notion of the Riemann curvature (in
the context of Einstein equivalence principle) and spe-
cial theory of relativity principles. More specifically, we
discuss the cases corresponding to the Schwarzschild and
Reissner-Nordstrom metrics. The study simplifies the
basic concepts of general relativity, and provides new in-
sights into the relation between classical gravity and the
quantitative description of the theory (Regge discretiza-
tion of space).

This paper is organized as follows: in section 2, we
briefly summarize the main concepts in Riemann geome-
try, in the context of the present study. In section 3, the
discuss the Riemann curvature and its relation to gravity.
In section 4, some special cases (the spherical symmetric
and Reissner-Nordstrom fields) are discussed. Finally,we
draw our conclusion.

RIEMANN GEOMETRY

Riemann manifold is the global space on which Ein-
stein equations solutions are represented. Each point,
say p, in it corresponds to the center, say Ol(p), of a local
frame. Each local frame has its own local basis, with re-
spect to the gravity center. For a global observer at the
gravity center, say O, this basis is the coordinates ba-
sis. The location in the global space is defined by curved
coordinates, say {xµ}, whereas in the local frames the
flat coordinates are used instead, say {Xµ}. At a point
M , the coordinates basis can be defined using the par-
tial derivative of the global position with respect to the
curved coordinates as: eµ = ∂µOM. Of course, this basis
is tangential to the lines of curved coordinates.

Einstein realized that local frames correspond to the
case of SR, whereas the general motion in the global
space (which corresponds to a continuous jumping be-

tween infinite Minkowski spaces) corresponds to the gen-
eral case of the theory, he called general relativity. The
idea is that: for a local observer in free-fall (moving
along a given geodesic), the space with respect to him
is Minkowskian. This called Einstein equivalence prin-
ciple (EEP). Einstein equations are the constraints that
define the geodesics, as such, define EEP.

The result of the theory is that:matter distorts space-
time, and beings living in spacetime follow distorted
paths.

CURVATURE

SR is the local description of spacetime. For the global
observer, the local frame changes at each new point on
the geodesic. This leads to the general case of the theory:
global relativity.

Let us make the argument more clear. In a local
frame Ol(p), the local observer measures the infinitesi-
mal interval as: ds2 = gµν(X)dXµdXν , where gµν(X)
is the Minkowskian metric. With respect to the global
observer, in the general case, each infinitesimal element
in the coordinates is split as: dxµ = fµν (x)dXν where
fµν (x) = ∂xµ

∂Xν . In the global space, the coordinates
are curved; therefore, the relations between the coor-
dinates are not linear. Moreover, each coordinate is
parametrized with the parameter of the embedded curve
(geodesic) as: xµ(τ). Furthermore, each coordinate may
(generally) construct three planes, e.g. for x1, we have:{

(x1, x2), (x1, x3), (x1, x4)
}

; therefore, each coordinate
may generally construct three curves by eliminating the
parameter τ between the couples, e.g. for x1(τ), we have:{

(x1(τ), x2(τ)), (x1(τ), x3(τ)), (x1(τ), x4(τ))
}

; each cou-
ple corresponds to a curve. We use the polar coordinates
for each couple, with the choice that the coordinate that
construct the planes plays the role of the rho-coordinate,
e.g. for

{
(x1, x2), (x1, x3), (x1, x4)

}
, the coordinate x1

plays the role of the rho-coordinate. These planes are
used to parametrize the general form of the curve in the
global space; hence, they determine the explicit form of
the curvature.

Since the coordinates Xµ are flat, in the general case,
we write dXi = ωidT i, i = 1, 3. That is, the theory
(generally) is described with three constants. Therefore



2

dxµ = fµν (x)dXν = (gµν (X) + gµ4 (X)ωρδ
ρ
ν) dXν (1)

where ωρ = 1
ωρ , ω1 = 1 (Note that {xν} locally reduce

to {Xν} and the relations between the coordinates {Xν}
are linear).

An important note to mention is that the differential
elements used here are not infinitesimal in the mathemat-
ical sense, but in the context of EEP. That is, they cor-
respond (physically) to sufficiently small region of space.

Clearly, the quantities {fµ4 (x)} correspond to curva-
tures (of curved lines in 2d spaces), as such, they corre-
spond to accelerations; therefore, multiplying these with
the differential element of the time coordinate dτ , we get
elements of velocity in the same/opposite direction of the
µ-axis.

Of course, ds
dτ is invariant, as such, the square

gµν(X)X
µ

dτ
dXν

dτ = M . Since the components of this four-
vector are the velocity, thus by adopting constants for
these components, we get a geometric stress-energy ten-
sor; its physical interpretation is simple: it represents
locally the four-vector of impulsion-energy (caused by
gravity) of the test particle under study.

But, how the picture is, for the global observer? The
answer is simple; we just apply SR principles. The first
SR postulate corresponds to the conservation of momen-
tum, and the second corresponds to the constancy of
speed of light (as it is measured by the local and global
observers). The result is that we find the generalized ge-
ometric stress-energy tensor, say Gµν . The gravity the-
ory, therefore, lies in the equation ds2 = Gµνdx

µdxν . It
is clear that Gµν reduces to Mµν locally. Considering the
general case by adding the stress-energy tensor of ordi-
nary matter gives the final form of the gravity equation:

ds2 = Ĝµνdx
µdxν (2)

where Ĝµν corresponds to the matter-geometry stress-
energy tensor as it is measured by the global observer.
Evidently, the last equation defines the metric of space-
time, together with the geodesic equations (the geodesics
equations are closely to the local coordinate [4]), the
curved paths can be determined explicitly.

THE SPHERICAL SYMMETRIC CASE

For the case of spherical symmetric gravitational field,
the orbits are circles. A circular orbit can be repre-
sented locally (which depends on the position on the
curve; and it takes discrete description as in Regge ge-
ometry) and globally (continuously; which we get by

taking the lengths of the edges in the discretization to
zero; as it looks globally) in a contextual form. In this
case, fr4 (x) = −1

r (curvature of a circular curve), thus
dxr =

(
1− 1

r

)
dXr = k(r)dXr. for dxt, we use the space-

time diagram (as in SR) together with the last equation,

we get the result: f t4(x) =
−1
r

k(r) , which leads to the for-

mula dxt = 1
k(r)dX

t.

Note that this derivation (the last equation) can be ex-
tracted straightforwardly using the postulate of the con-
stancy of the speed of light of SR, without using the
spacetime diagram, i.e. the last derivation fundamen-
tally reflects the speed of light constancy postulate. This
completes the derivation in question.

One may be wondered that: in GR, some solutions
naturally involve non-diagonal metrics. Of course, if the
curves corresponding to the curvature fµ4 (x) depend on
the corresponding three curved coordinates, then (when
we apply the second SR postulate) new constraints are
considered, as such, relations between coordinates are re-
sulted, which lead finally (when we compute the square of
infinitesimal coordinates elements) to those terms being
discussed.

We can easily find the spherical symmetric with cosmo-
logical constant by considering the term of this constant
in Ĝµν . Also, for charged gravity sources, the Reissner-
Nordstrom metric can be found explicitly, and easily.

The findings show the key concept behind GR: EEP is
the geometric realization of SR principles.

In summary, we have studied the consistency between
Einstein equivalence principle and special relativity prin-
ciples. The results provide new insights into the study
of Regge discretization of space, in the context of the as-
sumption that the local Regge simplexes [5, 6] define the
Einsteinium sufficiently small regions of space.
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