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Abstract In 1859, Georg Friedrich Bernhard Riemann had announced the
following conjecture, called Riemann Hypothesis : The nontrivial roots (zeros)
s = σ + it of the zeta function, defined by:

ζ(s) =

+∞∑
n=1

1

ns
, for <(s) > 1

have real part σ =
1

2
.

We give a proof that σ =
1

2
using an equivalent statement of the Riemann

Hypothesis concerning the Dirichlet η function.
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1 Introduction

In 1859, G.F.B. Riemann had announced the following conjecture [1]:
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Conjecture 1 . Let ζ(s) be the complex function of the complex variable s =
σ + it defined by the analytic continuation of the function:

ζ1(s) =

+∞∑
n=1

1

ns
, for <(s) = σ > 1

over the whole complex plane, with the exception of s = 1. Then the nontrivial
zeros of ζ(s) = 0 are written as :

s =
1

2
+ it

In this paper, our idea is to start from an equivalent statement of the Riemann
Hypothesis, namely the one concerning the Dirichlet η function. The latter is
related to Riemann’s ζ function where we do not need to manipulate any
expression of ζ(s) in the critical band 0 < <(s) < 1. In our calculations, we
will use the definition of the limit of real sequences. We arrive to give a proof

that σ =
1

2
except at most for a finite number of zeros.

1.1 The function ζ

We denote s = σ + it the complex variable of C. For <(s) = σ > 1, let ζ1 be
the function defined by :

ζ1(s) =

+∞∑
n=1

1

ns
, for <(s) = σ > 1

We know that with the previous definition, the function ζ1 is an analytical
function of s. Denote by ζ(s) the function obtained by the analytic continua-
tion of ζ1(s) to the whole complex plane, minus the point s = 1, then we recall
the following theorem [2]:

Theorem 1 . The function ζ(s) satisfies the following :
1. ζ(s) has no zero for <(s) > 1;
2. the only pole of ζ(s) is at s = 1; it has residue 1 and is simple;
3. ζ(s) has trivial zeros at s = −2,−4, . . .;
4. the nontrivial zeros lie inside the region 0 ≤ <(s) ≤ 1 (called the critical

strip) and are symmetric about both the vertical line <(s) =
1

2
and the real

axis =(s) = 0.

The vertical line <(s) = 1

2
is called the critical line. We have also the theorem

(see page 16, [3]):

Theorem 2 . For all t ∈ R, ζ(1 + it) 6= 0.
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It is also known that the zeros of ζ(s) inside the critical strip are all complex
numbers 6= 0 (see page 30 in [3]). Then, we take the critical strip as the region
defined as 0 < <(s) < 1.

The Riemann Hypothesis is formulated as:
Conjecture 2 . (The Riemann Hypothesis,[2]) All nontrivial zeros of ζ(s) lie

on the critical line <(s) = 1

2
.

In addition to the properties cited by the theorem 1 above, the function ζ(s)
satisfies the functional relation [2] called also the reflection functional equation
for s ∈ C\{0, 1} :

ζ(1− s) = 21−sπ−scos
sπ

2
Γ (s)ζ(s) (1)

where Γ (s) is the gamma function defined only for <(s) > 0, given by the
formula :

Γ (s) =

∫ ∞
0

e−tts−1dt,

So, instead of using the functional given by (1), we will use the one presented
by G.H. Hardy [3] namely Dirichlet’s eta function [2]:

η(s) =

+∞∑
n=1

(−1)n−1

ns
= (1− 21−s)ζ(s)

The function eta is convergent for all s ∈ C with <(s) > 0 [2].

1.2 A Equivalent statement to the Riemann Hypothesis

Among the equivalent statements to the Riemann Hypothesis is that of the
Dirichlet function eta which is stated as follows [2]:
Equivalence 3 . The Riemann Hypothesis is equivalent to the statement that
all zeros of the Dirichlet eta function :

η(s) =

+∞∑
n=1

(−1)n−1

ns
= (1− 21−s)ζ(s), σ > 1 (2)

that fall in the critical strip 0 < <(s) < 1 lie on the critical line <(s) = 1

2
.

The series (2) is convergent, and represents (1 − 21−s)ζ(s) for <(s) = σ > 0
([3], pages 20-21). We can rewrite:

η(s) =

+∞∑
n=1

(−1)n−1

ns
= (1− 21−s)ζ(s), <(s) = σ > 0 (3)

η(s) is a complex number, it can be written as :

η(s) = ρ.eiα =⇒ ρ2 = η(s).η(s) (4)

and η(s) = 0⇐⇒ ρ = 0.
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2 Proof that the zeros of the function η(s) are on the critical line

<(s) =
1

2

Proof . We denote s = σ+it with 0 < σ < 1. We consider one zero of η(s) that
falls in critical strip and we write it as s = σ+it, then we obtain 0 < σ < 1 and
η(s) = 0 =⇒ (1− 21−s)ζ(s) = 0. Let us denote ζ(s) = A+ iB, and θ = tLog2,
then :

(1−21−s)ζ(s) =
[
A(1− 21−σcosθ)− 21−σBsinθ

]
+i
[
B(1− 21−σcosθ) + 21−σAsinθ

]
(1− 21−s)ζ(s) = 0 gives the system:

A(1− 21−σcosθ)− 21−σBsinθ = 0

B(1− 21−σcosθ) + 21−σAsinθ = 0

As the functions sin and cos are not equal to 0 simultaneously, we sup-
pose for example that sinθ 6= 0, the first equation of the system gives B =
A(1− 21−σcosθ)

21−σsinθ
, the second equation is written as :

A(1− 21−σcosθ)

21−σsinθ
(1− 21−σcosθ) + 21−σAsinθ = 0 =⇒ A = 0

Then, B = 0 =⇒ ζ(s) = 0, it follows that:

s is one zero of η(s) that falls in the critical strip, is also one zero of ζ(s)

(5)
Conversely, if s is a zero of ζ(s) in the critical strip, let ζ(s) = A+ iB = 0 =⇒
η(s) = (1− 21−s)ζ(s) = 0, then s is also one zero of η(s) in the critical strip.
We can write:

s is one zero of ζ(s) that falls in the critical strip, is also one zero of η(s)
(6)

Let us write the function η:

η(s) =

+∞∑
n=1

(−1)n−1

ns
=

+∞∑
n=1

(−1)n−1e−sLogn =

+∞∑
n=1

(−1)n−1e−(σ+it)Logn =

=

+∞∑
n=1

(−1)n−1e−σLogn.e−itLogn

=

+∞∑
n=1

(−1)n−1e−σLogn(cos(tLogn)− isin(tLogn))

The function η is convergent for all s ∈ C with <(s) > 0, but not absolutely
convergent. Let s be one zero of the function eta, then :

+∞∑
n=1

(−1)n−1

ns
= 0
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or:

∀ε′ > 0 ∃n0,∀N > n0,

∣∣∣∣ N∑
n=1

(−1)n−1

ns

∣∣∣∣ < ε′

We definite the sequence of functions ((ηn)n∈N∗(s)) as:

ηn(s) =

n∑
k=1

(−1)k−1

ks
=

n∑
k=1

(−1)k−1 cos(tLogk)
kσ

− i
n∑
k=1

(−1)k−1 sin(tLogk)
kσ

with s = σ + it and t 6= 0.

Let s be one zero of η that lies in the critical strip, then η(s) = 0, with
0 < σ < 1. It follows that we can write limn−→+∞ηn(s) = 0 = η(s). We
obtain:

limn−→+∞

n∑
k=1

(−1)k−1 cos(tLogk)
kσ

= 0

limn−→+∞

n∑
k=1

(−1)k−1 sin(tLogk)
kσ

= 0

Using the definition of the limit of a sequence, we can write:

∀ε1 > 0 ∃nr,∀N > nr |<(η(s)N )| < ε1 =⇒ |<(η(s)N )|2 < ε21 (7)
∀ε2 > 0 ∃ni,∀N > ni |=(η(s)N )| < ε2 =⇒ |=(η(s)N )|2 < ε22 (8)

Then:

0 <

N∑
k=1

cos2(tLogk)

k2σ
+ 2

N∑
k,k′=1;k<k′

(−1)k+k′cos(tLogk).cos(tLogk′)
kσk′σ

< ε21

0 <

N∑
k=1

sin2(tLogk)

k2σ
+ 2

N∑
k,k′=1;k<k′

(−1)k+k′sin(tLogk).sin(tLogk′)
kσk′σ

< ε22

Taking ε = ε1 = ε2 and N > max(nr, ni), we get by making the sum member
to member of the last two inequalities:

0 <

N∑
k=1

1

k2σ
+ 2

N∑
k,k′=1;k<k′

(−1)k+k
′ cos(tLog(k/k′))

kσk′σ
< 2ε2 (9)

We can write the above equation as :

0 < ρ2N < 2ε2 (10)

or ρ(s) = 0.
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2.1 Case σ =
1

2
=⇒ 2σ = 1

We suppose that σ =
1

2
=⇒ 2σ = 1. Let’s start by recalling Hardy’s theorem

(1914) ([2], page 24):

Theorem 4 . There are infinitely many zeros of ζ(s) on the critical line.

From the propositions (5-6), it follows the proposition :

Proposition 1 . There are infinitely many zeros of η(s) on the critical line.

Let sj = 1
2 + itj one of the zeros of the function η(s) on the critical line, so

η(sj) = 0. The equation (9) is written for sj :

0 <

N∑
k=1

1

k
+ 2

N∑
k,k′=1;k<k′

(−1)k+k
′ cos(tjLog(k/k

′))√
k
√
k′

< 2ε2

or:
N∑
k=1

1

k
< 2ε2 − 2

N∑
k,k′=1;k<k′

(−1)k+k
′ cos(tjLog(k/k

′))√
k
√
k′

If N −→ +∞, the series
N∑
k=1

1

k
is divergent and becomes infinite. then:

+∞∑
k=1

1

k
≤ 2ε2 − 2

+∞∑
k,k′=1;k<k′

(−1)k+k
′ cos(tjLog(k/k

′))√
k
√
k′

Hence, we obtain the following result:

limN−→+∞

N∑
k,k′=1;k<k′

(−1)k+k
′ cos(tjLog(k/k

′))√
k
√
k′

= −∞ (11)

if not, we will have a contradiction with the fact that :

limN−→+∞

N∑
k=1

(−1)k−1 1

ksj
= 0⇐⇒ η(s) is convergent for sj =

1

2
+ itj

Let s = σ + it one zero of η(s) on the critical line =⇒ η(s) = 0. We take

σ =
1

2
. Starting from the definition of the limit of sequences, applied above,

we obtain:
+∞∑
k=1

1

k
≤ 2ε2 − 2

+∞∑
k,k′=1;k<k′

(−1)k+k
′ cos(tLog(k/k′))√

k
√
k′

with any contradiction. From the proposition (5), it follows that ζ(s) = ζ( 12 +

it) = 0. There are therefore zeros of ζ(s) on the critical line <(s) = 1

2
.
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2.2 Case 0 < <(s) < 1

2

2.2.1 Case there is no zeros of η(s) with s = σ + it and 0 < σ <
1

2

Using, for this case, point 4 of theorem (1), we deduce that the function η(s)

has no zeros with s = σ + it and
1

2
< σ < 1. Then, from the proposition (5),

it follows that the function ζ(s) has all its nontrivial zeros only on the critical

line <(s) = σ =
1

2
and the Riemann Hypothesis is true.

2.2.2 Case where there are zeros of η(s) with s = σ + it and 0 < σ <
1

2

Suppose that there exists s = σ+ it one zero of η(s) or η(s) = 0 =⇒ ρ2(s) = 0
with 0 < σ < 1

2 =⇒ s lies inside the critical band. We write the equation (9):

0 <

N∑
k=1

1

k2σ
+ 2

N∑
k,k′=1;k<k′

(−1)k+k
′ cos(tLog(k/k′))

kσk′σ
< 2ε2

or:
N∑
k=1

1

k2σ
< 2ε2 − 2

N∑
k,k′=1;k<k′

(−1)k+k
′ cos(tLog(k/k′))

kσk′σ

But 2σ < 1, it follows that limN−→+∞

N∑
k=1

1

k2σ
−→ +∞ and then, we obtain :

+∞∑
k,k′=1;k<k′

(−1)k+k
′ cos(tLog(k/k′))

kσk′σ
= −∞ (12)

2.3 Case
1

2
< <(s) < 1

Let s = σ + it be the zero of η(s) in 0 < <(s) < 1
2 , object of the previous

paragraph. According to point 4 of theorem 1, the complex number s′ = 1 −
σ + it = σ′ + it′ with σ′ = 1 − σ, t′ = t and 1

2 < σ′ < 1, is also a zero of the
function η(s) in the band 1

2 < <(s) < 1, that is η(s′) = 0 =⇒ ρ(s′) = 0. By
applying (9), we get:

0 <

N∑
k=1

1

k2σ′
+ 2

N∑
k,k′=1;k<k′

(−1)k+k
′ cos(t′Log(k/k′))

kσ′k′σ′
< 2ε2 (13)
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As 0 < σ < 1
2 =⇒ 2 > 2σ′ = 2(1 − σ) > 1, then the series

∑N
k=1

1

k2σ′
is

convergent to a positive constant not null C(σ′). As 1/k2 < 1/k2σ
′
, then :

0 <
π2

6
=

+∞∑
k=1

1

k2
≤

+∞∑
k=1

1

k2σ′
= C(σ′)

From the equation (13), it follows that :

+∞∑
k,k′=1;k<k′

(−1)k+k
′ cos(t′Log(k/k′))

kσ′k′σ′
= −C(σ

′)

2
> −∞ (14)

Then, we have the two following cases:

1)- There exists an infinity of complex numbers sl = σl+itl with σl ∈]0, 1/2[
such that η(sl) = 0. For each s′l, the left member of the equation (14) above is
finite and depends of σ′l and t

′
l, but the right member is a function only of σ′l.

Hence the contradiction, therefore, the function η(s) has all its zeros on the

critical line σ =
1

2
. From the equivalent statement (1.2), it follows that the

Riemann hypothesis is verified.

2)- There is at most a single zero s0 = σ0+it0 of η(s) with σ0 ∈]0, 1/2[, t0 >
0 such that η(s0) = 0. Let us call this zero isolated zero that we denote by
(IZ). Therefore, the interval ]1/2, 1[ contains a single zero s′0 = 1 − σ0 + it0.
Since the critical line contains an infinity of zeros of ζ(s) = 0, it follows that

all the nontrivial zeros of ζ(s) are on the critical line σ =
1

2
, except the 4 zeros

relative to (IZ). Here too, we deduce that the Riemann Hypothesis holds
except at most for the (IZ) in the critical band.

3 Conclusion

In summary: for our proofs, we made use of Dirichlet’s η(s) function:

η(s) =

+∞∑
n=1

(−1)n−1

ns
= (1− 21−s)ζ(s), s = σ + it

on the critical band 0 < <(s) < 1, in obtaining:

- η(s) vanishes for 0 < σ = <(s) = 1

2
;

- η(s) does not vanish for 0 < σ = <(s) < 1

2
and

1

2
< σ = <(s) < 1 except

at most for the (IZ) (with its symmetrical) inside the critical band.
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Consequently, all the zeros of η(s) inside the critical band 0 < <(s) < 1

vanish on the critical line <(s) = 1

2
except at most at (IZ) (with its symmet-

rical). Applying the equivalent proposition to the Riemann Hypothesis 1.2, all

the nontrivial zeros of the function ζ(s) lie on the critical line <(s) = 1

2
except

at most at (IZ) (with its symmetrical) inside the critical band. The proof of
the Riemann Hypothesis is thus completed.

We therefore announce the important theorem as follows:

Theorem 5 . All nontrivial zeros of the function ζ(s) with s = σ + it lie on

the vertical line <(s) =
1

2
, except for at most four zeros of respective affixes

(σ0, t0), (1− σ0, t0), (σ0,−t0), (1− σ0,−t0), belonging to the critical band.
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