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Abstract 
 

Based on the paths of signals emanating from a rotating point body, we find the 

equations and properties of the field that they form. Depending on the type of observer 

the field differs. The field is not central but varies in orientation and magnitude with 

both distance and angular velocity of rotation. The magnitude of the field in some cases 

forms a barrier away from the origin, which may be very strong depending on the 

angular velocity of rotation. The results apply both to microcosmos (sub-atomic level) 

and macrocosmos (cosmic level). 

 

1. Introduction 
 

This paper is a continuation of the paper [1] that studied the relativistic rotation of 

frames and the signals emanating from a rotating point body located at the origin. A 

field can be viewed as signals that do not cross each other. These signals are received by 

a body that is subject to the field and induce it to act in a certain way. We will assume 

that these signals behave like light signals and travel the same way. This will allow us to 

use the results found for the paths of the signals emanating from a rotating body [1] to 

deduce the form and behavior of a field, we call G, due to the mass of the body and its 

rotation. We examine two types of rotation: One is called rotation without slippage, 

where the angular velocity of the space around the rotating body is constant regardless 

of distance from the body and the other is rotation with slippage, when rotation of space 

has an exponentially decreasing angular velocity as the distance from the rotating body 

increases. In each case we will distinguish between two types of non rotating observers: 

One close to the body and one far away. The observers are assumed mass-less and not 

affecting or affected by the signals emanating from the rotating body. In the case of 

constant angular velocity the far away observer will notice that a cylindrical “barrier”, 

(rapid increase of the field and sideway turn of its direction) is formed at radial distance, 

in cylindrical coordinates, c/w from the axis of rotation, while for the nearby observer 

no such barrier is formed. In the case of exponentially declining angular velocity, the far 

away observer will see a “barrier” being formed only when the angular velocity is very 

big and in that case, the barrier is formed at a radial distance approximately inverse to 

the angular velocity, leading us to the subatomic distances (microcosmos) and 

resembling the non slippage case. This barrier is stronger as the angular velocity of 

rotation increases. The characteristic of the barrier is, as in the previous case, a rapid 

increase in the magnitude of the field and turn of the direction of the field from the 

radial direction. Outside this barrier, the field gradually regains its radial direction and 

normal magnitude as the effect of rotation of the body on space declines, and returns 

back to the normal Newtonian gravitational field. On the other hand, for small angular 
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velocity no barrier is formed as is the case for cosmic distances (macrocosmos). Simply 

the field direction starts radially (in cylindrical coordinates) from the body and turns 

gradually sideways with respect to the radial until it reaches a maximum deflection and 

then turns back gradually to the radial direction and again ends up looking like a normal 

Newtonian gravity field. The sideways turn is not accompanied by an increase in the 

magnitude of the field as in the microcosmos case. 

This paper is organized as follows: In section 2 a short review of previous theory is 

presented. In section 3 the connection between signals and fields is exposed. In section 

4 we find the field, G , for an observer, who does not rotate with the body, when the 

angular velocity is constant with respect to the distance from the body (no slippage ). In 

section 5 we retain the no slippage assumption but change to the far away observer, and 

calculate the field G that he sees. In section 6 we calculate the relativistic mass of the 

rotating body. In section 7 we assume that the angular velocity is decreasing 

exponentially with the distance from the body (slippage case) and we calculate and 

present the graph of the field G that the far away observer sees. It is shown that a 

“barrier” is formed at the microcosmos level. In section 8 we continue with the slippage 

assumption and shortly discuss the G field for this case. Conclusions follow in section 

9. 

 

2  A short review of formulas related to previous theory on 

rotating frames and the path of signals emanating from a rotating 

body at the origin. 
 

We will summarize the results of the theory [1], on which this paper stands by 

presenting the transformation of cylindrical coordinates for each case. 

A. Rotation without slippage (the angular velocity w  of rotation of signals is 

constant with respect to the distance from the rotating body). Precession of the 

rotating body is assumed having a very small amplitude and is thus neglected. 

A.I Observer O  at the origin but not rotating with the body. (The 

transformation holds for 
c

z
w

 ). 

 sin ( , )c I t     (1) 

 vt    (2) 

 z z   (3) 

 t t   (4) 

 
2 2 2 2 2 2( , )

c t c

I tc w c w


  

  
  

  
 (5) 

 v v   (6) 

where , , , , ,z t v   are the radial distance in cylindrical coordinates, the angle of 

rotation as fraction of a circle (for example degrees), the z direction that coincides with 

the axis of rotation, time, the number pi, and the frequency of rotation respectively for 

observer O  , who is located at the origin and rotates with the body. And where

, , , , ,z t v        are the same quantities for observer O , who is located at the origin 

but not rotating with the body. The speed of light is c for both observers. 

Further, where, 
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0

( , ) cos

t

I t dt    (7) 

 
2 2 2 2 2 2

2 2 2 2 2 2

1 cos
cos

1 sin

w t c w z

w t c w




 

 
 

 
 (8) 

with 
2 2

cos
z

z






, 

2 2
sin

z








, sinct  , cosz ct   where  is the 

angle of inclination of the signal with respect to the z axis. Angle   is the angle of 

deflection of the signal from the radial as observer O  sees it.  

From the above we can find the transformation of the angular velocity w  using the 

formula ( 2w v  and 2w v  ) and the angle of rotation   measured in radians 

(using 2  and 2     ) as, 

 
w

w





 
  (9) 

 ( )wt


 



    (10) 

Relation (5) is obtained by requiring that the special relativistic Lorentz contraction of 

the perimeter holds for all light rays  

 
2 2

2
2 2 1

w

c


  

 
     (11) 

and using the fact that 2w v  and 2w v   we find
2 2 2

2 2

2 2 2

w c
w

c w





  


. Then we 

may express (11) as  

 
2 2 2

c

c w
  


  


 (12) 

From this (5) is obtained. 

Note that when 0z  ( 90  ) (1) becomes, arcsinh( )
c w

w c


   

 

A.II. Observer O is the far away observer outside the cylindrical volume 

defined by 
c

w
  ) for which the transformation below holds. 

 
2 2 2

c

c w
 


 


 (13) 

 vt    (14) 

 z z   (15) 

 t t   (16) 

     (17) 

 v v   (18) 

 wt     (19) 

Where the double primed quantities have the same meaning as the single primed above 

but refer to observer O . The angle of deflection is  , and is given by  

 2 2 2tan (1 sin )wt w t     (20) 
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And the angle of inclination of the signal with respect to the z axis is given by 

 
2 2 2 2 2 2

2 2 2 2

1 (1 sin )
tan tan

(1 sin )

w t w t

w t


 



 
 


 (21) 

 

B. Rotation with slippage. (The angular velocity of rotation of signals decreases 

exponentially with respect to the distance from the rotating body). This case has 

more meaning physically than case A above, and we also avoid the unnatural 

boundaries that appear at 
c

z
w

  and at 
c

w
  . The angular velocity is given 

by ( ) ( sin cos )

0 0

z ctw w e w e          with 0  , 0   and the frequency of 

rotation is  ( ) ( sin cos )

0 0

z ctv v e v e           . Precession is assumed to have very 

small amplitude and is neglected otherwise   must be replaced by   where 

0tan tan cos t    , where   is the angular velocity of precession.
 

    
 

 

B.I. Observer O  at the origin but not rotating. 

 sin ( , , , )c I t       (22) 

 
( sin cos )

( sin cos ) 0
0

0

(1 )

( sin cos )

t ct
ct v e

v e dt
c

   
   

   

 
  

    
  (23) 

 z z   (24) 

 t t   (25) 

 
2 2 2 2( )

0

z

c

c w e  


 

   
 

 
 (26) 

where 

 
0

( , , , ) cos

t

I t dt      (27) 

where   is the angle of deflection of the signal from the radial and  

 
2 2 2 ( sin cos ) 2 2 2 2 2( )

0 0

2 2 2 ( sin cos ) 2 2 2 2 2( )

0 0

1 cos
cos

1 sin

ct z

ct z

w t e c w z e

w t e c w e

     

     




 

   

   

 
 

 
 (28) 

 
w

w





 
  (29) 

and using (23) with (26) and the fact that 2   , 2     , we find the 

transformation of the rotation angle in radians 

 
( sin cos )

( sin cos ) 0
0

0

(1 )
( )

( sin cos )

t ct
ct w e

w e dt
c

   
    

  
     

 
    

     
 

  (30) 

Also assume that 
0

1 ce

w
 , the condition needed for cos  to be real for all  .    

 

B.II  Observer O (the far away not rotating observer) 

 
2 2 2 2( )

0

z

c

c w e  
 

  
 


 (31) 
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( sin cos )

( sin cos ) 0
0

0

(1 )

( sin cos )

t ct
ct v e

v e dt
c

   
   

   

 
  

    
  (32) 

 z z   (33) 

 t t   (34) 

     (35) 

 
0 0w w   (36) 

 
( sin cos )

( sin cos ) 0
0

0

(1 )

( sin cos )

t ct
ct w e

w e dt
c

   
     

   

 
  

    
  (37) 

The angle of deflection  is given by 

 

2 2

2 22 2 2 2

2 23 2 2

2

1
(1 sin )

tan
( )1 ( sin cos ) sin

1

w
w zwt w t c

w zc t w c

c





      




  
 



 (38) 

While the velocity of signals 
c as observer Osees them will be 

 
2 2 3 2 2 2

2

2 2 2 2 2 2 2 2 2

(1 ( sin cos ) sin )
cos 1 tan 1

1 sin (1 sin )
c

w t c t w
c

w t w t w t

    
  

 

  
   

  
 (39) 

The inclination of the path of the signal with  respect to the z axis is given by 

 
3 2 2 2

2 2 2 2 2 22 2 2

(1 ( sin cos ) sin )
tan tan 1

(1 sin )1 sin

wt c t w

w t w tw t

    
 



 
  


 (40) 

So that 

 cos cosc c     (41) 

 
 

 

3   Signals and Fields 
 

Consider a point in a field. At this point the field has a magnitude and direction. Let a 

small flat surface a , whose normal is pointing in the same direction as the field. We 

will define the field strength n  as the number of  signals per unit surface per unit time 

falling perpendicular to the surface. Let also, v  denote the velocity of the signals. We 

will assume that the direction of the field is given by the opposite direction to that of the 

velocity of the signals. 

Then according to our definition, 

 ˆn G v  (42) 

Where G  is the vector field and v̂ is the unit vector in the direction of the velocity of 

the signals. 

Letting now a become infinitesimal da we say that the infinitesimal volume dV

traversed by the signals in time dt  is  

 dV d dt v a  (43) 

Also the number of signals dN in the infinitesimal volume dV is, 

 dN n d dt a  (44) 

dividing we obtain, 
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dN n

dV


v
 (45) 

Substituting n  from (45) into (42) we find, 

 
dN

dV
 G v  (46) 

As an example, let us consider a field (like the Newtonian gravity field) that sends 

signals radially from a body of mass m . We assume that the total number of signals 

emitted from the body per unit time is proportional to m , say 
Gk m  for some constant 

Gk . Since the signals are emitted spherically they will cross the spherical surface at 

distance r  homogeneously. In order to find the n  (number of signals per unit time per 

unit surface crossing the surface of a sphere at distance r ) we must divide the total 

number of signals per unit time by the surface area, 

 
24

Gk m
n

r
  (47) 

It follows that this field may be represented using (42) by, 

 
2

ˆ ˆGk m
n

r
   G v v  (48) 

Where 1/4π is absorbed by Gk  and v̂  is the unit vector in the direction of the velocity of 

the signals, which in this case coincides with the direction of the radius r .  

 

4   The field G  created by a rotating body and no slippage 

(observer Ocase A.I) 
 

As discussed in [1], the signals emitted by a rotating point body look different to 

observer O(case A.II above), who is outside the volume defined by 
c

w
  (which 

describes a cylinder of radius c/w) and to observer O (case A.I) above), who is within 

this volume (as O  defines it). We will examine the two phenomena separately starting 

with O . 

How will the field G look to observer O , when the body m  rotates with angular 

velocity w  ? There will be two effects that determine what O  observes. One is that the 

rotating mass will look bigger due to relativity, (denote it m ). This effect, which 

appears if we let the rotating body have dimensions instead of being a point mass, will 

be examined in section 6. The second effect is that the signals emanating from this body 

will not follow a radial path. Let’s start with the second effect that is the signals that are 

emitted from such a body and look at Figure 1. 

The signals according to observer O , who rotates with the body, will expand 

spherically and the field G will follow equation (48), the classical Newtonian field. The 

radially traveling signal OCA for observer O  will be mapped to a helical signal shown 

as O C'A' for observer O . A small volume dV d dzd    (in cylindrical coordinates 

as observer O  perceives space) around point such as A or C will be mapped to a small 

volume dV d dz d        in (cylindrical contracted coordinates as observer O  

perceives space) around point A' or C' respectively. Still both volumes will contain the 
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same number of signals dN . It follows, therefore, that O  will observe a field G

according to, (46) 

 
dN

dV
  


G v  (49) 

where v  is the velocity vector for signals as seen byO . Using the chain rule of 

differentiation (49) can be written as 

 
dN dV

dV dV
  


G v  (50) 

Assuming that signals travel with the same speed c  for our observers c  v v , we 

may rewrite (50) as 

 ˆ ˆ ˆ
dN dV dN dV dV

dV dV dV dV dV
      

  
G v v v v G v  (51) 

Figure 1 The signal as observer O , who rotates with the body, sees it is the straight line OCA. 

For observer O , OCA is mapped to a helical path shown as O C'A' because of contraction of 

radial (in cylindrical coordinates) distance due to rotation. 

 

For the case of the gravitational field using (51) on (48) it becomes, 

 
2

ˆGk m dV

r dV


  


G v  (52) 

where we have replaced m  by m  to indicate that the mass will look bigger, when it is 

rotating. 

Using cylindrical coordinates, 2 2 2r z  , we obtain, 

 
 2 2

ˆGk m dV

dVz


  


G v  (53) 

where ˆ v  is the unit vector in the direction of the signals as seen by O . 

O 

A 
A' 

C 

 
c

w
 

c

w
  

z  

  

B 

C' 
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What remains now is to calculate 
dV

dV 
. But 

dV

dV 
 is given by the Jacobian of the 

transformation,
( , , )

( , , )

z

z

 

 



  
. 

For case A.I equations  (1) through (12) apply, which hold for 
c

z
w

 , (equivalently 

1

cos
t

w 
 ), the transformation is, 

 
0

sin cos sin ( , )

t

c dt c I t        (54) 

 z z   (55) 

 ( )wt


 



    (56) 

where 
2 2 2( )

w c
w

c w





  


 and 

2 2 2 2 2 2

2 2 2 2 2 2

1 cos
cos

1 sin

w t c w z

w t c w




 

 
 

 
.  

The Jacobian of the above transformation is 
( , , )

( , , )

z

z

 

 

  


  

 

0

' ( , , )

( , , )

0 0 1

z z

dV z
J

dV z z z

z z z

z

    

  

         

       

 

        

    

                  
     

        

    

  

 (57) 

Observe that 0








 since from (54)   does not depend on  , which was anyway 

expected because of symmetry around the z axis as we take into account all signals 

emanating in all directions from the rotating body. 

Now  

 
 

 

 



 (58) 

while from (5) 

 
2 2 2 2 2 2( , )

c t c

I tc w c w


  

  
  

  
 (59) 

Hence, substituting (58), (59), (54) in (57) it becomes, 

 
2 2 2

( , )sin ( , ) sin sin ( , )
sin ( , )

c
cI t c I t I t

c I t c w

   
     

        

         
   

       

 (60) 

or 

 
2 2 2 2 2

( , )

sin ( , )

I t c
J

I tz c w

   

    

  
   

    

 (61) 
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where we have used 
2 2

sin
z








 

Focus on the term 
( , )I t






 in (61). and observe that we may write ( , ) *(cos , )I t I t   

since ( , )I t  can be regarded as a function of cos  instead of  . Hence, we may write, 

 

 
cos

( , ) *(cos , ) *(cos , ) *(cos , )
cos

t
I t I t I t I t

t


   

    

     
  

     
 (62) 

 

Now calculate terms one by one, 

 
2 2 2 4

4

32 2 2
2 2 2 2 2 20 0 2

1 cos
*(cos , ) cos

cos cos 1 sin
1 cos (1 sin )

t t
w t t

I t dt w dt
w t

w t w t


 

  
 

  
  

  
 

 

 (63) 

and letting 

 
4

3

2 2 2 2 2 20 2

( , )

1 cos (1 sin )

t
t

U t dt

w t w t



 



 
  (64) 

 4*(cos , ) cos ( , )
cos

I t w U t  



 


 (65) 

Also 

 
2 2 2 2

cos sin cosz

z z

  

   

 
  

   
 (66) 

 
2

2 2 2 2

cos
sin

z z

 


   

 
 

   
 (67) 

 
sint

c









 (68) 

Substituting (64), (65), (66), (67), (68) back in (62) and then in (60) we find, 

 
2

4

2 2

( , ) cos sin cos sin
( , )

I t
w U t

cz

    


 


 

 
 (69) 

where we have used the fact that 
( , )

cos
I t

t








  

Finally, substituting in (61) and using (67) it becomes, 

 
4 2 2

2

2 2 2

cos sin ( , ) sin cos
cos

( , ) ( , )

w U t c
J

I t cI t c w

     


  

 
    

 
 (70) 

An alternative form for (70) is obtained by recalling that 2 2ct z  , 

2 2
sin

z








, 

2 2
cos

z

z






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2 4 2 2 2

2 2 2 2 2 2 2 2 2 2

( , ) cos

( ) ( , )( ) ( , )

z w z U t c
J

z I t z cI t z c w

   

     

 
    

     

 (71) 

By similar manipulations we obtain another form of (70) in terms of   and t  

 
4 2 2 2

2

2 2 2

sin cos ( , ) sin cos 1
cos

( , ) ( , ) 1 sin

w U t t
J

I t I t w t

    


  

 
    

 
 (72) 

Now we may use J  in (53) since 
1dV

dV J

 

 and find the field, 

 
2 2

2 2 22 2 4
2

2 2 2 2 2

1
ˆ ˆ

( ) cos( , )

( , )( ) ( , )

G Gk m k m

z J zz w U t c
z

I t z cI t c w

    

   

 
     

  
  

   

G v v (73) 

The formula above expresses G  in terms of  , a quantity observed by observer O . If 

we wish to express it in terms of what observer O  sees, we must substitute  according 

to (54). Namely, 
sin ( , )

sin ( , ) ( , )
ct I t

c I t I t
t t

  
        

The particular case when 0z    implies that  

 
0 2 2

0

1 1
( , ) ( , ) arcsinh arcsinh

2 1

t

z

dt w
I t I t wt

w w cw t

 



   


  (74) 

Using (74) into (73) and setting 0z  , we find  the field at the horizontal plane at the 

origin, which forms a disc as the signals at the horizontal plane rotate and expand 

outward logarithmically: 

 

2 2 2 2 2 2

3 30

( )arcsinh ( )
ˆ ˆ

G G

z

w w
k m c w k m c w

c c

cw c w

 
 

 


  

     G v v  (75) 

where we have used the fact that 
0 2 2 2

cos
z

c

c w







  

The direction of the field G is given by its cylindrical components: coszG    G , 

radial: sin cosG     G , tangential: sin sinG     G  which means that the 

unit vector ˆ v  is given by ˆ ( , , ) (sin cos ,sin sin ,cos )zv v v        v . A plot of the 

field strength appears in Figure 2 
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Figure 2   G  versus   and z . The effect of w is to decrease the scale as it increases keeping 

the same general shape . 

 

 

5 The G  field created by a body rotating without slippage 

(far away observer  O  case A.II) 
 
From (13) to (19),which apply for case A.II we have, 

 
2 2 2

c

c w
 


 


 (76) 

 z z   (77) 

 wt     (78) 

The angle of deflection is 

 2 2 2tan (1 sin )wt w t     (79) 

And the angle of inclination is 

 
2 2 2 2 2 2

2 2 2 2

1 (1 sin )
tan tan

(1 sin )

w t w t

w t


 



 
 


 (80) 

Since 1








 and 

3

3

2 2 2 2( )

c

c w












, the Jacobian is given by  

 
3

3

2 2 2 2( )

c
J

c w

 

 


  
  

 


 (81) 

Using the same arguments as in section 4 we may express the G  field as in (53) 

 
 2 2

ˆGk m dV

dVz


  


G v  (82) 

Where 
1dV

dV J


 
 and m m  . The equality m m   is shown in section 6, where a 

calculation of m  is also presented.  Note also, that ˆ v  is the unit vector in the direction 

of the field.  



 12 

Then (82) becomes   

 
 

3

2 2 2 2

3 2 2

( )
ˆGk m c w

c z





 
  


G v  (83) 

Now using (76) we find that  

 
2 2 2

c

c w
 





 (84) 

Substituting this into (83) we express G  in terms of   , 

 
3

2 2 2 2 2 2 2 2 2
ˆ

( ( ) )

Gk m c

c c w z c w  


  

    
G v  (85) 

Setting 0  in (83) we obtain the field along the z axis which is the simple Newtonian 

gravitational field, except for the increased mass m  due to rotation. 

The direction of the field in cylindrical coordinates is given by the unit vector 

ˆ (sin cos ,sin sin ,cos )         v  . 

At /c w   the field blows to infinity. This corresponds to t   and to tan

or that the field has turned 90 degrees with respect to the radial direction thus a “barrier” 

is formed at /c w  . 

Figure 3 shows how G  looks  

 
Figure 3 The graph of G  vs.   on the left appears as a contour plot on the right. We may 

imagine the minimum locus of Figure 4 placed on the contour plot as well as the lines at 

2

3

c

w
   , where the minimum in the direction of the signal path occurs. The magnitude of 

G  is decreasing in the   direction until it reaches a minimum and then increases and blows 

to infinity. In the z direction it decreases as 
21/ z

  

Now take the derivative 

 2 2 2 2 2 2 2 2

3 2 2
(3 2 )

( )

Gk m
c w w z w c

c z
  

 


    

 
G  (86) 
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This quantity will be non positive for 2 2 2 2 23 2 0w z w c   or for  

 
2

2 2

2

2
3

c
z

w
    (87) 

and hence G will be minimum for  

 
2

2 2

min 2

2
3

c
z

w
    (88) 

The locus of pairs ( , z ), where the minimum in the   direction occurs represents an 

ellipse and the value of the field at a minimum is found by substituting (88) into (83) 

 
2 2 2 2

3min

27

2

Gk m w c w z

c

 
 G  (89) 

To see how the minimum looks to observer O  we must find the minimum for G  

with respect to  . We take 


  

  
 

   
G G  and since 0









 the minimums 

with respect to   found above, correspond to the minimums with respect to  and 

hence substituting (84) into (88) we find that 

 
4

2 2 2 2 2 2 2

2

2

3

c
c c z w z

w
      (90) 

This equation which is symmetric in , z represents the locus of pairs of ( , z ) where 

G  is minimum in the direction for each particular z . The locus appears in Figure 4 

 

 
 

Figure 4  The shape depicts the pair of points ( , z ) where G  is minimum in the   

direction. The graph is symmetric in , z  

 

If we are interested in the derivative of G  along the path of a signal with inclination  , 

we will take the derivative with respect to t . In this case  

 

3

2 2 2 2 2 2 2 2 2 2 22
3 2 2 2 3

( sin ) 1 sin ( sin 2)G Gk m k m
c w c t w t w t

t t c c t c t
  

  
     

 
G

 (91) 

and the minimum is reached at  

2000 1000 0 1000 2000

2000

1000

0

1000

2000

  

z 
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 min

2

sin
t

w 
  (92) 

This locus (as   varies) is a cylinder of radius 
2c

w
   , which corresponds using (76) 

to 
2

3

c

w
  . 

 
 

 

 

6 The rotating mass 
 

Until now we have considered bodies as point masses. If we allow them to have 

dimensions the rotation makes them suffer a relativistic increase in mass. We will here 

examine the change in the mass from the rest mass 
statm  to the mass that O  (or O ) 

observes.  

Let statdm

dV
   and 

dm

dV



 


 be the density of the mass for observer O  and O  

respectively. Where V  and V  is the volume for the two observers respectively. Also we 

will accept that a point mass or infinitesimal mass dm  that is at the distance   and has 

angular velocity w  according to O , will appear to him as having mass according to the 

transformation of special relativity,  
2 2 2

2 2

2
1

statstat
dm c wdm

dm
cw

c






  

 


 and 

therefore, for a small mass dm dV that revolves with angular velocity w  at distance 

  from the axis, 
2 2 2 2 2 2

c cdV
dm dV dm

c w c w




 

 
  

 
. But 

 
V

m dV


     (93) 

and substituting for    we obtain, 

   

 
2 2 2 2 2 2

V V

c w c wdV
m dV dV

c dV c

   



 
  

   (94) 

Assume now that the stationary mass has uniform density. Then,  

 
2 2 2

V

m c w dV
c


    (95) 

As an example assume that the mass is spherical. Changing to spherical coordinates and 

integrating (see Appendix A) we find,

 
3 2

2 2 2 2

2 3 2 2 2
( ) arcsin( )

2 2 2

r c r wr
m c w r

w w c c w r

  
    


 (96) 

which is the same as 
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3 2 2 2 1

2 2
2

4 1 2 1 ( 1)
( )

3 2 2 1 2 1 2 3

i i i

i
i

r w r
m

i i i c

    





    

  
  (97) 

  

where r  is the stationary radius of 
statm . We note from (96) that as w , m  . 

while, from (97) we see that for 0w  , 
34

3
stat

r
m m

 
    as expected. 

The arguments are similar for observer O : 

 
2 2

2
1

statm
m

w

c


 




 (98) 

And using (13) we find that m m  . 

 

7  The G  field for rotation with slippage (observer O  case 

B.II ) 
 

When the rotation is with slippage the angular velocity of space around the rotating 

body decreases exponentially with distance from the body. In fact we assume that the 

angular velocity w  is given by ( )

0

zw w e    . In this case which is studied in [1] the 

signals start radially from the origin , then turn sideways until they reach a maximum of 

sideways turn and then gradually return back to the radial direction. Hence, the G field 

that is created is different from the no slippage case although it keeps the basic 

characteristic of the sideways turn and having a barrier when 0w  is big as in the case of 

no slippage as we will see. For the far away observer O the field is denoted as G  

In this case the transformation is given by case B.II above (recall (31) and following), 

 
2 2 2 2( )

0

z

c

c w e  
 

  
 


 (99) 

 0
0

0

(1 )
t ct

ct w e
w e dt

c


  




 

      (100) 

 z z   (101) 

 

2 2

2 2 2 2

2 23 2 2

2

1
1 sin

tan tan
1 sin

1 ( )

w

w t cwt
wc t w

z
c




 
 

 




  


 

 (102) 

Where sin cos       , 
2 2

tan
w z

c





   

 
3 2 2 2

2 2 2 2 2 22 2 2

(1 sin )
tan tan 1

(1 sin )1 sin

wt c t w

w t w tw t

 
 




  


 (103) 

The Jacobian of the transformation is, 

 
( , , )

( , , )

z
J

z

   

   

      
  

  
 (104) 
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But 1








, and 

2 2 2( )

0

32 2 2 2( )
2 2 2 2( ) 20

0

(1 )

( )

z

z
z

cw ec

c w e c w e

 

 
 

 

  

 

 
 

 
 

  

, which after 

some manipulation gives 

 
2 2 3 2( )

0

3

2 2 2 2( ) 2
0

( )

( )

z

z

c c w e

c w e

 

 

 




 

 

 





 (105) 

Hence, 

 
2 2 3 2( )

0

3

2 2 2 2( ) 2
0

( )

( )

z

z

c c w e
J

c w e

 

 

 



 

 


 



 (106) 

and  

 

3

2 2 2 2( ) 2
0

2 2 2 2 2 2 3 2( )

0

ˆ ( )
ˆ

( ) ( ) ( )

z

G G

z

k m k m c w e

z J z c c w e

 

 



   

 

 

  
    

  

v
G v  (107) 

For the direction of the field we need the unit vector in cylindrical coordinates, which as 

usual is given by 

 ˆ ( , , ) (sin cos ,sin sin ,cos )zv v v            v  (108) 

The minimums and maximums of G are difficult to calculate. However, it is possible 

to make the following observations, 

 

7.1  Observations on the extremes of G  

 

(a) Recall that whatever we find for   has a corresponding value for   since by 

(105), which is positive for all  , we know that  is monotonically increasing in  . 

The derivative of G with respect to   is 

 
3 1

2 2 2 2( ) 2 2 2 2( ) 2 2( )2 2
0 0 0

2 2 2 2 2 3 2( ) 2 2 2 2 3 2( )

0 0

3

2 2 2 2( ) 2 2 2( )2
0 0

2 2

2 ( ) 3( ) (1 )

( ) ( ) ( )( )

( ) (3 2 )

( )(

z z z

G z z

z z

c w e c w e w e
k m

c z c w e c z c w e

c w e w e

c z c

     

   

   

    
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 (109) 

Setting it equal to zero and simplifying we obtain, 

 
2 2 2 2( ) 2 2 3 2( ) 2( ) 2 2 2 2 2 3 2( )

0 0 0 0

2( ) 2 2 2 2 2( ) 2 2

0 0
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z z z z

z z

c w e c w e e w z c w e

e w c w e z
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   

      

   

       

   

      

    

 (110) 

The left hand side of the equation tells us that the first term is always negative the 

second term starts positive and at 
1




  turns negative, the third term starts negative 
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and at 
3

2



  turns positive. Therefore, for the interval for 

1 3

2


 
  , the derivative 

is always negative. 

 

(b) The derivative of G with respect to 2

0w will give us more information, 

 
3

2 2 2 2( ) 2 2 3 2( ) 2 2 2 2( ) 2
0 0 0

2 2( )

2 2 2 2 2 3 2( ) 2

0 0

3
( ) ( )

2

( ) 4 ( ) ( )

z z z

zG

z

c w e c w e c w e
k m

e
w c z c w e

     

 

 

    


   

     

 

 

    


  

G

 (111) 

Setting it equal to zero and simplifying we obtain, 

 2 2 3 2( ) 2 2 2 2( )

0 0

3
( ) ( ) 0

2

z zc w e c w e              (112) 

And solving 

 

2

2

0 3 2( )

3
2 ( )

2
z

c

w
e  



  



  (113) 

For 
3

0
2

    the derivative (111) starts at 2

0 0w   with positive value. Therefore, as 

we start increasing 2

0w , G  is increasing but no maximum is reached as long as 

3
0

2
    because (113) is impossible. (A positive left hand side cannot equal to a 

negative right hand side) and hence (112) cannot hold and no maximum is reached. In 

other words, in the interval 
3

0
2




  , G  increases indefinitely as 0w  increases 

while in the interval 
3

2



  a maximum is reached for some value of  2

0w . This means 

that by increasing 0w  enough I can make 
3

0
2

max [ ]
  

G  exceed G  for all values of  , 

such that 
3

2



 . In short for 0w  big enough the maximum of G  over   is always in 

the interval 
3

0
2




  . Also this maximum is not in the neighbourhood of 0   when 

0z  , because at these points G  has a finite value independent of 0w .  

Combining now this result with our observation (a), (that in  the interval for 

1 3

2


 
  , the derivative is always negative), we may restrict this interval even 

further so that the maximum of G  over  , to be denoted as maxG , is always in the 

interval 
max

1
0 G


  . Still we have not shown whether there is only one or more local 

max in 
1

0 


  . However, the graph of G  (see Figure 5a) indicates that there is 
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only one internal maximum in the  direction and that it appears for big enough 
0w , 

otherwise, when 
0w is not big enough, the graph of G  is monotonically decreasing in 

both   and z (see Figure 5b). In Figure 5 the plot is against not   but recall that 

there is a monotonic relation between   and   and hence the existence and number of 

extremes are the same. Only due to the contraction of   the maximum of the field at 

maxG  becomes very acute and looks like a wall to observer O .  

 
 

 (a)      (b) 

 
                 (c) 

Figure 5 . G versus   and z  (a) for big 0w  (
7

0 10w  rad/s ) and (b) for small 0w   

  

z  

  

z  

z  

G  
G

 

G
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The graph shows the strength of the field, not its direction, which changes according to the 

angle of deflection  .When 
0w  is big (a), the field rises sharply in the radial direction forming 

a barrier that diminishes in the z direction. (b) For small enough 
0w  , the field has no such 

interior maximum and drops gradually both in   and z , while cos  does not diminish as 

much. In (c) a variation of case (a) appears where by choice of  and    the barrier appears to 

widen in the z axis direction. 

 

7.2  Observations on   

 

From (99) we have, 

 
2 2 2( )

0

2
1

zw e

c

 




  
 



 (114) 

It is obvious that    . For large 
0w ,   becomes as small as we like and we are 

talking about the microcosmos (sub atomic level). On the other hand, small 
0w
 
keeps 

 at a magnitude comparable to  , which we call the macrocosmos. More formally,  

--If 0 zw
e

c

    then     and 
2 2( )

Gk m

z





G , which is the usual Newtonian 

field. This for example holds for cosmic level (macrocosmos), where 
0w is small, while 

  is very big. 

-- If 0 zw
e

c

     (This is achieved for the microcosmos level where 0w  is big, while 

  remains small), then  

 
2 2 2( )

00

2

z

z

c
e

ww e

c

 

 








 
   (115) 

In particular, for 1z    we see that  

 
0

c

w
  (116) 

at the microcosmos level. It is remarkable that this is also the limit for   for the no 

slippage case, where the value of G  blows to infinity. It is interesting to note that the 

radius in this case is inversely proportional to the angular velocity 0w .The fact that in 

(116)  is independent of  means that the signals of the field for a range of values of 

  are mapped and concentrated on 
0

c

w
and is, therefore, a maximum for G . This is in 

very good harmony with plots of G , where indeed the maximum appears at 

max

0

G

c

w
 . This is also in agreement with the requirement of section 7.1 that 

max

1
G


  since it is implied by the requirement 1z   . 
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7.3 The maximum deflection of the direction of G  
 

The maximum of the deflection angle  , is not easy to calculate however, we expect it 

to happen very close to the maximum of  or the minimum of cos , in the direction of 

the signal path  is found in [1] when we take cos
t





. This occurs at  

 
max

1

sin cos
ct

   



 (117) 

Where  is the angle of inclination of the signal from the z axis. Corresponding to this 

maximum are  

 
max

sin

sin cos





   



 (118) 

And 

 
max

cos

sin cos
z



   



 (119) 

And the locus of points where the max occurs is a rhombus by revolution which in the 

first quadrant follows the equation 

 
max max 1z     (120) 

Using (114) we find 

 

max max

max max

max
2( ) 2 2 2 22 2

2 2 2 20 max 00 max
2 222

sin

( )sin cos11

z w e ww e

c ecc

 

 

  
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  



   

  
   

 

(121) 

--For the macrocosmos case where 0 zw
e

c

   or because of (120) 
0 maxw

e
c


 , we 

may approximate (121) by 

 
max max

sin 1 1

sin cos cot
 


 

       
   

 
 (122) 

(Recall that also 
max max

1
G G 


    from section 7.1 but in the case of macrocosmos it 

is meaningless since there is no interior maximum for the G field and hence maxG and 

maxG do not exist.)  . 

--For the microcosmos level where 
0 max z

w
e

c

  


 we may approximate (121) by 

 
max

max
2 2

00 max

2 2
1

ce

ww

c e











 



 (123) 

Comparing this with max

0

G

c

w
 , as we discussed in section 7.2, we see that the max 

deflection  (which we used to approximate the maximum deflection of  ) of the field 
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occurs at a distance that is further away from the maximum magnitude of the field by a 

factor of e . 

From (102) we find that 

 
max

0tan
t t

w

ec




   (124) 

Since max

1
t

c



 . Thus for big enough 

0w  , 90 degrees  

 

8 The G  field for rotation with slippage (observer O , case 

B.I) 
 

This case, where the observer O  is affected by the field, is more complicated in the 

formulas and we will just present it briefly, 

The transformation is 

 sin ( , , , )c I t       (125) 

 ( sin cos )

0

0

( )

t

ctw e dt   
 



 
     (126) 

 z z   (127) 

Now the Jacobian of the transformation is  

 
2 2

2 2 2 2( ) 2 2 2 2( )

0 0
sin ( , , , )z z

c c
J

c I tc w e c w e   

     

            

     
   

   
(128) 

Then we may find 







 proceeding in a manner similar to that for the no slippage case. 

We will then find that 

 2 2

2 2 2 2( )

0

cos ( , )cos cos
cos

( , , , ) ( , , , ) z

U t c
J

cI t I t c w e  

   


        

 
    

 
 (129) 

where 

 
2 2 2 ( sin cos ) 2

0
2 2 2 2 ( sin cos ) 2

00

1 cos
( , )

cos 1 sin

t ct

ct

w t e
U t dt

w t e

   
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


 

 

 

 
  
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 

  (130) 

Finally, as usual 

 
2 2

1

4 ( )

Gk m

z J 


 


G  (131) 

It is difficult to plot G but from the physics of the problem we expect a maximum to 

occur near the locus where the deflection of the signals is maximized. This locus which 

has the shape of a rhombus by revolution in the ( , )z  space, is studied in [1] and 

presented briefly and used above in section 7. 

 

9 Summary of the results 
 

To find the G  field  (for the nearby observer O ) and G  field (for the far away 

observer Oand determine their properties, we started by assuming that a field consists 
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of  signals and that the strength of a field is given by the number of signals per unit 

volume. We further assumed that these signals travel with the speed of light or they 

behave like light. This allowed us to apply the results for light signals for rotating 

frames to the case of gravitational signals emitted by a rotating body of mass m  to find 

the form and strength of the G  and G  fields it creates. We also calculated the 

relativistic mass mof a rotating body from its stationary non rotating mass 
statm . 

G and G  are fields that include a bending and even winding of signals and can 

become very strong. Also depending on the value of the angular velocity of rotation w  

the field applies to both the microcosmos (subatomic level) and cosmological scale or 

macrocosmos.  

We examined two cases: 

(a) When rotation is without slippage (the angular velocity of rotation is constant 

independent of distance from the origin), the G  field (of observer O ) exists for 

/z c w  . The field looks to that observer unbounded in the radial direction and 

restricted in the z direction to /z c w . For observer O , however, who is 

outside /z c w , the field he perceives is G  and  is  restricted in the radial by 

c

w
  .  

(b)  When rotation is with slippage (
0

zw w e    ) the G  field is not restricted to 

within and  
c

w
  . We may distinguish two cases (i) The macrocosmos level 

for which 0 zw
e

c

   . This case holds, for example, for small 0w and big  , 

and we have small contraction of space and the field behaves much like the 

usual 
2

1

r
 field, except that there is a sideway component due to the rotation that 

makes cos 1   , or the deflection angle become positive, with its maximum 

approximated at 
max

1



   and then gradually return to zero. (ii) The 

microcosmos level for which 0 zw
e

c

    . Here, there is both a maximum of 

the magnitude of the field that rises sharply and can be very strong and occurs at 

max 0/G c w , and a maximum in the angle of deflection that occurs at 

approximately max

0

ce

w
  . This latter phenomenon we call a “barrier”.  

(c) Not much can be said about G , due to the complexity of the formulas. 

However, from the study on the signals emitted by the rotating body we expect a 

similar behavior to that of G . 
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Appendix A 

The spinning mass 

 

 
2 2 2

V

m c w dV
c


    (A.1) 

Changing to spherical coordinates 
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   (A.2) 

or 
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   (A.4) 

The first term is 
32

3

r
 and the second term is 

 2 2 2 2

1 3 2 2 2
0

arcsin( ) ( )
2

r
wr

I d c w r
w c c w r


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
  (A.5) 

Integrating by parts 

 2 2 2 2 2 2 2 2

1 3 32 2 2
0
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2 2

r
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  (A.6) 

And finally, 
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 (A.7) 

Therefore,  
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2 2 2 2

2 3
( ) arctan

2 2 2

r c r wr
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w w c c
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Using the expansion of  

 

3 5 7

2 2 2

1 1 1
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 (A.9) 

which converges for 1 1
wr

c
   , we may write mas 
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