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Abstract: Until the early twentieth century, the three-dimensional space and one-dimensional time were 

considered separate beings. In 1908, German mathematician H. Minkowski connected together space and time 

into single idea, creating a new the four-dimensional spacetime. We proposed the extension of this idea by the 

connection together the four-dimensional spacetime and the mass density into the single idea, creating a new 

entity: the four-dimensional spacetime with the mass density. In this paper we discussed the physical 

consequences of this a new idea in terms of the gravitational phenomena. 

 

1. Introduction 

 

Until the early twentieth century, the three-dimensional space and one-dimensional time were 

considered separate beings. In 1908, German mathematician H. Minkowski connected space and time 

into single idea, creating the four-dimensional spacetime [1]. The idea of the spacetime enjoyed 

success in the Special Relativity (SR) and the General Relativity (GR), correctly describing a range of 

physical phenomena.  

 

In this paper we proposed extension of this idea by the connection together the four-dimensional 

spacetime and the mass density into the single idea, creating a new mathematical structure: the four-

dimensional spacetime with the mass density.  

 

The spacetime continuum and mater was first considered by A. Einstein in 1950. He couldn't imagine 

an empty spacetime to describe physical phenomena [2]. The concept of the effective mass tensor to 

describe gravitational phenomena, instead of the usual metric tensor, for the first time was discussed 

in [3].  

 

We assume that under influence outer gravitational field the bare mass density bareρ  becomes the 

effective mass density. The spacetime with the effective mass density we will call the effective spacetime. 

The spacetime with the bare mass density we will call the bare spacetime. The idea of the effective or the 

bare spacetime we call the massification of spacetime. We expect that idea of the massification of 

spacetime will allow us to solve the problem of the sources of inertia.  
 

 

2. The effective spacetime 

 

The metric of the effective spacetime we mathematically define  

 

( )( ) ( ) νµµν
µν ρ

ρ
ρ dxdx

x
xds

bare

def

⋅=2
 

(1) 

 

where: ( )xµνρ  is the symmetric and position dependent the effective mass density tensor.  

 

This tensor describes the physical and geometrical properties of the effective spacetime and also the 

mathematical relationship between the effective spacetime and the bare medium under the influence 
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of a gravitational fields. Note that bareρ  never reaches zero, although it may be very close (see to 

chapter 7). In the contrast to the vacuum, the effective or the bare spacetime is a never empty.  

 

Note that, in a some sense, the effective mass density tensor ( )xµνρ  and the metric (1) are very 

similar to the metric tensor ( )xgµν  and the metric   

 

( )( ) ( ) νµ
µνµν dxdxxgxgds ⋅=2  (2) 

 

known from GR.  

 

 

3. The bare spacetime  

 

In absence of the outer gravitational field ( ) ( )xx
bare
µνµν ρρ →  , where: ( )xbare

µνρ  is the bare mass density 

tensor and the metric (1) takes the form  

 

( )( ) ( ) νµµν
µν ρ

ρ
ρ dxdx

x
xds

bare

baredef
bare ⋅=2 . 

(3) 

 

So determined the bare spacetime is equivalent to the field of inertia, which is a special case of the 

gravitational field. This field is responsible for the inertia of the body and is described by the tensor 

( )xbare
µνρ . Particles behave in accordance with the principle of inertia, i.e. they are at rest or moving in a 

straight line at constant speed with respect to the bare spacetime (not with respect to the massless 

spacetime itself). 

 

If we assume that ( ) constx
bare =µνρ , then our bare spacetime is the homogeneous, isotropic and time 

independent and the bare mass density tensor we define  

 

),-,-,-(diag barebarebarebarebare
def

bare ρρρρηρρ µνµν =⋅=  
(4) 

 

where: µνη  is the Minkowski tensor, µ, ν  = 0, 1, 2, 3.  

 

According to equation (1) and (4) the metric (3) becomes the Minkowski metric 

 

( ) νµ
µνµν ηη dxdxds ⋅=2 . (3a) 

 

The metric (3a) does not depend explicitly on the bare mass tensor and well suited to describe all the 

physical phenomena occurring in SR. When the bare spacetime is the homogeneous, isotropic and 

time independent, then the field of inertia is described by the Minkowski tensor µνη  [2]. 

 

During the motion with respect to the bare spacetime, clocks and roots indicate the different time and 

length, than at the rest. This difference results is from the change of the bare mass density of these 

measuring instruments.   

 

Let's analyze the motion of the body in an effective spacetime and we compare this equation with the 

Newtonian equation. 
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4. The equation of motion in the effective spacetime  

 

The Lagrangian function for the body in the effective spacetime has form  

 

( )
ττ

ρ
νµ

µν
d

dx

d

dx
xL ⋅=

2

1
 

 

 

 

The equation of motion  

 

( )
( )

0
2

1
=

∂

∂
−







⋅

ττ

ρ

τ
ρ

τ

νµ

γ
µν

µ

µγ
d

dx

d

dx

x

x

d

dx
x

d

d
 

 

(5) 

 

where: ( ) ( )
τ

ρ
µ

µγγ
d

dx
xxp ⋅=  is the effective density of the four-momentum, τ  is the proper time. This is the 

geodesic equation in the effective spacetime (see also the equation (8)).  

 

The equation of motion (5) explicitly refers to the effective spacetime, which is described by the 

effective mass density tensor ( )xµνρ . So the motion of the body takes place only in relation to the 

effective spacetime, not to the relation of the empty spacetime itself or all bodies in the Universe 

(Mach’s Principle [4], see the chapter 8). The new quality of the understanding has been reached.  

 

When ( )xγνρ  does not depends explicitly on τ , the equation (5) takes the form   

 

( ) ( )( ) 0
2

2

=⋅Γ+
ττ

ρ
τ

ρ
νµ

µνγµν

µ

µγ
d

dx

d

dx
x

d

xd
x  

 

(6) 

 

where:  

 

( )( ) ( ) ( ) ( )









∂

∂
−

∂

∂
+

∂

∂
=Γ γ

µν
µ

γν
ν

γµ
µνγµν

ρρρ
ρ

x

x

x

x

x

x
x

def

2

1
 

 

(7) 

 

assuming that the condition  

 

( ) ( ) ( )
ττ

ρρ

ττ

ρ νµ

µ
νγ

ν
µγ

νµ

ν
µγ

d

dx

d

dx

x

x

x

x

d

dx

d

dx

x

x
⋅








∂

∂
+

∂

∂
=⋅

∂

∂

2

1
 

 

 

 

is satisfied. 

 

The equation (7) is very similar to the Christoffel symbols of the first kind, where instead metric tensor 

( )xgµν , we apply the effective mass density tensor ( )xµνρ . This is an interesting result because the 

Christoffel symbols describing the metric connection, while the equation  

 

( )
( )

0
2

1
=

∂

∂
−








ττττ

νµ

γ
µν

ν

γν
d

dx

d

dx

x

xg

d

dx
xg

d

d
 

 

(8) 

 

is the geodesic equation in GR. Note that equations (5) and (8) are very similar to themselves.  
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If the surrounding bodies consist only with the bare masses, i.e. ( ) barex µνµν ρρ = , ( ) 0=Γ bare
µνγµν ρ  then 

the equation of motion (6) takes the form:   

 

0
2

2

=
τ

ρ
ν

µν
d

xdbare . 
 

(9) 

 

The body with the bare mass density bare
µνρ  is in the rest or moves in a straight line with the constant 

velocity in the respect to the bare spacetime. The principle of inertia has gained a new meaning and 

the equation (9) determines a new inertial reference frame – the bare reference frame. This reference 

frame is determined by the bare spacetime property only. The measuring instruments: clocks and 

roots now have the bare mass density. Old traditional reference system consisting with the massless 

rods and clocks loses it’s physical sense. 

 

During any change in state of motion of the body appears the inertia, which source is the massification 

of spacetime. The inertia becomes an intrinsic property of the massification of spacetime. The 

magnitude of the inertia of any body is also determined by the massification of spacetime. This is the 

opposite of that, than previously thought. Until now it was thought that inertia is determined by the 

masses of the Universe and by their distribution [5]. In our model an isolated the body in the Universe 

always has inertia, because the spacetime with the bare mass density bareρ  formed an inseparable 

whole. The spacetime ceased to be empty. In the particular case the equation (9) becomes  

 

0
2

2

=
τ

ρ
d

xd i
bare . 

 

(9a) 

 

where: i = 1, 2, 3.  

 

 

5. The weak gravitational field  

 

In the weak gravitational field the effective mass density tensor ( )xµνρ  we can decompose to the 

following simple form: ( ) ( )xx bare *
µνµνµν ρρρ += , where: ( ) 1* <<xµνρ  is a very small perturbation and 

the metric (1) takes form: 

 

( )( ) ( ) νµµν
µνµν ρ

ρ
ηρ dxdx

x
xds

bare
⋅













+=

*

*2
 

 

(10) 

 

 

5.1. The equation of motion  
 

At slow motion speeds, in a static, a weak and the spherically symmetric field the equation of motion 

(6) reduces to  

 

( ) ( )rc

dt

rdr
bare

rrbare *
00

2

2

2*

2
1 ρ

ρ
ρ

ρ ∇⋅−≅⋅







+  

 

(11) 

 

where: c  is the speed of light.  
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The equation (11) is a different than well-known Newton's equation of the motion for the gravity. It 

what currently we consider to be the inertial mass density, really is the sum of the bare mass density 
bareρ  and ( )xrr

*ρ  -  rr-component of the very small perturbation in the effective mass density. Note 

that the gravitational mass density does not appear explicitly in the equation (11). Does it mean that 

during massification of the spacetime the Equivalence Principle lost its raison d'être? 

 

Dividing both sides of the equation (11) by bareρ  (on the assumption that ( ) 0* →rrrρ ), we get 

 

( )








∇⋅−≅

bare

rc

dt

rd

ρ
ρ *

00
2

2

2

2
 

 

(11a) 

 

This is a new form of the equation of motion for the body in the gravitational field. This equation is 

very similar to the equation  

 

( )rh
c

dt

rd
00

2

2

2

2
∇⋅−≅  

 

(11b) 

 

known from GR, where ( )rh00  is the small perturbation in the metric tensor ( )rgµν .  

 

According to the Correspondence Principle (CP) we expect that there is a relationship between the 

component ( )r*
00ρ  and the gravitational potential ( )rV  in the following form [6]  

 

( ) ( )
2

*
00 2

c

rVr
bare

≅
ρ
ρ

 
 

(12) 

 

where: ( )
r

GM
rV = , G  is the gravitational constant, M is the mass and r  is the distance. After 

substituting (12) to (11a), we obtain  

 

( )
r

rV

dt

rd

∂
∂

−=
2

2

 
 

(13) 

 

the well-known Newtonian equation of motion in the gravitational potential ( )rV . 

 

 

5.2. The rotating body 
 

Let’ s consider the slowly rotating body in a static and a weak gravitational field. The equation of 

motion have the form   

 

( ) ( ) ( )
dt

dx

x

x

x

x
c

x

xc

dt

xd i

k

j

j

k

i

i
bare















∂

∂
−

∂

∂
⋅+

∂

∂
−=⋅

*
0

*
0

*
00

2

2

2

2

ρρρ
ρ  

 

(14) 

The following mathematical  expressions are responsible for the real sources of inertia: 
( )
ix

x

∂

∂ *
00ρ

 and 

( ) ( )
k

j

j
k

x

x

x

x

∂

∂
−

∂
∂ *

0
*
0

ρρ
. The first term is a force, which is appearing due to the existence of a gradient in 
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the small perturbation of the 00-component in the effective mass tensor 
( )
ix

x

∂

∂ *
00ρ

. The second one is 

velocity-dependent 
dt

dxi
 and the rotation 

( ) ( )
k

j

j
k

x

x

x

x

∂

∂
−

∂
∂ *

0
*
0

ρρ
.  

 

For the Newtonian approximation the suitable components we can determine from the matrix [7]  

 

( )

( )

























−

−
+

−

⋅=

0000

000

000

0
2

222

*

c

x
c

y
c

x

c

y

c

yx

x bare

ω

ω

ωωω

ρρµν , 

 

 

where 222 yxr += .  

 

Finally, we get well-known equation for the slowly rotating body in a static and weak gravitational 

field, which includes the centrifugal and Coriolis acceleration.  

 

dt

dr
r

dt

rd
ωω 22

2

2

−−=  
 

(15) 

 

In the Newtonian approximation the equations of motion (13) and (15) does not depend explicitly on 

the effective mass density and the centrifugal and Coriolis forces are the fictitious forces.  

 

 

6. The rotating bucket with water problem 

 

There are two entirely different measurements of the Earth’s angular velocity, astronomical (from 

upper culmination to upper culmination of the star) and dynamic (by means of Foucault’s pendulum 

experiment), which give the same results (in the limit of the experimental errors). In both cases the 

motion of the body is described with respect to the effective spacetime and the coincidence of these 

measurements is the result of massification of the spacetime.  

 

In the famous experiment with the rotating bucket with water [8, 9] the motion of water takes place also 

to relative of the effective spacetime, therefore the surface of water takes the shape of the parabolic. So, 

massification of the spacetime explains both these physical phenomena.   

 

 

7. What is the bare and effective mass density?  

 

Each theoretical model must correspond with the real of the physical world. We suppose that the bare 

mass density bareρ  probably corresponds with the critical density 
G

H
c π

ρ
8

3 2

=  [7], where: H is the 

Hubble constant. This term is use in the modern cosmology to determine the spatial geometry of the 

Universe, where cρ  is the critical density for which the spatial geometry is flat (or Euclidean).  
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The flat spatial geometry in SR corresponds with the bare spacetime in our model. The curved 

spacetime in GR corresponds with the effective spacetime. The Universe around us is almost 

homogeneous and isotropic (we omitted concentrations forming a hierarchy of stars, galaxies and 

clusters of galaxies). The Universe around us is flat.   

 

 

8. In the search of a field equations 

 

In his book [4] A. Einstein wrote: This is the reason why E. Mach was led to make the attempt to eliminate 

space as an active cause in the system of mechanics. According to him, a material particle does not move in not 

accelerated motion relatively to space, but relatively to the centre of all the other masses in the Universe; in this 

way the series of causes of mechanical phenomena was closed, in contrast to the mechanics of Newton and 

Galileo. In order to develop this idea within the limits of the modern theory of action through a medium, the 

properties of the space-time continuum which determine inertia must be regarded as field properties 

of space, analogous to the electromagnetic field. The concepts of classical mechanics afford no way of expressing 

this. For this reason Mach's attempt at a solution failed for the time being.  

 

In this paper we presented that the inertia is shown as field properties of the effective spacetime. 

Tensor ( )xµνρ  is also a geometric and the physical object. Geometrically it determines the relations 

metric (1) of the effective spacetime and physically is responsible for a gravitational fields.  

 

In a weak field component of 
( )
bare

x

ρ
ρ00  is expressed by the equation 

 

( ) ( )x
c

Gx
bare

ρ
π

ρ
ρ

⋅=







∇

2

00 8
 

 

(16) 

 

where ( )xρ  is the mass density of the body under influence the gravitational field. According to the 

CP (see the equation (12)), the equation (16) becomes the Poisson equation for the gravity.  

 

( ) ( )xGxV ρπ4=∇  (17) 

 

Having the effective mass tensor ( )xµνρ , we can define the curvature tensor ( )( )xR µνµνλη ρ  of this the 

effective spacetime. The influence of the gravitational field on the bare spacetime can be very 

complicated, thus the mathematical structure of ( )( )xR µνµνλη ρ  can be a very sophisticated. We must 

therefore find the differential equations that govern of the effective spacetime under the influence of 

the variable gravitational fields. Here is the field equation without mathematical proof ( 1=bareρ ) 

 

( ) ( ) ( )µνµνµνµνµνµν ρ
π

ρρρ T
c

G
RR ⋅≅⋅−

4

8

2

1
 

(18) 

 

where: tensor ( )µνµν ρR  and scalar ( )µνρR  are the essentially unique contractions of the curvature 

tensor1, ( )µνµν ρT  the energy-momentum tensor, which now depends on the effective mass tensor µνρ  

and never reaches zero, i. e. ( ) 0≠µνµν ρT , although it may be very close.   

 

                                                 
1 ( ) ( )µνµλνκ

λκ
µνµν ρρρ RR ⋅≡ , ( ) ( )µνµν

µν
µν ρρρ RR ⋅≡ . 
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The left side of the equation (18) describes the geometry of the effective spacetime, and the right side 

describes the distribution of the effective sources, being under influence of a gravitational fields.   

  

 

9. Summary   
 

In this paper was applied an alternative attempt to describe gravitational phenomena, using a new 

idea of the massification of spacetime, which provides the following benefits:   

 

1. During any change in state of motion of the body appears the inertia, which source is the 

spacetime with the effective mass density. 

2. The inertia becomes an intrinsic property of massification of the spacetime.  

3. The magnitude of the inertia of any body is determined by massification of the spacetime.  

4. Inertial forces, appearing in the non-inertial frames of reference, there are no longer fictitious 

forces.  

5. In the gravitational field clocks and roots indicate the different time and length, than in the 

absence of the field. This difference results from the change of the bare mass density in a 

gravitational field [10].  

 

 

10. Conclusion 

 

The idea of massification of spacetime, although is a very an attractive, requires the experimental 

confirmation. According to our model, each body moving in the gravitational field of a star in an 

elliptical orbit, should demonstrate a change in the effective mass. Predicted the annual relative 

change of the fluctuation in the effective mass as resulting from ellipticity of the orbit for the Earth, is 

equal to 6.6 x 10-10 [10]. GR does not predicts a such fluctuations.  
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