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Abstract

This paper introduces the notion of an S-Structure (short for Squarefree Structure.)
After establishing a few simple properties of such S-Structures, we investigate the
squarefree natural numbers as a primary example. In this subset of natural numbers
we consider ”arithmetic” sequences with varying initial elements. It turns out that
these sequences are always periodic. We will give an upper bound for the minimal and
maximal points of these periods.

1 Motivation

We start with the natural numbers and define the ”core” operation.

Definition 1. Let P the set of all primes of N and a ∈ N with a =
∏

p∈P p
vp(a). The core

of a is defined as

core(a) :=
∏

vp(a) odd

p

Let S the positive squarefree elements of N. Now we define two operations an this set
and call the structure (S,⊗,⊕) the S-Structure of Z.

Definition 2. The multiplication ⊗ is defined as

⊗ : S× S → S
a⊗ b 7→ ab

gcd2(a,b)

Definition 3. The addition ⊕ is defined as

⊕ : S× S → S
a⊕ b 7→ core(a+ b)

Theorem 4. The structure (S,⊗) is a group.
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Proof. Let a, b ∈ S.

• The neutral element is 1.

• The operation ⊗ is closed since ab
gcd(ab)

is also positive and squarefree.

• The operation ⊗ is associative since the ring multiplication is associative.

• The existence of an inverse element: a⊗ a = 1.

• The operation ⊗ is commutative since the ring multiplication is commutative.

Theorem 5. Let a, b ∈ S. The structure (S,⊕) is closed and commutative.

Proof. The operation ⊕ is closed over S since core(a + b) is positive and squarefree. The
operation ⊕ is commutative since the ring addition is commutative.

Unfortunately, the distribution law does not hold and ⊕ is not associative.

2 General definition of an S-Structure

In this paper (R,+, ·) will always be a factorial ring with char(R) = 0.

We now define the ”core” operation. Later we use it as additional step in the usual ring
addition. If possible, we choose a subset S ⊆ R which admits an S-Structure (S,⊗,⊕). In
other words, we choose a system P of representatives of primes and appropriate units U so
that we can define a set S of squarefree elements and an S-Structure (S,⊗,⊕).

Definition 6. [core] Let a ∈ R with a = ua
∏

p∈P p
vp(a), where ua is a unit in R. The core

of a in R is defined as

core(a) := ua
∏

vp(a) odd

p

Definition 7. [The set S] Let P a set of primes of R and U a set of units of R.
We define S := {a ∈ R|ua

∏
p∈Pp ∧ua ∈ U}.

Now we define the S-Structure..

Definition 8. [S-Structure] Let S ⊆ R. An S-Structure of R is a triple (S,⊗,⊕) with the
following properties

• (S,⊗) is a commutative group with 1 as neutral element and

⊗ : S× S → S
a⊗ b 7→ ab

gcd2(a,b)
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• (S,⊕) is a closed, commutative binary operation in S and

⊕ : S× S → S
a⊕ b 7→ core(a+ b)

Perhaps not every ring R admits an S-Structure, but the situation is not bad.

Theorem 9. If R is also an ordered ring, then R admits an S-Structure.

Proof. Choose a representative system P of positive primes and a appropriate set of units
and create S. Since the ring operations respect the order (i.e., ∀a, b ∈ R hold (a, b > 0) ⇒
(ab > 0) and (a, b > 0)⇒ (a+ b > 0)), we end up with an S-Structure.

Another sort of an ring that admits an S-Structure is the following

Example 10. Let R = K[X] where K is an ordered field. Choose a system P of irreducible
polynomials with a constant term one and the set of units U = {u ∈ K|u > 0}. The S-
Structure given by S = {P = anX

n+an−1X
n+· · ·+a1X+a0 ∈ K[X] : a0 > 0∧core(P ) = P}

2.1 Some basic properties

If we choose a ring R and try to establish an S-Structure in it, there is the following crucial
condition

Lemma 11. If a ∈ S then −a /∈ S.

Proof. We have a⊕ (−a) = 0. But 0 /∈ S because 0 has in (S,⊗) no inverse.

In the following let S be an S-Structure of R.

Lemma 12. Let a, b ∈ S and m,n ∈ N. Then

core(an · bm) = core(an)⊗ core(bm)

Proof. Let a = b = p with p ∈ S and p is prime in R, then

core(pn · pm) = core(pn+m) = p(n+m) mod 2

and

core(pn)⊗ core(pm) = pn mod 2 ⊗ pm mod 2 = p((n mod 2)+(m mod 2)) mod 2) = p(n+m) mod 2

The next lemma gives a relation between the ⊗ and ⊕ operations. Obviously, this relation
is much weaker as the relation between the operations of the ring R.
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Lemma 13. Let a, b ∈ S

(a⊕ b) = gcd(a, b)⊗ core

(
a+ b

gcd(a, b)

)
Proof. Let a, b ∈ S

a⊕ b = core(a+ b) = core

(
gcd(a, b) · a+ b

gcd(a, b)

)
With the above lemma we get

core

(
gcd(a, b) · a+ b

gcd(a, b)

)
= core(gcd(a, b))⊗ core

(
a+ b

gcd(a, b)

)
and with core(gcd(a, b)) = gcd(a, b)

core(gcd(a, b))⊗ core

(
a+ b

gcd(a, b)

)
= gcd(a, b)⊗ core

(
a+ b

gcd(a, b)

)

In an S-Structure holds a week ” distribution law ”.

Proposition 14. Let a, b ∈ S

a⊗ (b⊕ b) = (a⊗ b)⊕ (a⊗ b)

Proof. Since (S,⊗) is a group, (S,⊗) is also associative.
With the above lemma and c ∈ S we get

c⊕ c = gcd(c, c)⊗ core

(
c+ c

gcd(c, c)

)
= c⊗ core(2)

Therefore the left hand side is

a⊗ (b⊕ b) = a⊗ (b⊗ core(2)) = a⊗ b⊗ core(2)

and the right hand side is

(a⊗ b)⊕ (a⊗ b) = (a⊗ b)⊗ core(2) = a⊗ b⊗ core(2).
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3 Arithmetic sequences in (S,⊕).
In this section we investigate the S-Structure, (S,⊗,⊕), on N in more detail.

Notation

•
−→
b := a vector with n dimensions and bk ∈ S, i = k, . . . , n.

• F
(−→

b
)

:= Set of the sequences ai with arbitrary starting value a0 ∈ S and ai+1 :=

ai ⊕ bk, where

k =

{
1 i ≡ 0 mod n

(i mod n) + 1 elsewhere

Set

• M(
−→
b ) := Set of the minimal Elements of the cycles of F (

−→
b ) (with arbitrary starting

value).

• N(
−→
b ) := Set of the maximal elements of the cycles of F (

−→
b ) (with arbitrary starting

value).

• κp := Let p a prime and fix
−→
b . Assume p2 is the first possible reduction (i.e., p2 ·

core(ai) = ai) in a subsequence of F (
−→
b ) with arbitrary starting value a0 ∈ S. Then

κp is the maximal index with p2|κp.

4 Upper bounds for max(M(b)) and max(N(b)) with dim(b) =

n.

In this section we fix n ∈ N and let
−→
b = (bk)k∈{1,...,n} a vector of elements of S.

Lemma 15. Let p a prime. In every subsequence of F (
−→
b ) with dim(

−→
b ) = n hold

κp ≤
(
p2 − 1

)
· n

or
κ =∞

Proof. We only consider the elements ai+k·n, k = 0, . . . , p2 − 1. That gives p2 possible
remainders (i.e. ai+k·n mod p2). If there occur a reduction it must be on an index i =
1, . . . , (p2 − 1)n, or never. We have to consider the elements ai+k·n because it must hold for
arbitrary bi.

Theorem 16. Consider a sequence F (
−→
b ) with dim(

−→
b ) = n and let c =

∑n
i=1 bi.
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1. Let pc the minimal prime with pc - c then κpc ≤ (p2c − 1)n.

2. For every F (
−→
b ) hold

(a) max(M(
−→
b )) ≤ c

(b) max(N(
−→
b )) ≤ (p2c − 1) c

Proof. ad 1: Lemma 15 implies κp ≤ (p2 − 1) · n or κ = ∞. With gcd(pc, c) = 1 follows
κp ≤ (p2 − 1) · n.
ad 2a, 2b: We use again lemma 15. We take only the elements ai+k·n, k = 1, . . . , (p2−1). We
consider the worst case of the reduction and estimate the value of ai where (ai+(p2−1)c)p2 ≥
ai. If ai is greater the sequence shrinks after a reduction. // We have:

ai + (p2 − 1) c

p2
≥ ai(

p2 − 1
)
c ≥

(
p2 − 1

)
ai

c ≥ ai

it follows max(M(
−→
b )) ≤ c and max(N(

−→
b )) ≤ (p2c − 1) c.

Corollary 17. If c /∈M(
−→
b ) then (p2c − 1) c /∈ N(

−→
b ).

Theorem 18. Let F (
−→
b ) and F (

−→
b∗ ) two sets of sequences, where

−→
b∗ is a cyclic permutation

of
−→
b .

The finite sequence gi is a cycle in F (
−→
b ) if and only if gi is a cycle in F (

−→
b∗ ).

Proof. We consider the sequence of one cycle. A cyclic permutation of the bi in the vector−→
b does not change the order of the additions. Let bk, k > 1, the new b∗1 element of

−→
b∗ and

choose as the starting value bk−1.

5 Arithmetic sequences of the Form F (b) with dim(b) =

1.

Notation Later on we often consider sequences ai, core(ai + b) = ai+1, core(ai+1 + b) =
ai+2, . . . and we use the following notation:
ai → ai+1,→ ai+2 ↓ core(ai+2), . . .
We write · · · → . . . if core(ai + b) = ai + b and · · · → .. ↓ . . . if a reduction occurs (i.e.
core(ai + b) < ai + b.

Lemma 19. Let g, p ∈ N, p is prime, 0 < g < p and g - p. For all elements ai in the
sequence: g → (g+p)→ (g+ 2p)→ . . . hold p2 - ai and there are only p distinct remainders
possible.
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Proof. Since g - p, (g+kp) ≡ 0 mod p2 is not possible and the remainders 0, p, 2p, . . . , (p−1)p
are shifted by g.

Theorem 20. Let q, b,m ∈ N and g, p as in lemma 19 and gcd(p, q) = 1. Let G(q) the set
of the first p elements of gq + m→ (g + p)q + m→ (g + 2p)q + m→ . . . . Let R(q) the set
of the remainders of (g + kp)q ≡ q mod p2 with 0 ≤ k < p.
There exists f ∈ R(q), with p2|f if and only if there exists t ∈ R(q) with ((m mod p)+f) ≡ 0
mod p2.

Proof. With lemma 19 there exists only p remainders and the are shifted.

5.1 Necessary property: gcd(b, 6) = 1

Theorem 21. Let b ∈ S and gcd(b, 6) = 1. It follows

• max(M(b)) = b

• max(N(b)) = 3b

Proof. Consider the sequence: b→ 2b→ 3b→ 4b ↓ b.

5.2 Necessary property: gcd(b, 6) = 3

Theorem 22. Let b ∈ S and gcd(b, 6) = 3. It follows

1. max(M(b)) < b

2. max(N(b)) < 3b

Proof. Assume b = 3q ∈M(b).
1) Let max(M(b)) = b = 3q. Consider the sequence 3q → 6q → 9q ↓ q. Contradiction
2) Corollary 17 implies max(N(b)) < 3b.

Theorem 23. Let b ∈ S and let gcd(b, 6 · 5) = 3. It follows

1. (2b/3) ≤ max(M(b))

2. 2b/3 +m /∈M(b), if m = 2, 4, 6, . . .

3. 2b/3 +m /∈M(b), if ((5b/3) mod 4) 6= (m mod 4) and m = 1, 3, . . .

4. 2b/3 +m /∈M(b), if b/3 ≡ 1, 4, 7 mod 9 and m ≡ 1, 4, 7 mod 9

5. 2b/3 +m /∈M(b), if b/3 ≡ 2, 5, 8 mod 9 and m ≡ 2, 5, 8 mod 9

6. b/3 ∈M(b)
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Proof. Let q = b/3.
ad 1: Assume 2q ∈ M(b). Consider the sequence: 2q → 5q → 8q ↓ 2q with 5 - q, i.e.,
2q = 2b/3 ∈M(b).
ad 2: Assume 2q + m ∈ M(b), if m = 2, 6, 10, . . . . Consider the sequence (2q + m) ↓ 2q+m

4
.

Contradiction.
Assume 2q + m ∈ M(b), if m = 4, 8, 12, . . . . Consider the sequence 2q + m → 5q + m →
8q +m ↓ 8q+m

4
. Since 2q +m > 8q+m

4
a contradiction.

ad 3: Assume 2q + m ∈ M(b),if m = 1, 3, 5, . . . . Consider the sequence 2q + m→ 5q + m,
but, if (q mod 4) 6= (m mod 4) then 4|(5q +m) . Since 2q +m > 5q+m

4
a contradiction.

ad 4: Assume 2q + m ∈ M(b), if q ≡ 1 mod 9 and m ≡ 1 mod 9. Consider the remainder
sequence and recall 3 - q: 2 + 1 → 5 + 1 → 8 + 1 ⇒ 9|(8q + m). Since 2q + m > 8q+m

9
a

contradiction. Applies analogously to all other 8 combinations.
ad 5: Assume 2q + m ∈ M(b), q ≡ 2 mod 9 and m ≡ 2 mod 9. Consider the remainder
sequences and recall 3 - q: 4 + 2→ 10 + 2 → 16 + 2 ⇒ 9|(8q + m). Since 2q + m > 8q+m

9
a

contradiction. Applies analogously to all other 8 combinations.
ad 6: Consider the sequence q → 4q ↓ q.

Remark 24. In some cases 2b/3 = max(M(b)) is not valid. The smallest counterexamples
are b = 1023, 13107, 16383, 17391, 23529.

Theorem 25. Let b ∈ S and let gcd(b, 2 · 3 · 5 · 7 · 11 · 13 · 17 · 29 · 41) = 3 · 5. It follows

1. 11b/15 ∈M(b).

2. b /∈M(b).

3. 11b/15 +m /∈M(b), if m = 2, 6, 10, . . . .

4. 11b/15 +m /∈M(b), if m = 8, 16, 24, . . . .

5. 11b/15 +m /∈M(b), if b/15 ≡ 1, 4, 7 mod 9 and m ≡ 1, 4, 7 mod 9.

6. 11b/15 +m /∈M(b), if b/15 ≡ 2, 5, 8 mod 9 and m ≡ 2, 5, 8 mod 9.

Proof. Let q = b/15 (recall 3 - q).
ad 1: Assume 11q ∈ M(b). Consider the sequence 11q → 26q → 41q → 56q ↓ 14q → 29q →
44q ↓ 11q, i.e., 11q ∈M(b).
ad 2: Assume 15q ∈M(b). Consider the sequence 15q → 30q → 45q ↓ 5q, a contradiction.
ad 3: Assume 11q+m ∈M(b), m = 2, 6, 10, . . . . Consider the sequence 11q+m→ 26q+m ↓
26q+m

4
. Since 11q +m > 26q+m

4
, a contradiction.

ad 4: Assume 11q + m ∈ M(b), if m = 8, 16, 24, . . . . Consider the sequence 11q + m →
26q +m→ 41q +m→ 56q +m ↓ 56q+m

8
. Since 11q +m > 56q+m

8
, a contradiction.

ad 5: Assume 11q +m ∈ M(b),if q ≡ 1 mod 9 and m ≡ 1 mod 9. Consider the remainder
sequence 11 + 1 → 26 + 1 ⇒ 9|(26q + m). Since 11q + m > 26q+m

9
a contradiction. Applies

analogously to all other 8 combinations.
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ad 6: Assume 11q+m ∈M(b), if q ≡ 2 mod 9 and m ≡ 2 mod 9. Consider the remainder
sequence 22 + 2 → 52 + 2 ⇒ 9|(26q + m). Since 11q + m > 26q+m

9
a contradiction. Applies

analogously to all other 8 combinations.

Theorem 26. Let b ∈ S and let gcd(b, 2 · 3 · 5 · 7) = 3 · 5 · 7. It follows

1. b/3 ∈M(b).

2. b/3 +m /∈M(b), if (b/3 mod 4) 6= (m mod 4) and m = 1, 3, 5, . . . .

3. b/3 +m /∈M(b), if m ≡ 0 mod 4.

4. b/3 +m /∈M(b), if (b/3 mod 4) = (m mod 4).

5. b/3 +m /∈M(b), if (b/3 ≡ 1, 4, 7 mod 9) and m ≡ 2, 5, 8 mod 9.

6. b/3 +m /∈M(b), if (b/3 ≡ 2, 5, 8 mod 9) and (m ≡ 1, 4, 7 mod 9).

Proof. Let q = b/3 (recall 2 - q and 3 - q). // ad 1: Assume q ∈M(b). Consider the sequence
q → 4q ↓ q, i.e., q ∈M(b).
ad 2: Assume q +m ∈M(b), if (q mod 4) 6= (m mod 4) and m = 1, 3, 5, . . . . Consider the
sequence q +m ↓ q+m

4
, a contradiction.

ad 3: Assume q ∈M(b), if m ≡ 0 mod 4). Consider the sequence q +m→ 4q +m ↓ 4q+m
4

.

Since q +m > 4q+m
4

, a contradiction.
ad 4: Assume q + m ∈ M(b), if (q mod 4) = (m mod 4). Consider the sequence q + m→
4q +m→ 7q +m ↓ 7q+m

4
.

ad 5: Assume q + m ∈ M(b), if q ≡ 1 mod 9 and m ≡ 2 mod 9. Consider the remainder
sequence 1 + 2→ 4 + 2→ 7 + 2⇒ 9|(7q+m). Since q+m > 7q+m

9
a contradiction. Applies

analogously to all other 8 combinations.
ad 6: Assume q +m ∈M(b), if q ≡ 2 mod 9) and m ≡ 1 mod 9). Consider the remainder
sequence 2 + 1→ 8 + 1⇒ 8q+m

9
. Since q +m > 8q+m

9
, a contradiction. Applies analogously

to all other 8 combinations.

Remark 27. In some cases b/3 = max(M(b)) is not valid. The smallest counterexamples
are b = 1365, 1785, 1995, 15015.

5.3 Necessary property gcd(b, 6) = 2

Theorem 28. Let b ∈ S and let gcd(b, 6) = 2. It follows

1. max(M(b)) < b

2. max(N(b)) < 8b

Proof. Assume, max(M(b) = b = 2q.
ad 1: Consider the sequence 2q → 4q ↓ q, a contradiction.
ad 2: Corollary 17 implies max(N(b)) < 8b.
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Theorem 29. Let b ∈ S and let gcd(b, 6 · 5 · 7) = 2. It follows

1. b/2 ∈M(b)

2. b/2 +m /∈M(b), if m = 1, 3, 5, . . .

Proof. Let q = b/2.
ad 1: Consider the sequence q → 3q → 5q → 7q → 9q ↓ q.
ad 2: Assume q+m ∈M(b), if m = 1, 3, 5, . . . . Consider the sequence q+m→ 3q+m. For
all 4 remainder combinations it hold: either 4|(q +m) or 4|3q +m, a contradiction.

Remark 30. In some cases b/2 = max(M(b)) is not valid. The smallest counterexample is
b = 1342.

5.4 Necessary property gcd(b, 6) = 6

Theorem 31. Let b ∈ S and gcd(b, 6) = 6. It follows

1. max(M(b)) < b

2. max(N(b)) < (p2c − 1)b

Proof. Let q = b/6.
ad 1: Consider the sequence 6q → 12q ↓ 3q
ad 2: Corollary 17 implies max(N(b)) < (p2c − 1)b.

Theorem 32. Let b ∈ S and gcd(b, 6 · 7) = 6 · 7. It follows

1. b/3 ∈M(b)

2. b/3 +m /∈M(b), if m = 2, 4, 6, . . .

Proof. Let q = b/42.
ad 1: Consider the sequence 14q → 56q ↓ 14q
ad 2: Assume m ≡ 2 mod 4. Consider the sequence 14q +m ↓ 14q+m

4
, a contradiction.

Assume m ≡ 0 mod 4. Consider the sequence 14q+m→ 56q+m ↓ 56q+m
4

. Since 14q+m >
56q+m

4
, a contradiction.

Remark 33. In some cases b/3 = max(M(b)) is not valid. The smallest counterexample is
b = 1302.

The theorems 23, 25, 26, 29 and 32 are special cases of a general theorem and it is easy
to find more special cases.
Now the general

Theorem 34. Let m, c ∈ S with b ∈ M(c). Let Cm := (m0,m1, . . . ,mk), with m0 = m and
mi+1 = mi + c, the cycle in F (c). Let b ∈ S, with b = f c and ∀mi∈C gcd(f,mi) = 1.
Then mf ∈M(b) and f Cm := (fm0, fm1, . . . , fmk) is a cycle in F (b).

Proof. Since ∀mi∈C gcd(f,mi) = 1, f does not influence the sequence m → m + c → · · · →
m+ kc ↓ m. Obviously f depends on b and m.
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