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1 Introduction

Traditional statistics that are employed to measure and predict the performance of pitchers

are based on observed outcomes. These statistics are affected by a number of confounding

variables that are beyond the control of the pitcher such as the defense, the ballpark, the

umpire, and the catcher. Approaches that reduce the dependence of statistics on these

variables include selectively removing plate appearances as in FIP [12] or attempting to

adjust for the effect of variables as in DRA [25]. Both of these approaches have important

limitations. Removing plate appearances restricts the scope of a statistic while the use of

inexact adjustments introduces distortion in a statistic’s computed value.

As baseball games have been recorded with increasing detail, analysts have developed

methods for measuring pitcher performance at the level of an individual pitch. In his

pioneering work, Burley [6] used a linear weights model [38] to define the observed value

of a pitch as the change in run expectancy given the pitch outcome. Using PITCHf/x

measurements, Walsh [39] extended the approach by using a pitch classification scheme to

assign linear weight values to different pitch types. This inspired further research [1] [28] [29]

and linear weight pitch values are readily accessible on the internet [2]. Since these pitch

values depend on observed outcomes, however, they are affected by numerous variables

that are independent of the quality of a pitch. Individual factors such as framing, for

example, have been shown to have a large effect on observed pitch values [32]. Due to these

confounding variables, observed pitch values have a low degree of repeatability [33] which

limits their utility for prediction.

The deployment of sensors [11] [24] [26] that characterize the trajectory of pitches and

batted balls in three dimensions provides the opportunity to assign an intrinsic value to a

pitch that depends on its physical properties and not on its observed outcome. We exploit
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this opportunity by utilizing a Bayesian framework to map five-dimensional PITCHf/x

velocity, movement, and location vectors to pitch intrinsic values. HITf/x data is used by

the model to obtain intrinsic quality-of-contact values [17] [18] for batted balls that are

invariant to the defense, ballpark, and atmospheric conditions. Separate mappings are built

to accommodate the effects of count and batter/pitcher handedness. A kernel method is

used to generate nonparametric estimates for the component probability density functions

in Bayes theorem while cross-validation enables the model to adapt to the size and structure

of the data. The methodology does not suffer the loss of information that is inherent with

schemes that rely on pitch classification and is sufficiently general to support the use of

additional variables such as spin rate. The new model is efficient and supports the real-time

dissemination of intrinsic pitch values during games.

We use the Cronbach’s alpha [8] estimate of reliability [7] [40] to show that intrinsic pitch

values have a significantly higher internal consistency than outcome-based pitch values which

enables more accurate predictive models. We further develop a method to combine intrinsic

values at the individual pitch level into a statistic that captures the value of a pitcher’s

collection of pitches over a period of time. We use this statistic to show that pitchers who

outperform their intrinsic values during a season tend to perform worse the following year.

Since intrinsic values are based on physical measurements, the new statistics can be used to

predict how a pitcher’s collection of pitches will translate from other levels (amateur, minors,

foreign leagues) to the MLB environment. By directly relating the physical properties of a

pitch to expected performance, this approach also promises to improve our understanding

of how pitcher skill varies with age.

2 Computing Pitch Intrinsic Values

2.1 Sensor Data

PITCHf/x [11] is a system that uses two cameras to capture a set of images of a pitch.

The PITCHf/x images can be used to estimate the three-dimensional path of a pitch and to

derive information about its speed and movement. Our analysis of PITCHf/x data considers

several of the reported attributes for each pitch. The pair (lx, lz) specifies the location of

a pitch as it crosses home plate where lx is the horizontal coordinate and lz is the vertical
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coordinate relative to an origin at the back vertex of home plate. The positive x-axis points

to the right from the catcher’s perspective, the positive y-axis points toward second base,

and the positive z-axis points up. The coordinates lx and lz are typically reported in feet.

The movement of a pitch (bx, bz) is defined as the difference between the pitch location (lx, lz)

and the theoretical location of a pitch thrown at the same speed that does not deviate from

a straight path due to spin [30]. The movement parameters bx and bz are typically reported

in inches. The value s is an estimate of pitch speed in three dimensions near the release

point in miles per hour. Since each batter has a unique strike zone in the z dimension, we

transform lz before processing into a coordinate system with a standard strike zone. The

transform maps a pitch at the top or bottom of the batter’s individual strike zone to the top

or bottom of the standard strike zone. The batter’s individual zone is stretched accordingly

to map to the standard zone while pitches above or below the batter’s individual zone by a

vertical distance ∆z are mapped to a transformed z−coordinate that is ∆z above or below

the standard zone.

The HITf/x system [24] uses the PITCHf/x images to estimate the initial speed and

direction of batted balls in three dimensions. The direction is specified by two angles. The

vertical launch angle is the angle that the batted ball’s initial velocity vector makes with

the plane of the playing field and the horizontal spray angle specifies the direction of the

projection of the batted ball’s initial velocity vector onto the plane of the playing field.

The wOBA cube model [17] [18] is used to specify an intrinsic value for batted balls at

contact using the measured exit speed, vertical angle, and horizontal angle as depicted in

figure 1. This intrinsic value is independent of variables that include the defense, ballpark,

and weather conditions.
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Figure 1: wOBA Cube

2.2 Bayesian Foundation

We develop a method for learning the dependence of a pitch’s intrinsic value on its measured

parameters. Using Bayes theorem, the posterior probability of an outcome Rj given a

measured pitch vector v = (s, bx, bz, lx, lz) is given by

P (Rj|v) =
p(v|Rj)P (Rj)

p(v)
(1)

where p(v|Rj) is the conditional probability density function for v given outcome Rj , P (Rj)

is the prior probability of outcome Rj , and p(v) is the probability density function for v.

We consider the six possible outcomes R0 = ball in play, R1 = called ball, R2 = called

strike, R3 = swinging strike, R4 = foul ball, and R5 = batter hit-by-pitch where foul tips

that are caught for strikeouts are classified as R3 and not R4. Our analysis will model the

dependence of each of the factors in (1) on the count and the platoon configuration. We

show in section 2.6 that a weighted sum of the P (Rj|v) values over outcomes provides a

measure of the intrinsic value of a pitch.
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2.3 Kernel Density Estimation

The goal of density estimation for our application is to recover the conditional probability

density functions p(v|Rj) in equation (1) from a set of measured pitch vectors and their

outcomes. Let vi for i = 1, 2, . . . , n be a set of n five-dimensional measured pitch vectors

with outcome Rj . Kernel methods [36] which are also known as Parzen-Rosenblatt [31] [35]

window methods are widely used for nonparametric density estimation. A kernel density

estimate for p(v|Rj) is given by

p̂(v|Rj) =
1

n

n∑

i=1

K(v − vi) (2)

where K(·) is a kernel probability density function that is typically unimodal and centered

at zero. A standard kernel for approximating a d−dimensional density is the zero-mean

Gaussian

K(v) =
1

(2π)d/2|Σ|1/2
exp

[
−
1

2
vTΣ−1v

]
(3)

where Σ is the d× d covariance matrix. For this kernel, p̂(v|Rj) at any v is the average of a

sum of Gaussians centered at the sample points vi and the covariance matrix Σ determines

the amount and orientation of the smoothing. Σ is often chosen to be the product of

a scalar and an identity matrix which results in equal smoothing in every direction. To

recover a more accurate approximation p̂(v|Rj) the covariance matrix should allow different

amounts of smoothing in different directions. We enable this goal while also reducing the

number of unknown parameters by adopting a diagonal model for Σ with variance elements

(σ2

s , σ
2

bx , σ
2

bz , σ
2

lx , σ
2

lz). For our five-dimensional data, this allows K(v) to be written as a

product of five one-dimensional Gaussians

K(v) =
1

(2π)5/2σsσbx
σ

bz
σ

lx
σ

lz

exp

[
−
1

2

(
s2

σ2
s

+
b2x
σ2

bx

+
b2z
σ2

bz

+
l2x
σ2

lx

+
l2z
σ2

lz

)]
(4)

which depends on the five unknown bandwidth parameters σs, σbx , σbz , σlx , and σlz . Optimal

bandwidth parameters are learned using the process described in the next section.
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2.4 Bandwidth Selection for Kernel Density Estimation

The accuracy of the kernel density estimate p̂(v|Rj) is highly dependent on the choice of

the bandwidth vector σ = (σs, σbx , σbz , σlx , σlz) [9]. The recovered p̂(v|Rj) will be spiky for

small values of the parameters and, in the limit, will tend to a sum of Dirac delta functions

centered at the vi data points as the bandwidths approach zero. Large bandwidths, on the

other hand, can induce excessive smoothing which causes the loss of important structure in

the estimate of p(v|Rj). A number of bandwidth selection techniques have been proposed

and a recent survey of methods and software is given in [16]. Many of these techniques are

based on maximum likelihood estimates for p(v|Rj) which select σ so that p̂(v|Rj) maximizes

the likelihood of the observed vi data samples. Applying these techniques to the full set of

observed data, however, yields a maximum at σ = (0, 0, 0) which corresponds to the sum of

delta functions result. To avoid this difficulty, maximum likelihood methods for bandwidth

selection have been developed that are based on leave-one-out cross-validation [36].

The computational demands of leave-one-out cross-validation techniques are excessive

for our data set. Therefore, we have adopted a cross-validation method which requires

less computation. From the set of n observed vi vectors for outcome Rj , we generate M

disjoint subsets Sk of fixed size nv to be used for validation. For each validation set Sk, we

construct the estimate p̂(v|Rj) using the n − nv vectors that are not in Sk as a function

of the bandwidth vector σ = (σs, σbx , σbz , σlx , σlz). The optimal bandwidth vector σ∗

k =

(σ∗

sk, σ
∗

bxk, σ
∗

bzk, σ
∗

lxk, σ
∗

lzk) for Sk is the choice that maximizes the pseudolikelihood [10] [16]

according to

σ∗

k = argmax
σ

∏

vi∈Sk

p̂(vi|Rj) (5)

where the product is over the nv vectors in the validation set Sk. The overall optimized band-

width vector σ∗(j) = (σ∗

s (j), σ
∗

bx(j), σ
∗

bz(j), σ
∗

lx(j), σ
∗

lz(j)) for the p̂(v|Rj) density estimate is

obtained by averaging the M vectors σ∗

k.

2.5 Estimating the Posterior Probability

An estimate for P (Rj|v) can be derived from estimates of the quantities on the right side

of equation (1). The density estimate p̂(v|Rj) for each p(v|Rj) is obtained using the kernel
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method defined by equations (2) and (4). Each prior probability P (Rj) is estimated as

the fraction P̂ (Rj) of the pitches in the full data set with outcome Rj. The density p(v) is

estimated using

p̂(v) =
5∑

j=0

p̂(v|Rj)P̂ (Rj) (6)

where the sum is over the six possible outcomes given in section 2.2. The estimate for

P (Rj|v) is then constructed by combining the estimates for p(v|Rj), P (Rj), and p(v) ac-

cording to (1).

2.6 Intrinsic Values

In this section we present a method to compute the intrinsic value of a pitch. Define the

context during a plate appearance (PA) as the platoon configuration and the number of

balls b and strikes s on the batter. The context value is the league average wOBA [37]

for PAs completed after the context. Let the pre-pitch value be the context value before

a pitch. A pitch either completes a PA giving a post-pitch value defined by the wOBA

coefficient for the PA result or the pitch causes a transition to a new context whose value

defines the post-pitch value. The observed value O of a pitch is the difference between the

post-pitch value and the pre-pitch value. This approach is used [2] to compute pitch values

based on observed outcomes. Statistics that are based on observed pitch values depend on

factors such as the catcher, the umpire, the defense, and the ballpark and have been shown

to have a low degree of repeatability [33].

The posterior probabilities P (Rj|v) can be used to define pitch intrinsic values. Let

weight wj denote the post-pitch value minus the pre-pitch value for a pitch with outcome Rj .

The weights w1, w2, w3, w4, and w5 depend on the count (b, s) and the platoon configuration.

Since batted balls can take a range of values, the weight w0 also depends on the vector v

of pitch parameters. We describe a method for estimating the batted ball weight function

w0(b, s, v) in section 2.7. We define the intrinsic value of a pitch for a platoon configuration

as

I(b, s, v) = w0(b, s, v)P (R0|v) +
5∑

j=1

wj(b, s)P (Rj|v) (7)

7



which measures pitch value as a function of the physical pitch parameters, the count, and

the platoon configuration. Positive values of I(b, s, v) favor the batter while negative values

favor the pitcher. I(b, s, v) is the expected value of a pitch with parameter vector v on count

(b, s) for a given platoon configuration and is not dependent on factors such as the catcher,

umpire, defense, or ballpark associated with the pitch.

2.7 Estimating the Batted Ball Weight Function

The batted ball weight function w0(b, s, v) for a platoon configuration is estimated using

nonparametric regression [5]. Let vi for i = 1, 2, . . . , nb be a set of nb five-dimensional pitch

vectors on count (b, s) for a platoon configuration that result in a batted ball (R0) outcome.

For each vi, let yi be the expected wOBA for the batted ball minus the pre-pitch value

for the pitch that resulted in the batted ball. The expected wOBA is computed using the

wOBA cube method [17] [18] from the batted ball exit speed, vertical angle, and horizontal

angle as measured by the HITf/x system. The estimated w0(b, s, v) function is given by

ŵ0(b, s, v) =

∑nb

i=1K(v − vi)yi∑nb

i=1K(v − vi)
(8)

where K(·) is a kernel function. For this work, we use the Gaussian kernel specified by (4)

with cross-validation used for bandwidth selection. The nb observed vectors vi with a batted

ball outcome and the associated yi values are used to generate Sk validation sets. In this

case, the optimal bandwidth vector σ∗

k is the choice that minimizes the sum of the absolute

errors

σ∗

k = argmin
σ

∑

vi∈Sk

|yi − ŵ0(b, s, vi)| (9)

where the sum is over the vectors in the validation set.

3 Visualizing Intrinsic Values

Data acquired by Sportvision’s PITCHf/x and HITf/x systems during every regular-season

MLB game in 2014 were used for this study. Figures 2 through 9 demonstrate properties

and implications of pitch intrinsic values. Since I is a function of the count and the five
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pitch parameters, we can examine the variation of intrinsic values along various dimensions

while keeping other variables fixed. Figure 2 displays pitch intrinsic values for an 0-0 count

on the (lx, lz) plane as viewed from the catcher’s perspective for a pitch speed of s = 90

mph, horizontal movement bx = −3 inches, and vertical movement bz = 6 inches. Pitches

with parameters near these values are typically classified as four-seam fastballs. We see that

the locations with the smallest run value for these pitches are down-and-away within the

strike zone. We also see that the locations with the largest run values are for pitches that

are out of the strike zone which are often taken for balls.

Figure 2: Pitch Intrinsic Value for 0-0 count, s = 90, bx = −3, bz = 6

Figures 3 through 6 illustrate how intrinsic values depend on the count. In these figures,

we consider the pitch depicted in figure 2 for a vertical location near the center of the strike

zone at lz = 2.5. Figure 3 plots the probability of a swing as a function of the horizontal
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location lx for 0-0 and 0-1 counts. We see that the swing probability is higher for all values

of lx on 0-1 counts and that swing probability tends to be highest for pitches near the center

of the strike zone for both counts. From equation (7), a pitch intrinsic value is the sum of

components associated with the six Rj outcomes. Figure 4 plots the value of the ball in

play Ibip = w0(b, s, v)P (R0|v) component as a function of lx for 0-0 and 0-1 counts. We see

that Ibip is largest for pitches in the middle/inside part of the strike zone for pitches with

these parameters. Ibip tends to be larger for an 0-1 count because there are more swings

(figure 3) which increases P (R0|v) and also because w0(b, s, v) tends to be larger for balls

in play on 0-1 since the pre-pitch value is smaller for an 0-1 count. Figure 5 plots the

Iball = w1(b, s)P (R1|v) component as a function of lx for 0-0 and 0-1 counts. We see that as

we move away from the middle of the zone Iball is larger for an 0-0 count because there are

fewer swings (figure 3) on 0-0 which leads to larger values of the ball probability P (R1|v)

and because the value of a ball (w1(0, 0) = .038) on 0-0 is larger than the value of a ball

(w1(0, 1) = .028) on 0-1 for this platoon configuration.

Figure 6 plots pitch intrinsic value I for 0-0 and 0-1 counts. The shape of these curves is

largely determined by the structure of the Ibip and Iball functions plotted in figures 4 and 5.

The pitch locations that minimize run value are near the edges of the strike zone whereas

the pitch locations that maximize run value are near the middle/inside part of the strike

zone or for pitches that are well outside the strike zone. The minima on both edges of the

plate for the 0-1 count are more distant from the center of the zone than for the 0-0 count

since the batter is more likely to swing at borderline pitches on an 0-1 count as shown in

figure 3. Figure 7 plots the density of pitches thrown with the parameters considered in

figure 2 as a function of lx for 0-0 and 0-1 counts. Since the batter is more likely to swing at

a given pitch on 0-1 and the cost of a ball is less on 0-1, pitchers throw fewer pitches near

the center of the plate and more pitches out of the zone on 0-1.

Figure 8 illustrates the dependence of I on the pitch speed s for the previously considered

movement parameters (bx = −3, bz = 6) with lz = 2.5 on an 0-0 count. We see that

for pitches in the strike zone the pitcher benefits from increased velocity. There is an

inversion region where increased velocity benefits the batter near the inner edge of the

strike zone which is due to umpires calling a smaller zone for higher velocity pitches with

these parameters near the inner edge of the plate.
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Figure 9 shows the dependence of I on pitch vertical movement bz for s = 90 mph with

lz = 2.5 and bx = −3 for an 0-0 count. We see that increasing vertical movement lowers the

run value across the range of lx.
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P(swing)
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Figure 3: Dependence of swing probability on lx for s = 90, lz = 2.5, bx = −3, bz = 6
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Figure 4: Dependence of BIP value component on lx for s = 90, lz = 2.5, bx = −3, bz = 6
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Figure 5: Dependence of ball value component on lx for s = 90, lz = 2.5, bx = −3, bz = 6
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Figure 6: Dependence of pitch intrinsic value I on lx for s = 90, lz = 2.5, bx = −3, bz = 6
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Figure 7: Dependence of pitch density on lx for s = 90, lz = 2.5, bx = −3, bz = 6
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Figure 8: Dependence of I on s and lx for 0-0 count, lz = 2.5, bx = −3, bz = 6
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4 Reliability

We use reliability estimates to demonstrate that the new intrinsic pitch values have a higher

degree of repeatability than outcome-based pitch values. Reliability [40] is based on the

premise that the measurement of an attribute is equal to true talent, which is the player’s

expected value for the measurement, plus random error. In the context of assessing a

pitcher’s skill level on pitches, the reliability of a measurement M over a sample of N

pitches is defined by

R(N) =
σ2

t

σ2
o(N)

(10)

where σ2

t is the variance of true talent across pitchers for M and σ2

o(N) is the variance of

the observed values across pitchers for M as a function of the sample size. R(N) quantifies

the degree to which the measurement is repeatable and, therefore, is inversely related to

the amount of random error in the measurement. In the context of forecasting, reliability

determines how much the observed value of a measurement should be regressed in the

direction of the mean to estimate true talent [18]. Measurements with a higher reliability

require less regression and provide more accurate forecasts [19].

Split-half methods are a popular way to estimate reliability. These methods partition

a data set into two halves and compute the correlation of the player measurements across

the halves. A limitation of using split-half methods is that the estimated R(N) can change

depending on how the data is partitioned. An alternative approach is to compute Cronbach’s

alpha [8] which is an estimate of R(N) that is an approximation to the average of all possible

split-half correlations that would be computed from a full data set with 2N pitches for each

player.

We used Cronbach’s alpha (α(N)) to estimate reliability for measurements defined by

the average of the I pitch values and the average of the O pitch values over a set of N

pitches. Figure 10 plots α(N) for these measurements for pitches thrown on an 0-0 count

by a RHP to a RHB. The analysis considers the 116 pitchers who threw at least 200 tracked

pitches in this configuration in 2014. For values of N ranging from 20 to 200 we computed

α(N) for the I and O measurements using the first N of these pitches for each of the 116

pitchers. Figure 11 is the corresponding plot for the 112 RHP who threw at least 200 tracked
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Figure 10: α(N) reliability estimate for RHP vs. RHB, 0-0 count
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Figure 11: α(N) reliability estimate for RHP vs. LHB, 0-0 count
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pitches on an 0-0 count to LHB. We see that the intrinsic pitch measurements have a

significantly higher reliability than the observed pitch measurements. The intrinsic I mea-

surement reaches 0.5 at 135 pitches for the configuration in figure 10 and at 65 pitches for

the configuration in figure 11. The observed O measurement has relatively small values

of α(N) and obtains negative values which can occur when α(N) is computed using small

samples for measurements with low internal consistency.

Table 1 summarizes the reliability estimates for configurations involving right-handed

pitchers for the second pitch of a plate appearance. For these cases, we considered pitchers

who threw at least 100 pitches per count within a platoon configuration in 2014. The third

column of the table indicates the number of pitchers who satisfied this criterion. The last

two columns of the table give α(N) for a sample size of N = 100 pitches for the I and O

measurements. We see that in each case, the estimated reliability for the I measurement is

between 0.40 and 0.45 and is significantly larger than the corresponding reliability for the

O measurement.

Table 1: α(N) for N = 100 for the I and O measurements

Configuration count # pitchers α(100) for I α(100) for O
RHP vs. RHB 0-1 117 0.45 0.18
RHP vs. RHB 1-0 82 0.42 0.20
RHP vs. LHB 0-1 108 0.40 -0.12
RHP vs. LHB 1-0 97 0.42 0.02

5 Intrinsic Pitch Statistics

In section 2.6 we described a method for computing the observed O and intrinsic I value of

an individual pitch. In this section, we define statistics that summarize the observed and

intrinsic value of the set of pitches thrown by a pitcher over a period of time. Consider a

right-handed pitcher P who faces BR right-handed batters and throws ni pitches to the ith

of these batters. Let OR(i, j) be the observed value of the jth pitch to the ith batter. For

the plate appearance by the ith batter the sum of the observed pitch values
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ni∑

j=1

OR(i, j) (11)

is equal to the wOBA coefficient for the outcome of the plate appearance minus the league

average wOBA for the RHP vs RHB platoon configuration. We define pitcher P ’s observed

pitch statistic OR versus RHB as the sum of the OR(i, j) over all batters and pitches thrown

within the platoon configuration divided by the number of batters faced

OR =
1

BR

BR∑

i=1

ni∑

j=1

OR(i, j). (12)

Thus, OR is equal to the wOBA allowed by pitcher P against RHB minus the league average

wOBA for RHP vs RHB. We will also find it convenient to write

OR =
1

BR

∑

ci

NR(ci)OR(ci) (13)

where NR(ci) is the number of pitches thrown by pitcher P in count ci to RHB and OR(ci) is

the average observed value of these pitches in count ci. The sum is over the twelve possible

counts ci.

If we repeat the process for left-handed batters (LHB) to obtain OL for pitcher P, we

can define the overall observed pitch statistic OP for pitcher P as

OP =
BROR +BLOL

BR +BL

(14)

where BL is the number of LHB faced by pitcher P. OP can also be computed as the sum of

the observed pitch values against all batters divided by the total number of batters faced.

In a similar way, we can use intrinsic pitch values to compute the intrinsic pitch statistic

IP for pitcher P. Unlike observed values, intrinsic values do not depend on factors such as

the catcher, the umpire, the fielders, or the ballpark. Thus, intrinsic values should be more

indicative of pitch quality than observed values. Let IR(ci) be the average intrinsic value

of pitches thrown by P to RHB on count ci. Instead of using the actual number NR(ci)

of pitches thrown in each count which depends on variables such as the catcher’s framing

ability, we will use the expected number of pitches thrown in each count. In sections 2.2,

2.3, and 2.5 we showed how to compute the probability P (Rj|v) of each outcome Rj for

a pitch with measured parameter vector v. Thus, for a given pitch, we can compute the
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probability that the plate appearance ends on that pitch as well as the probability that

the count transitions to a given new count or remains the same in the case of a two-strike

foul ball. For each 0-0 pitch, for example, we can compute the probability that the plate

appearance ends, the count moves to 1-0, or the count moves to 0-1. Considering all 0-0

pitches, we compute N ′

R(1, 0) and N ′

R(0, 1) which are the expected number of 1-0 and 0-1

pitches for the pitcher against RHB. Starting from N ′

R(1, 0) and N ′

R(0, 1) we continue the

process to compute the expected number of pitches N ′

R(ci) for each count ci for pitcher P

against RHB. Following (13), we then define the intrinsic pitch statistic for P against RHB

as

IR =
1

BR

∑

ci

N ′

R(ci)IR(ci) (15)

where IR(ci) is the average intrinsic value of the pitches thrown by pitcher P to RHB on

count ci. If we repeat the process for LHB to obtain IL, we can define the overall intrinsic

pitch statistic IP for pitcher P as

IP =
BRIR +BLIL

BR +BL
. (16)

Given only the 2014 data set, the five-dimensional space of v vectors is too sparse

to compute accurate kernel density estimates for the LHP vs LHB configuration and for

deep counts involving right-handed pitchers. Thus, Table 2 presents the RHP with the

lowest IP for 2014 after restricting the analysis to the first two pitches of plate appearances

(ci = {(0, 0), (0, 1), (1, 0)}). We see that Phil Hughes easily posted the lowest IP which is

not surprising given that he also enjoyed the highest strikeout-to-walk ratio ever recorded

by a major league ERA qualifier.

Table 3 presents the five pitchers with the smallest OP − IP differences. These pitchers

significantly outperformed the intrinsic value of their pitches. We see that each of these

pitchers had a much higher ERA the following year except for Adam Wainwright who was

limited to 28 innings in 2015 after suffering an injury in April. In addition, the 2014 ERA

for each of these pitchers is the best of their career through 2016 except for Wainwright’s

small-sample ERA in 2015.
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Table 2: RHP with the lowest IP over at least 400 batters faced, 2014

Pitcher IP ∗ 1000
Phil Hughes -19.1
John Lackey -13.5
Zack Greinke -12.6
Jordan Zimmermann -12.5
Anibal Sanchez -10.7
Jacob deGrom -10.3
Colby Lewis -10.3
Hisashi Iwakuma -10.2
Bartolo Colon -10.0
Adam Wainwright -9.8

Table 3: RHP with the lowest OP − IP over at least 400 batters faced, 2014

Pitcher (OP − IP ) ∗ 1000 2014 ERA 2015 ERA
David Buchanan -18.9 3.75 6.99
Carlos Carrasco -15.3 2.55 3.63
Edinson Volquez -13.3 3.04 3.55
Felix Hernandez -13.3 2.14 3.53
Adam Wainwright -11.5 2.38 1.61

6 Future Work

While we have shown that statistics based on pitch intrinsic values have a number of de-

sirable properties, a pitcher’s success depends on several additional factors. Pitch diver-

sity affects performance as experiments have shown, for example, that contact rates de-

grade significantly as pitches are drawn from a wider range of speeds [14]. Other studies

have shown that major league strikeout rates increase as a pitcher’s number of distinct

pitch types increases [3] and that pitchers who throw a high fraction of fastballs suffer a

larger decline in performance when they face batters multiple times in a game [27]. Stud-

ies [4] [13] [15] [23] [34] have also shown that effective pitch sequencing can be used to obtain

an advantage. Another important aspect of pitching is the use of a game plan that accounts

for each batter’s strengths/weaknesses and the computation of pitch intrinsic values is an

important first step in the automated generation of matchup models [20] [21]. In addition to
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a pitch’s physical parameters, a pitcher’s delivery can also affect results if, for example, he

hides the ball well or inadvertently provides clues about the identity of an upcoming pitch.

By accurately quantifying pitch intrinsic values, we have a framework that will enable the

careful study of other factors that affect pitching success.
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