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We construct the logarithmic extension for real numbers in which the numbers, less then −∞ ex-
ist. Using this logarithmic extension we give the single formula for hyperbolic representation of
generalized tachyon Lorentz transforms.

1 Introduction

Generalized Lorentz transforms, to be considered in
this paper, are connected with the theory of tachyons,
that is the hypothetical objects, moving with velocity,
greater, than the velocity of light. It should be noted
that ukrainian physicist, academician, Oleksa-Myron
Bilanyuk stood near the beginning the tachyon the-
ory [1,2]. In early works in this direction the theory of
tachyons was considered in the framework of classical
Lorentz transformations, and superlight speed for the
frame of reference was forbidden. Later in the works of
E. Recami, V. Olkhovsky and R. Goldoni [3�5] exten-
sion of classical Lorentz transforms for superlight veloc-
ity of reference frames was proposed (see also [6]). Lat-
ter the above extended Lorentz transformations were
rediscovered in [7,8]. Interest to this subject had been
increased in 2010-2012 due to the experiments con-
ducted in the framework of collaboration OPERA (re-
sults, which were not con�rmed later). In particular
B. Cox and J. Hill in the paper [7] have rediscovered
the formulas of Recami-Olkhovsky-Goldoni's extended
Lorentz transformations by means of new and elegant
way of deduction them (the fact, that extended Lorentz
transforms, obtained in [7] are not new is noted in
the comment [9]). Also Recami-Olkhovsky-Goldoni's
extended Lorentz transformations were investigated in
[10] and generalized in [11,12].

The hyperbolic representation of classical Lorentz
Transforms is well-known. The hyperbolic representa-
tion of generalized Lorentz transforms for superlight
reference frames can be found in the papers [7,10]. At
the same time, formula that would give a single hy-
perbolic representation for extended superluminal to-
gether with classical Lorentz transforms now is un-
known. In the paper [10] author tries to give such
formula, using so-called extended hyperbolic functions.
But, in fact, such �extended hyperbolic functions� are
not conventional hyperbolic functions. In our opinion,
the main cause of this situation is the fact that clas-
sical hyperbolic functions are de�ned on all real axis
R, and substitution any real value as hyperbolic ar-
gument into the formulas of hyperbolic representation
of Lorentz transforms does not lead to superluminal
velocity of reference frame. In the present paper we
are aiming to show, that going beyond of the real axis
for hyperbolic argument in the formulas of hyperbolic
representation of Lorentz transforms leads to reference
frames with superluminal velocity.

In the next section we construct the logarith-
mic extension of real numbers 1. Next, using
this logarithmic extension we present the simple for-
mulas, which give the single hyperbolic representation
for classical Lorentz transforms as well as generalized
Lorentz transforms (in the sense of Recami-Olkhovsky-
Goldoni).
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2 Logarithmic Extension of Real

Numbers

2.1 Motivation

We start our considerations with one simple example.

Example 1. Consider the algebraic system of kind
(R+,+,×), where R+ is the set of positive real num-
bers, + and × are the operations of addition and mul-
tiplication of real numbers (correspondingly). This al-
gebraic system has many beautiful properties. But it is
not �completed� because the operation of subtraction
(which is inverse to addition) is not de�ned on whole
R+. Indeed, if a, b ∈ R+ and a ≤ b then a−b /∈ R+. So,
in this case the equation b+x = a has not any solution
in R+. This means that algebraic system (R+,+,×) is
not �eld. Apparently, we may �correct� this situation
by means of �completion� R+ by zero and negative real
numbers. By this way we obtain the algebraic system
(R,+,×), that is the usual �eld of real numbers.

Now we consider the other algebraic system. We
introduce the following new operations of �multiplica-
tion� and �addition� on the set R of real numbers:

x ×̂ y := x+ y;

x +̂ y := ln (ex + ey) (∀x, y ∈ R) .

It is easy to see, that the mapping

R 3 x 7−→ exp(x) ∈ R+ (1)

is bijection (one-to-one correspondence) between R and
R+. Moreover, for any x, y ∈ R we have:

exp
(
x ×̂ y

)
= exp (x) exp (y) ; (2)

exp
(
x +̂ y

)
= exp (x) + exp (y) . (3)

Thus, the algebraic systems
(
R, +̂, ×̂

)
and (R+,+,×)

are isomorphic and the mapping (1) provides isomor-
phism between them. Hence, the algebraic system(
R, +̂, ×̂

)
is not �completed�, similarly to (R+,+,×).

And (similarly to (R+,+,×)), all real numbers are
�positive� in respect of the algebraic system

(
R, +̂, ×̂

)
,

so �zero� and �negative� numbers are missing in(
R, +̂, ×̂

)
. Therefore the problem of constructing the

natural expansion of algebraic system
(
R, +̂, ×̂

)
to

�eld, including �zero� and �negative� elements arises.
In the next subsection we solve the above problem.

2.2 Construction of Logarithmic Ex-

tension

De�nition 1. By logarithmic extension of real
numbers we name the set:

R+̂ := R∪{−∞}∪{a+ πi | a ∈ R} (where i =
√
−1).

Further we will consider that

exp (−∞) := e−∞ := 0. (4)

Function exp (x), determined by formula (4) for x =

−∞, is de�ned on whole set R+̂. Moreover, this func-
tion is a bijection from R+̂ to R. The following function
is inverse to the function exp (·) : R+̂ 7→ R:

ln+̂ (x) =


ln (x) , x > 0

−∞, x = 0

ln |x|+ πi, x < 0

(x ∈ R) .

For any x, y ∈ R+̂ we denote:

x +̂ y := ln+̂ (exp (x) + exp (y)) ; (5)

x ×̂ y := ln+̂ (exp (x) exp (y)) . (6)

It is easy to see that for x, y ∈ R it is true the equality
x ×̂ y = x+ y. So, the operation �×̂� (�multiplication�
for R+̂) is the extension of the operation �+� of usial

addition from the set R to the set R+̂.
Now we extend the order relation from the set of

real numbers R to R+̂.

De�nition 2. Let x, y ∈ R+̂ be such, that x /∈ R
or y /∈ R. We say, that x ≤ y (x < y) if and only
if exp (x) ≤ exp (y) (exp (x) < exp (y)) (correspond-
ingly).

Assertion 1. For any x, y ∈ R+̂ the following equiva-
lences are true:

x ≤ y ⇐⇒ exp (x) ≤ exp (y);
x < y ⇐⇒ exp (x) < exp (y).

Proof. Indeed, for x, y ∈ R the both equivalences are
trivial, whereas in the case x /∈ R or y /∈ R these equiv-
alences follow from De�nition 2.

From Assertion 1 we get immediately the following
Assertion.

Assertion 2. 1. The relation ≤ is linear order re-
lation on R+̂, that is the following propositions
are true:

(a) for any x ∈ R+̂ x ≤ x;
(b) if x, y ∈ R+̂, x ≤ y and y ≤ x then x = y;

(c) if x, y, z ∈ R+̂, x ≤ y and y ≤ z then x ≤ z;
(d) for any x, y ∈ R+̂ one of inequalities x ≤ y

or y ≤ x is true.

2. The relation < is strict linear order relation on
R+̂, generated by the non-strict order ≤, that is
for any x, y ∈ R+̂ the correlation x < y is true if
and only if x ≤ y and x 6= y.

Theorem 1. 1. The algebraic system
(
R+̂, +̂, ×̂, <

)
is an ordered �eld.

2. The element 0+̂ = −∞ is zero element of the
�eld R+̂.

3. The number 1+̂ = 0 is identity element of the
�eld R+̂.
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4. The �eld R+̂ is isomorphic to the �eld R and the
mapping R+̂ 3 x 7→ exp (x) ∈ R provides isomor-
phism between these �elds.

Proof. 1,2,3: To prove the �rst three items of Theo-
rem, according to de�nitions of �eld and ordered �eld
(see [13,14]), we need to verify the following properties:

(a) a +̂ b = b +̂ a (for any a, b ∈ R+̂);

(b)
(
a +̂ b

)
+̂ c = a +̂

(
b +̂ c

)
(for any a, b, c ∈ R+̂);

(c) a ×̂ b = b ×̂ a (for any a, b ∈ R+̂);

(d)
(
a ×̂ b

)
×̂ c = a ×̂

(
b ×̂ c

)
(for any a, b, c ∈ R+̂);

(e) a +̂ 0+̂ = a ×̂ 1+̂ = a (for any a ∈ R+̂);

(f) for every element a ∈ R+̂ there exist the element

−̂ a ∈ R+̂ such, that a +̂
(
−̂ a
)
= 0+̂;

(g) for every element a ∈ R+̂ such, that a 6= 0+̂

there exist the element a−̂ 1 ∈ R+̂ such, that
a ×̂ a−̂ 1 = 1+̂.

(h) if a, b, c ∈ R+̂, a < b and b < c then a < c;

(i) for any a, b ∈ R+̂ exactly one of the correlations
a = b, a < b or b < a is true;

(j) if a, b, c ∈ R+̂ and a < b then a +̂ c < b +̂ c;

(k) if a, b, c ∈ R+̂, a < b and c > 0+̂ then a ×̂ c < b ×̂ c.

Applying the formulas (5), (6), for any any a, b, c ∈ R+̂

we obtain:

a +̂ b = ln+̂ (exp (a) + exp (b)) =

= ln+̂ (exp (b) + exp (a)) = b +̂ a;(
a +̂ b

)
+̂ c = a +̂

(
ln+̂ (exp (b) + exp (c))

)
=

= ln+̂ (exp (a) + (exp (b) + exp (c))) =

= ln+̂ ((exp (a) + exp (b)) + exp (c)) =

= a +̂
(
b +̂ c

)
.

So, properties (a),(b) have been veri�ed. The veri�ca-
tion of properties (c),(d),(e) is conducted similarly. To
verify properties (f),(g) we put:

−̂ a :=


a+ πi, a ∈ R
0+̂, a = 0+̂

a− πi, a ∈ R+̂ \
(
R ∪

(
0+̂
)) (a ∈ R+̂

)
;

a−̂ 1 :=


−a, a ∈ R
−x+ πi, a = x+ πi,

where x ∈ R

(
a ∈ R+̂,

a 6= 0+̂

)
,

and then apply the formulas (5), (6), taking into ac-

count, that exp
(
0+̂
)
= 1+̂ and ln+̂

(
1+̂
)
= 0+̂.

To verify Property (h), let us suppose that a, b, c ∈
R+̂, a < b and b < c. Then, according to Assertion 2
(item 2), we have a ≤ b and b ≤ c. So, by Assertion 2
(item 1), we obtain, a ≤ c. Assume, that a = c. Then
(since a ≤ b and b ≤ c) we have a ≤ b and b ≤ a. So,
by Assertion 2 (item 1), a = b, which contradicts to
correlation a < b and Assertion 2 (item 2). Therefore,
assumption a = c is false. Thus, we have proved, that
a ≤ c and a 6= c. And, by Assertion 2 (item 2), we
have a < c.

Consider any elements a, b ∈ R+̂. If we suppose,
that a 6= b then, according to Assertion 2 (items 1 and
2), one of correlations a < b or b < a must be ful-
�lled. The correlations a < b and a = b, according
to Assertion 2 (item 2), can not be ful�lled simulta-
neously. Similarly, correlations b < a and a = b are
incompatible. Correlations a < b and b < a also are
incompatible, becuse otherwise, according to property
(h) we obtain a < a, and so, by Assertion 2 (item 2),
a 6= a, which is impossible. Hence, Property (i) also
has been veri�ed.

From equalities (5), (6) it follows, that equalities

(2), (3) can be extended for any x, y ∈ R+̂. Properties
(j),(k) may be easy veri�ed, using the analogical prop-
erties of real numbers, Assertion 1 and equalities (2),

(3), extended to any x, y ∈ R+̂.

4: Function exp (x) is a bijection from R+̂ to R.
Using equalities (2), (3), extended to any x, y ∈ R+̂ as
well as Assertion 1 it is easy to verify, that this function
is isomorphism between the �elds R+̂ and R.

Further we will use the term ��eld R+̂� meaning by

this term all the algebraic structure
(
R+̂, +̂, ×̂,≤

)
.

Remark 1. Using Assertion 1 it can be easy proved,
that for a ∈ R+̂ the condition a < 0+̂ is satis�ed if
and only if the number a can be represented in the
form a = x + πi, where x ∈ R. Taking into account,
that 0+̂ = −∞, we have seen, that in the �eld R+̂ the
numbers, less then −∞ exist (namely, numbers of kind
a = x+ πi, where x ∈ R).

3 Hyperbolic Representation of

Generalized Lorentz Trans-

forms

3.1 Case of One Space Dimension

According to results of the papers [3�8,10], for the case
of one space dimension, any generalized Lorentz trans-
form for �nite velocity of reference frame (in the sense
of Recami-Olkhovsky-Goldoni) may be represented in
the form:

ct′ = s
ct− V x

c√∣∣1− V 2

c2

∣∣ ; x′ = s
x− V t√∣∣1− V 2

c2

∣∣ , (7)

where:

3



• (t, x) are coordinates of some point in a �xed ref-
erence frame l.

• (t′, x′) are the coordinates of the point (t, x)
in the reference frame l′, moving relatively the
frame l with the constant velocity V (|V | 6= c).

• c is a positive real constant, which has the phys-
ical content of the speed of light in vacuum.

• s ∈ {−1, 1} is constant, that can take only two
values (1 and −1). This constant is responsi-
ble for the direction of time in moving reference
frame l′ relatively the �xed frame l.

Note, that in the case |V | < c and s = 1 formula (7)
gives the classical Lorentz transforms.

Now, we introduce the new variable ψ (ψ ∈ R+̂,
ψ 6= −∞) such, that:

exp

(
−1

2
sign+̂ψ

)
cosh

ψ

2
=

sc(V )√∣∣1− V 2

c2

∣∣ ; (8)

exp

(
−1

2
sign+̂ψ

)
sinh

ψ

2
=

sc(V ) Vc√∣∣1− V 2

c2

∣∣ , (9)

where

sc(V ) =

{
1, |V | < c or V > 0

−1, |V | > c and V < 0
;

sign+̂x = ln+̂ (sign (exp(x))) =

=


1+̂ x ∈ R
0+̂ x = 0+̂

−̂ 1+̂ x ∈ R+̂ \
(
R ∪

{
0+̂
}) =

=


0 x ∈ R
−∞, x = −∞
πi x < −∞

(
x ∈ R+̂

)

(sign+̂x is the function, which represents the analogue

of the real function sign (x) in the �eld R+̂).

Parameter ψ in (8), (9) is uniquely determined by the
parameter V . Indeed, from (8), (9), taking into
account equality cosh2 ψ2 − sinh2 ψ2 = 1 we obtain:

exp
(
−sign+̂ψ

)
=

1− V 2

c2∣∣1− V 2

c2

∣∣ = sign (c− |V |) . (10)

Hence,

exp
(
sign+̂ψ

)
= (sign (c− |V |))−1 = sign (c− |V |),

and so:

exp

(
−1

2
sign+̂ψ

)
=

= exp

(
− ln+̂ (sign (c− |V |))

2

)
. (11)

Thus, in the case |V | < c, according to (10), (11) and

(9), we have, ψ ∈ R (ψ > −∞) and sinh ψ
2 = V/c√∣∣∣1−V 2

c2

∣∣∣ .
Therefore in this case we deliver:

ψ = 2 ln

 V/c+ 1√
1− V 2

c2

 .

Similarly in the case |V | > c we obtain ψ < −∞ (so
ψ can be represented in the form ψ = α + πi, where

α ∈ R) and −i cosh ψ
2 = sc(V )√

V 2

c2
−1

. The last equality

together with ψ = α+ πi leads to sinh
(
α
2

)
= sign(V )√

V 2

c2
−1

.

Hence α = 2 ln

(
|V |
c +sign(V )√

V 2

c2
−1

)
, and:

ψ = 2 ln

 |V |c + sign(V )√
V 2

c2 − 1

+ πi.

So, we have seen that in the both cases the parameter
ψ is uniquely determined by the parameter V .

Using the new parameter ψ, the formulas (7) may
be rewritten as follows:

ct′ = s̃ exp

(
−1

2
sign+̂ψ

)
(
ct cosh

ψ

2
− x sinh ψ

2

)
; (12)

x′ = s̃ exp

(
−1

2
sign+̂ψ

)
(
x cosh

ψ

2
− ct sinh ψ

2

)
, (13)

where s̃ = ssc(V ).

Since the parameter s takes the values from the set
{−1, 1}, the parameter s̃ also takes the values from
{−1, 1}. Thus, any generalized Lorentz trans-
form may be represented in the form (12)-(13),

where s̃ ∈ {−1, 1} and ψ ∈ R+̂ \ {−∞}. Besides,
for ψ ∈ R we obtain the classical Lorentz transforms
and for ψ ∈ R+̂, ψ < −∞ we obtain the generalized
Lorentz transforms for superluminal velocities of refer-
ence frame. In the case ψ = πi we obtain the general-
ized Lorentz transforms for in�nite velocities of refer-
ence frame (cf [7]).

3.2 Case of General Real Hilbert Space

In the papers [11, 12] the generalized Lorentz trans-
forms (in the sense of Recami-Olkhovsky-Goldoni) had
been introduced and investigated for the most general
case, where the �geometric variable� runs over arbitrary
real Hilbert space. Moreover, in these papers the gen-
eralized Lorentz transforms were introduced for arbi-
trary orientation of coordinate axes. The most general
representation of these generalized Lorentz transforms
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gives [12, Theorem 4.2 and Corollary 4.2] with the help
of functions:

ϕ0 (θ) =
1 + θ |θ|
2 |θ|

; ϕ1 (θ) =
1− θ |θ|
2 |θ|

, (14)

where θ ∈ R \ {0} (see also [15, Corollary II.17.1]).
Functions ϕ0 (θ) and ϕ1 (θ) have some properties simi-
lar to the properties of hyperbolic functions (for exam-
ple, ϕ2

0 (θ)− ϕ2
1 (θ) = sign θ and so ϕ2

0 (θ)− ϕ2
1 (θ) = 1

for θ > 0). However, actually, these functions are not
hyperbolic. But now we are going to show that these
functions can be reduced to hyperbolic functions, de-
�ned on R+̂. For this aim we introduce the new vari-
able ψ such, that:

1

θ
= exp

(
ψ + sign+̂ψ

2

)
; ψ ∈ R+̂, ψ 6= −∞. (15)

The variable ψ in (15), is uniquely determined by the
variable θ. Indeed, in the case θ > 0, according to
(15), we have ψ ∈ R (that is ψ > −∞) , because for

ψ < −∞ we will have exp
(
ψ+sign+̂ψ

2

)
< 0 . So, in this

case the equality (15) may be rewritten in the form,
1
θ = exp

(
ψ
2

)
. Therefore ψ = 2 ln

(
1
θ

)
for θ > 0. Sim-

ilarly, in the case θ < 0 we have ψ /∈ R, consequently
ψ < −∞ and ψ = α + πi, where α ∈ R. Hence,
in this case the equality (15) may be rewritten in the
form, 1

θ = exp
(
α+2πi

2

)
. Thus, we get 1

θ = − exp
(
α
2

)
,

α = 2 ln
(
− 1
θ

)
and ψ = 2 ln

(
− 1
θ

)
+ πi.

It is easy to verify, that equality (15) leads to the
following equality:

1

|θ|
= exp

(
ψ − sign+̂ψ

2

)
. (16)

Using the equalities (15) and (16), we may express the
functions ϕ0 (θ), ϕ1 (θ) via new parameter ψ:

ϕ0 (θ) =
1

2

(
1

|θ|
+ θ

)
=

= 1
2

(
exp

(
ψ−sign+̂ψ

2

)
+ exp

(
−ψ+sign+̂ψ

2

))
=

= exp

(
−1

2
sign+̂ψ

)
cosh

(
ψ

2

)
;

ϕ1 (θ) =
1

2

(
1

|θ|
− θ
)

=

= exp

(
−1

2
sign+̂ψ

)
sinh

(
ψ

2

)
.

Applying the last equalities as well as [12, Corollary
4.2] (or [15, Corollary II.17.1]) we obtain the follow-
ing Theorem 2 (in this Theorem we use the system of
notions and denotations, accepted in [11,12,15]).

Theorem 2. Operator L ∈ L (M (H)) belongs to
the class OT (H, c) if and only if there exist numbers

s ∈ {−1, 1}, ψ ∈ R+̂ \ {−∞}, vector n ∈ B1 (H1) and

operator J ∈ U (H1) such, that for any w ∈ M (H)
vector Lw can be represented by the formula:

Lw = exp

(
−1

2
sign+̂ψ

)
·

·
(
s cosh

(
ψ

2

)
T (w)− sinh

(
ψ

2

)
〈n,w〉
c

)
e0+

+ J

(
exp

(
−1

2
sign+̂ψ

)
·

·
(
c sinh

(
ψ

2

)
T (w)n− s cosh

(
ψ

2

)
X1 [n] w

)
+

+X⊥1 [n] w

)
.

Linear coordinate transform operator L is v-determined
if and only if ψ 6= πi, and in this case:

V (L) = cs
sinh

(
ψ
2

)
cosh

(
ψ
2

)n = cs tanh

(
ψ

2

)
n.
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