Global in Time Solvability of Incompressive NSIVP in Periodic Space
abstract

Global in time solvability of incompressive Navier-Stokes initial value problem in periodic
space is proved using time transformation analysys.

Introduction

Navier-Stokes equations was derived as foundmental equations for hydromechanics by
Navierl! and Stokes!?!. Hereafter, its solvability is studied for a long time, but, due to the
difficulty based on nonlinearity of the equations, even limited to incompressive fluid, not
enough results for solvability have gotton over 170 years.

With regard to NSIVP for incompressible fluid, local in time solvability and global in
time solvability for small initial value, including well-posedness, are known by means of
arguments based on analysys stareted by Leray[®!, Hopfl* or Kiselev-Ladyzhenskayal®, Itol6!,
Kato-Fujital”, and enhanced by Katol®!,Giga-Miyakawal®. But, global in time solvability for
initial value not only for small value has not been known.

Although studies have been driven mainly by analizing problems in the whole space, results
with regard to problems in periodic space are almost similar.

In the present paper, global in time solvability in periodic space for initial value not only
for small value is proved using time transformation analysis. Meanwhile, global in time
solvability in the whole space for initial value not only for small value is proved as well using
time transformation analysis, in another paper(!!].

This gives positive answer to the whole space version in the CMI millenium problem!!?!
related to Navier-Stokes equations, and similar results for more comprehensive initial values.

Overview

As main result, NSIVP in periodic space has global in time classical solution, for initial
value not only for small value. The global in time solution is well-posed, which means this is
unique, smooth and continuous to initial value.

Also, there is a decreasing upper limit function of initial value for norm of solution.

The proof consists of local in time analysis, and global in time analysis based on a priori
estimation. Analysis based on a priori estimation is typical global in time analysis. Basic
analysis has application limit and due to this limit, global in time solvability of incompressive
Navier-Stokes initial value problem has not been proved. In the present argument, to
overcome this limit, time transformation is used. By this time transformation analysis,
effective area with regard to norm upper limit estimation is expanded to overcome the limit.
With regard to local in time analysis, as the first step, for initial value acre ge(n,o0), the
existence of existing time T and solution wucrpe (0,1, is proved, and for initial value
QcL2nLa,qe(n,o0], the existence of existing time Th; and solution wer2nga ejo, 1y, 18 proved.
And next, a priori energy nonincreasing is proved, and L ,¢[2 o-norm of solution and
derivertive of solution has nonincreasing or decreasing upper limit function. After that, based
on local in time solvability and a priori estimation, global in time solvability is proved. Time
transformation analysis are repeatedly used through these process not limited in the step of
proving global in time solvability.

1.preliminary

Difinition 1 (function space)

For time point ¢cjo o), time interval T7c(g o) and Lebesgue space LI(R™) sef1,00],n>35



functional space L{(R"™), LY. (R™) are defined as follows.
lellzs(rmy = lleellLemrny » LEHR™) = {o| lellLs(rn) < oo}
lellze, (rm :tsequfHLPtHLq(Rn) , LT (R™) = {e|llellLy, (rmy < oo}

Here, function over spatial space ¢; is function over time and space ¢ with fixed time ¢.
These functional space L{(R"™), L%, (R"™) are Banach space.
Hereafter, these are noted simply by L{, L.,.
Moreover, function spaces L4 L4 are defined as follows, providing 1 < p < ¢ < co.
Llrd — m L7, Lwd = ﬂ L I
T€([pq] r€(p,al
Difinition 2 (multiple index)

In the present paper, size of multiple index a = (a1,...,an)eojun)» is defined by
la] = a1 + -+ + ay, and product of powers of spatial variable corrrespond to « is defined
by % = z{*...2%, derivative in regard as spatial variable correspond to « is defined by
0% =0y ...09.
Difinition 3 (Helmholtz discomposition)
For a function ¢, its nondivergent component P¢ and nonrotational component Py are
defined as follows if these exist, and Helmholtz decomposition means decomposition of ¢ to
P, Pep.
p=Pp+Pp,0Pp=0,(Pp,Pp)r:=0
If there is series of priodic functions, each of which has Helmholtz composition {yx }ren, r =
Pr+ Py and serieses of Helmholtz components {(Pey, Por) tken have limits (P, Pe),
nondivergent component of ¢ is defined by P¢ and nonrotational component of ¢ is defined
by P, and Helmholtz decomposition means decomposition of ¢ to P, Pep.
Generally for function space X (like L7, L%, above), function space PX is defined as follows.
PX ={pecX|p=Pp} [
Difinition 4 (heat kernel)
Heat kernel K corresponds to heat equation 0; f —vAf = 0 is defined by following expression.
1 x?
,¢¢ﬂ¢"eXp(_zu¢>

Difinition 5 (initial value)

K(t,x) =

Basic condition for initial value function a is defined as follows, providing g € (n, oco]; m > 2.
(1.1) ac€ PLR4  9q e L4 Jal<m

Difinition 6 (NSIVP)

NSIVP (Navier-Stokes initial value problem) is defined as follows.

(1.2) uwe PLZY

(0,00)
1
ohu — vAu + (ua)u + ;3}? =0 J(t,2)€(0,00)xR™
u(0,x) = a(x) wcRn

Following integral equation is equivalent to NSIVP(1.2) with regard to initial value @ which
satisfies a, = 0, providing the solution w satisfies u, = 0 and has derivertives.



t

(1.3) u; = K;*a —/dTP(BKtT*-uTuT) J(t,2)€(0,00)xR™
0

For funtion ¢ = @(t) with property ®(0)=0,®(t) > 0,0;P(t) = ¢(t) and function f = f(¢,x),

definding f®(t,x) = f(®(t),z), time-transformed solution u® for original solution = is
defined. Then, following time transformed integral equation for u® is equivarent to original
equation.
t
(14) uf = KPra~ [ drPOKE g, utud R
0

Difinition 7 (linear term and nonlinear term of solution)

In case of the solution w for NSIVP (1.2) is decomposed to 2 terms according to integral
equation (1.3) or time transformed integral equation (1.4), term u™) is defined as linear term
of the solution and term w(™) is defined as nonlinear term of the solution.

t
ugL) = Kixa uENL) = —/ dr P(OK;—rx-u,uy)

0

t
up™ = Kfva  uf™ = — [ dr POKY v ulu?) [

0

lemma(characteristics of convolution with kernel)

Related to convolution with kernel, following relations are confirmed, providing K = K®*) ;

v,vp,1 > 0; p € [1,4q],q € (n,o0] and mean values pps of s are zeros.

(1.5) Kotn) = go)y )

(1.6) |K*¢|r2(0) < e “lellrzo L2
_n¢l 1
(1.7) [[K*¢llpaey < Cvt) 2'r 1‘1)||90||LP(Q) pELP
_n¢l_ 1y _ 1
(1.8) 0K x¢llpaa) < Cwt) 2D 2 gllna)  perr ]
proof

Relation (1.5) is confirmed by means of expresssion F[K (0t¥1)] = F[K#0)]F[K*)] based
on Fourier transformation analysis.
Relation (1.6) is confirmed by means of Poincaré-Wirtinger inequality as follows.
For u = K x, following expressions are confirmed.

Opu? = 2udpu = 2u(vAu + f) = 2uvAu = 2v8(udu) — 2vdudu

Opu® — 208 (udu) + 20dudu = 0
By integrating expression above, following expressions are confirmed using Gauss’s theorem
and periodicity of u.

del[ullZ2 (o) + 2v]|0ulZ2 (o) = 0
Using Poincaré-Wirtinger inequality ||f — follr20) < C|0f]|L2(0) and ug = 0, following
inequality is confirmed.

dellullZ2() +2C vl 72(q) <O
Therefore, by means of Gronwall inequality, following expression is confirmed.

—2u¢

-C

lullz2(2) < llallr2(o)e
Relations (1.7)(1.8) are proved by means of following expressions in regard to estimation of
norm of convolution, for which, on each devided periodic area, enhanced Young’s inequality



is used.

Te(@) = [aviy) s -)iw) =3 [ V) I =)

n leA l
i 11
1T f lzagey < > MEN, Pl fllzrie)

lecA
Mi=sw [ V(@) Je - 1-y) | = swp [ V()| I -1-2)
yeN J N xe2J N
lesup/dew(m—l—y)r
xeN JN

Especially for function J(x) that is given by product of factors Ji(x1)---J,(x,) each of

which depends only on a spatial coordinate, following expressions are confirmed.
n

My = [[(M;), , (M), = sup /dyj | Jiy; — b — ) |
=1 z;€[0,a] JO

Ne=[TW;),, (Ny)y, = sup /dyj RACTE R T
j=1 z;€[0,a] JO

7% Nrager < TT (32 )2 (N3, ) 1o

j=1 leAj

- 1\q 1\r(1-4)
= H ( Z (Mj)[j) ( Z (NJ')fj) 1 fllr(02)

J=1 L4, 1;€4;

n r (1 1) n
< H (2HJJ’”LT(R))‘1 (2HJJ'”LT(R)) P HfHLP(Q) = H (2||Jj||LT(R))HfHLp(Q)

Jj=1 =1
= 2" rm) | fll e ()

Therefore, by setting J = K or J = 0;K, following expressions are confirmed.

10K+ llzace) < Ol |1 flln) = C0t) 267075 £ ooy |
2 .local in time solvability analysis
In this chapter, local in time solvability of NSIVPs is proved. First local in time solvability
of integral equation (1.4) is proved, and second smoothness of its solution is proved, then
local in time solvability of NSIVPs is proved. Using strict contracting map based fixed point
theorem, local in time solvability of integral equation is proved.
proposition 1 (local in time solvability of integral equaion)
There exist decreasing function TM = TM(£) of poritive number &, for arbitrary ini-
tial value @cpra, ge(n,o0) Which satisfies ap = 0, integral equation (1.3) has a solution
Tar=TM(||a||e) Which satisfies ug = 0.]]

u q
€Ljo 1y

proof
Map ¥ and set Sy are defined as follws, for T € (0,00],t € [0,7] and A € (0, c0).

¢

Uf = Kixa — /dT P(OKi—r*frfr)
0

S\ = {feL?O,T] | HfHLE’O’T] <\ fo=0}



Then following estimation relations are derived for f, g¢s, , providing x(t) = v~ (vt)? B=1(1-2)-
25y < Crllallzs + Cox £,

W f =¥gllLy < Cox (@) fllze ., +llgllze IIF =gl
Constant O¢g,1y and TM (), Tar, A are defined as follows.

1%

%
m) , Ty =TM(||a]La)

1
TM(E) = 6 (
v
1
=— 1-—
2Cox(Twm) ( 4
Then, following relations are derived.
X(Tar) = 67(4C1 Collal L)~
A < 201”&”[,:1
Also, there exist constant C'¢(g,1), and following relations are derived for each time t ¢jo 1,,]-
Cillal|ze + Cax(t)A* < A
202)((75))\ < C
Therefore, based on estimation relations above, following relations are derived for f,ges, -

Ufes,
Wf—vglre .  <CIf —gllLy

0, Tyl —

4C1CollallLax(Tar) )

These mean that map ¥ gives strict Contradlcting map over set S).

Therefore, by fixed point theorem, map ¥ has a fixed point u in set S.

This gives Yu; = us tcjo,1,,) and therefore u is a solution of integral equation (1.3) over time
interval [0, Ts].

Moreover, based on aforestated arguement, following relations are derived, so u € L
and up = 0.

lulzs,, | <2Ci]al.
[P < Cillalze I

Note (estimation of upper limit for nonlinear term)

[0, 7]

Estimation of upper limit of ||P(OK;—r % -fr fr)|lLa ge(n,00) in the proof above is based on
following relations.

|PijOn Kt fir firllLarr) < |PijOkKi—rll Lol forllLarm) | fi+ll La(rr)
g

POk K||Lerr) < cq

& L3(R")
> _nl_ 1
< 2eQ[|E K [Larry = C(W)"2572 [1_1. 1 gepi
Here P;js are components correspond to spatial coordinates of Ps, & = (&1,...,&,) is

n-dimentional Fourlier variable, K is Fourlier transformed function of heat kernel K ; the
former expression is confirmed by means of Young’s inequality and the latter expression is
confirmed by means of Hausdolf-Young inequality. ||

proposition 2 (regularity of local in time solution of integral equation)
Local in time solution ucp LY . of integral equation (1.3) based on proposition 1 for initial
4t M

value @ cpra ge(n,o0] has following characteristics (2.1-4) and is regular, providing |a| > 1 and,
as for (2.2)(2.4), g < oo.



(2.1) we Ljy 7, re2.q .
(22) w € Ly 1, e (o) ;o osup 26T fu|g < oo
N . te(O’TM] la| o
(2.3) 0%u € Lo 1,).re2.4] ; osup 7 [[0%ufLp < oo
X ) t€(0,Tas] p(i_1)yplal o
(24) 0°w € Liy1,,1.re(g.00] ;osup t2le TR |0%|pp < oo
tG(O,TM]

Moreover, local in time solution ucp L . of integral equation (1.3) based on proposition
4 M

1 for initial value @cprage(n,oo]s 0%@ eprLa,ge(n,o0),|a|<m has following charactristics (2.5)
adding to (2.1-4) above.

(25) 0% € Liy 1,,],re2,9],lal<m [
proof
(1) First, charactricitcs (2.1) are proved as follows.

Following expression is confirmed for time ¢ ¢(o 7,,], providing r € [2, q].

t
_nl_ 1
1 < Gillalo + Colulzy [ dr it =7)"FHul;
sVl 0

Here, set A, X and operator K as follows, providing ¢t € (0, Th].
A=Cillall
Xi = [luflLy

t 1
Kfi=Callulyy,,, [ dr@e-n) by,
LM O
Then, the expression above can be expressed by following relation.
X <A+KX

Iterating use of this relation, following expression is confirmed for k<.
k

X <Y KA+ KX
j=0
Then, for jen and t¢or1,,), following expression is derived, providing B(z,y)s are beta

]

1
functions, I'(x)s are gamma functions and § = 5 (1 - ﬁ).
q

Il
KIA < Alalulzy,, v 00°) T] 8.1+ k5)
k=0
1 _ 8\J
S Aw(CQF(ﬁ)HaHLqV 1(Vt) )
1

X < Wl T3 5y o Plallns™ 00

Therefore, limit of K*X as k approaches infinity equals 0, and following relations are
confirmed, provided ¢ € [0, Tas].
X <U(|a|gr,t) < oo

o0

1 .

(r) o) = N (o.r LAY

U (llallr,t) = CillallL ;:0 T+50) (C2I(B)llallLar™ (v1)")
This concludes following result.

sup HUHL{ < 00
te[0,Tar]



This is what is to be proved.

(2) Next, charactricitcs (2.2) are proved as follows.

In case of r € (g,00], by setting &(t) = tE’EE(O’(%(%_%)_;'_%)—l), following characteristics is
confirmed under condition ®; € (0, T].

¢
_ncl_1 _n¢2_ 1
Hu ”Lr<Cl(1/¢t) 5(5 'r)”aHLq +02Hu|]%q /dT(l/@t_T) (37
[OaTM] 0

< C1(vd) EGT laflzo + Cov ™ (v)F G a3,
Therefore following expressmns are confirmed.
lullL; < Cr(vt) 2G> + Ot (wt)2 3G
<ut>"“ Dllullz; < Cullallzs + Cov ™ (vt >2<1f%>ua||m
() 2@ ||y < UD(|al|L0)
This is what is to be proved.

(3 ) Next, charactricitcs (2.3) are proved as follows.
In case of r € [2,q], by setting @ = min{q,2r}, P(t) = ta,ae(o,(g(é 1y41ylalyo1y, following
expression is confirmed under condition @; € (0, Ty].

t
_lal _n(2_1y_1_]lof
[07u |l < Ca(v®e) ™% allir + Collullo ]/df(v@_f) 2l T,
yT'ng 0

INEES)

1_n¢2_1\_lol
= C (w®) "5 ||a]|pr + Cov~ (vd,) 3@ b ||u|?

n,2 1 1 o
=en(i=e(3(G 1)+ s s)
€ € 2\0 7 +2+ 5 €
10°w]lL; < Ca(vt)™ % ||al|pr + Cov " (wt)F 5 (&~

Lol
(wt) = [0%u|Ly < U (||al|L)
This is what is to be proved.
(4) Next, charactricitcs (2.4) are proved as follows.

In case of r € (g,00|, by setting &(t) = t°

ee(0,(B(2- 1)t laly-1); following expressin is

confirmed under condition @; € (0, T].

t
2_1\_1_ |«

_mn(l_1y_ lof _mn(2_1y_1_ lod
Haa'u@HL: < Cl(V@t) 2(q )= Ha|’Lq+C2HUHiE10T ]/ dr (I/@t_T) 2\q -z ©r
MYV 0

[

‘ n
: *Tuaumczu L) 2G5 a2,
n, 2 1 ||
= en(i-c(5G -5 5)-9)
e =€ 2\ T r + + 5
n n ‘O“
10%u|L; < Cr(vt)~% %—%—zuaumcw Ywt) 23G9 5 0, la|2,

() 2G5 9% |y < U@ (laa)
This is what is to be proved.

l
T

< Cy(vd,) " 3¢

(5) At last, charactricitcs (2.5) are proved as follows.

Here, (2.5)|q|<k for k =1,...,m are confirmed by mathematical induction. In case of k = 1,
for as that satisfy |a| = 1, following expression is confirmed.

7



Here, set A, X and operator K as follows for time t¢(g, 7,,]-
A= C1]|0%a||Lr
Xy = 0%y

t
_ni_1
Kfi=Callulyy,, [ dre-n) by,
Ml Jo
Then, like arguement in ( 1), following results are confirmed for a's that satisfy |a| = 1.

sup  [|0%ul/pr < oo
te[0,Tar]

Therefore (2.5)|4=1 is confirmed.

In case of (2.5)|q|<k<m—1 is valid, for as that satisfy |a| = k + 1, following relations are
confirmed, providing 8 + v = «a; |B],|y| < k for 8,~ as regards to summention.
t
_nl_ 1
Jo*ule; < Cilloraler +Ca Y can0%ully, | [ dr it =) #5740,
vM]O

By
t
+Callulyy,, | [ dr e - ) 0l
s Tar] 0
Here, A, X and operator K are defined as follows for time t¢ (g 7,,]-
t
_nl_ 1
A= Gl +Co Y co0ulsy,, | [ dr it =) E i E 07 ull,
By s Jo
X, = [0°ul g
Kfi=Callulyy,, [ dr e -n) by,
Tl Jo

Then, like argument in (1), following results are comfirmed for as that satisfy |a| = k + 1.

]

sup  [|0%ul/Lr < oo
te[0,Tar)

Therefore, (2.5)|q|=k+1 is confirmed.

These above are what are to be proved. I
Theorem 1(Local in time solvability of NSIVP)

NSIVP(1.2) has a local in time solution. I
proof

According to proposition 2, integral equation (1.3) has a local in time solution that can be
partially differentiated arbitraly times. Then integral equation (1.3) is equivallent to following
integral equation.

t
u; = Ky xa — /dTKt_T*P((uTﬁ)uT)
0

Therefore, this integral equation has local in time solution which can be partially derivated
arbitraly times. Then, this integral equation is equivallent to NSIVP(1.2). Therefore,
NSIVP(1.2) has a local in time solution. I
3. A priori estimation

Here, a priori estimation for NSIVP are confirmed. This corresponds to energy decreasing.
proposition 3(energy decreasing)

Following a priori estimation is confirmed for local in time solution u .p Lflo,TM]Of NSIVP for

initial value @ cpra ge(n,o0)-



(3.1) lullze < e “|allLa
proof

Solution w of NSIVP with initial value a satisfies following equation, providing t € [0, T;].
2
Oru? = —208udu + 2v0(u -Ou) — 3(~u<u2 + ;p)) dudu = Z 0iu;0;u;

2 2 b
dillullzz + 2v[|Oul[z2 = 0

dullul2: + 20v]ul3e <0
Therefore, by means of Grownwall inequality, (3.1) is confirmed. I
proposition 4(estimation of upper limit of solution)
Following a priori estimation for Ly ,c[2,00)-norm of local in time solution Ueprt . for
NSIVP (1.2) with initial value @ cpra ge(n,00) is confirmed, providing v = vg + 11, 1y, >0
(3.2) [uPpr < Colwt) 2 em " |al| 2
[ zr < CrogH(aot) = E0 T e a1

(3.3) Haau(L)HLT' < Co(VOt)_%(%_%)_%6_02V1t||a”L2

[0°uND | < Cragt (wot) O A e Cont g2, [
proof
Following expressions are confirmed by means of lemma.
| KM xa|p = || K« KWWxal|.
< co(wot) "GP | KWxal| L2 < covpt) "2~ H e~ 211 |a|
0K % allpr = ||0° K" s« K" al|r-
< co(vot) " EGD T | KWkal| 2 < eo(vot) " FE DT e Cot|jg 1

Aiso, following expressions are confirmed by means of lemma and proposition 3, providing

1

PO s ulul)l|L < c(va®) 5GP 3| K Peudu?|| o
3 (
2

< c(rn®y_ ) 3G ae Coni®ir | KPP0 2,
<c(y2@t77_)_%(%_%)_%6_021445‘*7(yzgptiT)_2(1 Q)H.uTufHLl
(17 )7 702V1¢t77—

R lu? |72
R g 1

1 1

r 2

,Cgvlétefc'g(l/%*l/o)@-r HaHiQ

t
Ju™ 2 < crem @ a7 / dr (voby—r) "5 rem v ey
0

< Civy (@) " F0 ) HEe -02"1¢f||ar|i
1

[P@*OK ) Pxufu?)| - < clvad;_,) 5(z—7) "2~ B K P a1

< c(va®,_,) B fczulqstqHK(@@* P 1

< c(va®y_,)"EG7EE vo®y_ )~ 30D | uPu?|| s

Ze
=c1(l/0€15t_7-)_%(1_%) 3- l% —Cor1 @y THU¢H%2
«

< 1 (Pr—) " EITT IR ¢ Canndir =200t g2,
< c1(voy—r) 207073

—Cov1 Py T(

e—Cglllqste—Cz(V-‘rllo)Cb Ha/||2LQ



t
HaaugNL)dSHLr < cle_CQ”ldstHaH%z/dT (I/O@t,T)_%(l—%)—%—%e_CQ(”+VU)¢T
0

< Cug (uoy) EO-DHTE e a3, I
4. analysys of global in time solvability
proposition 5 (global in time solvability of NSIVP)
In regard to NSIVP with initial value acpra 4e(n,00]; following results are confirmed.
(1) For a local in time solution UepLy there exist expanded time AT = AT(||lal|g2,T) and

expanded local in time solution ucpya . Moreover, AT(||al|g2,T) is increasing function

f T [0, T4+AT]

of T.

(2) There exists global in time solution w. This satisfies u € PL([IO,OO) N 'PLEgjz]),aau €
2,00

PLEOW]). I

proof

(1) is confirmed as follows.

Resetting the endpoint time of finite time interval of a solution u; se(0,7),7€(0,00) @S initial
time resetting the solution at endpoint time as initial value, and using solvability analisys
(proposition 1), expanded solution is constructed. Based on a priori estimation of ex-
panded solution at time ¢t = T : |Jur|p. < U2(q)(||a\|L2,T)yqe(n,oo](proposition 4), for
existance time AT of the expanded solution, AT > TM(UQ(Q)(HG,HLz,T)) is confirmed.
Because UQ(Q)(HaH 12,t) is a decreasing function of ¢t and T'M (&) is discreasing function of &,
TM(UQ(q)(HGHLZ,T)) is increasing function of 7.

(2) is confirmed as follows.

Based on local in time solvability of NSIVP (proposition 1), solution of NSIVP in finite
time interval is expandable ((1)abobe) and its expanded existing time increase to the length
of existing time interval ((1)above), by iterating expansion of solution, for arbitrary length of
interval, solution can be constructed. Therefore NSIVP is global in time solvable.

Moreover, by means of proposition 2, u € PL%’ZL) N Png’z]),aau € PL%’ZZ}) are com-
firmed. ||

proposition 6 (asymptotic attnueation characteristic and global in time boundedness of
solution of NSIVP)

For global in time solution w of NSIVP(1.2) with initial value @cpri2.a ge(n,00), following
results are confirmed.

(1) asymptotic attnueation characteristic

Solution w and its partial derivertives in regard to spatial cordinates have asymptotic
attnueation characteristic for t— oo as follows.

n (1

(4.1) [JulP g = 0@t 3379
|u™D)||py = 0@~ #0-)+1)
(42) HaOé’ll/(L)HL;r5 = O(t_f %_%)_T)
« Cmq_ 1y, 1 lal
[0uVD |, = o@-Bu-b+i-1g)
(2) global in time boundedness

Solution u is global in time bounded as follows.

10



(4.3) NullLy <o rel2,d] [
proof
(1) asymptotic attnueation characteristic

Based on proposition 5 and, (3.2) in regard to (4.1), (3.3) in regard to (4.2), these are
confirmed.

(2) global in time boundedness
Based on proposition 1, ||[uVP)||L. < Cllal|La tefo,1,,] is confirmed, and based on propo-

sition 3 [|[u™ )| 12 = |lu — u'™)| 2 is confirmed; and interpolating these, following relation
is comfirmed.

0
[Nz < 7 lall el g2

1
{ ’t6[07TM]7T€[27q]

On the other hand, following relation is confirmed based on proposition 5 and proposition
4.

[P zr < 70 wt) T allze < Vv (W Tn) T lalEe el oo et
Therefore, with expression of Th; in the proof of proposition 1, following relation that gives
(4.3) is confirmed.

lu ™D 1 < max{C{" ]| llal| %, v (W)~ la]|2a}
< max{C{" |a| g, lalg. O v % lal|Fa lall3e} s
proposition 7 (equable continuous on initial value and uniqueness of solution of NSIVP)

Global in time solution of NSIVP(1.2) correspond to initial value acpy2.q depends equably
and continuously on initial value @, moreover and is unique. []

proof

For 2 solutions u™,u(? of NSIVP which correspond to 2 initial values a®),a® cppq
respectively, following expressions are confirmed, providing r € [2,¢] and t € [0, Th].

t
u§1) (2) = K;*(a (1)—a(2)) —/dTPBKt_T*(‘ugl)ugl)— -ug)uf))
0
lu® —u® |z < Cilla®) - a?||-

+Co([uM gy, A 1w

e 2
o /dT t—7) 2a 2 |[u® — @,
Therefore, similarly as in proof of proposition 2 (1), following expressions are confirmed,

providing ¢ € [0, Th].
lu —u®||; < Cilla = a® LU (2)

sup ||u(1) _ U(2)||L; < C’1||a(1) _ a(2)”L,,,U(r) (Tar)
te[0,Th]

U(T)(t):z(l.(@ (8) (V]|

(2) -1 B\J
PR VLl PR el 0%

I'1+jpB)

On the other hand, similarly as in proof of proposition 4, following expressions are
confirmed, providing r € [2,¢| and t > 0.

1 1

lutP? = uP?|| o < C1(p®,) " FGE P |0V — a®|| L

+eo([|aM] g2 +[la®]|2) / dr (v®,—,) 2073 [a® —a® | 12
0
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< C(vd,) 3G la® — a®)| 1o
+Cor Y (w®y) D2 (la® |12 + @@ z2)la® — a@|| 12
Ju — w2 < o) — a®] 08 ()
Therefore, following expression is confirmed, providing ¢t € [Ty, 00).

sup Jul —u® | < a — a2 03" (Tar)
te([Th ,00)
Therefore, following expression is confirmed.
sup [[u®) — @y < o~ a®oe max{U ) (Tn). U, (T)
te|0,00
Therefore providing |a™® —a®| - — 0, sup [u® — u(Q)HL; — 0 is confirmed. Namely,
te(0,00)
solutions equably and continuously depends on initial values.

By setting a(Y=a®in arguement above, u(")=u?is confirmed. Namely, solution is unique. ||
5. general mean value problem

Whereas, in main part within the preceding sections, problems with initial value functions
and solutions of which mean values are zeros are considered, in this section, problems with
initial value functions and solutions of which mean values are general constant values ¢ cgns
are considered.

Namely, initial value problem of which initial value function a” and solution uw# satisfy
following relations (5.1)(5.2) is analized.

(5.1) a# € PLY, 0%a™ € LY jc(n.00); |a|=1,..m

aﬁ =c
# q
(5.2) u” e PL, )
1
o — vAu? + (u”-9)u” + ;8}7 =0 J(t, ) €(0,00)xR"
u?(0,z) = a¥ (x) cER"
ug =cC ,t€(0,00)

Global in time existence and property of solution of this problem can be analized by means
of function transformation, and by similar arguments as in main part. Namely, by setting
u =u?” —c,a = a” — ¢, transformed initial value problem that have initial value function a
and solution u with following conditions (5.1)(5.2] is derived.

(51)~ a € PLq 5 aaa S Lq ;qe(nyoo]; |a‘:1,...,m

an=0
(5.2 u e PLE’&OO)
~ ~ ~ e e 1
ou —vAu+ (c-0)u + (u-0)u + ;3]7 =0 J(t,x)€(0,00)xR™
u(0,z) = a(x) LERM
ﬂg =0 ,t€(0,00)

Partial differential equation in (5.2] differs from Navier-Stokes equation in that this has linear
first order spatial partial differential term. To analize this equation, following kernel K®
that corresponds to the initial value problem for linear equation d;f — vAf + (¢-8)f =0 in
the whole space R" is introduced, instead of heat kernel K ).

12



1 ( (x — ct)2)
—exp| ————
Vvt dvt
Following integral equation (5.3) is equivalent to initial value problem (5.1 (5.2}, providing

existence of derivertives of solution.
t

(5.3) @ = Ky*a —/dTP(BI?t_T*-ﬂTﬂT) (t,2)€(0,00)xR"
0

Kernel K has similar charasteristic as heat kernel K, especially expressions ||I? lLa(rmy =

KW (t,z) =

IKLe(Rm), ||8QIA{—||LZ(R71) = [|0“K||13(r") qe[1,00) are comfirmed. Based on these expressions,
almost similar results in previous section are confirmed and it is confirmed that this problem
has global in time solution with following form.

u? =c+ a4 a™h
On the other hand, solution w of problem in previous sections and solution u# of problem in
this section have following relation.
(5.4) u¥(t,x) = c+u(t,x —ct)
This is proved as follows.
(0 — v U (t,x) = (0, — vA)u(t,x — ct) — (c-0)u(t,x — ct)

= —((u(t,x —ct) + ¢)-Q)u(t,x — ct) — [1)317

= —(u(t,z)-0)u*(t,x) — ;819

Using relation (5.4), based on extistence of solution of problem in previous sections, existence
of solution of problem in this section is automatically confirmed.

6. initial value and boundry value problem

Whereas, in the previous section, problem with initial value @ with mean value a, and
solution uw that converges to ag, i.e. for t — co u; — agp, is argued, in this section, problem
of which solution w has initial value a and constant boundry balue b on boundry 02 is
argued. Namaly, initial value boundry value problem that initial value a and solution w
satisfy following conditions (6.1)(6.2) is analized.

(6.1) ac€PL?, 0% € LY, jc(n,00]; |a|=1,....m

a(x) =b 2O
(6.2) ue PL‘(JO’OO)
ou —vAu + (u-8)u + ;Bp =0 (£,2)€(0,00)xR"
u(0,x) = a(x) xERn
u(t,z) =b t€(0,00),2€00

This problem is global in time solvable and its solution converges to b. Analysis with regard
to this problem can be performed by means of following kernel K that corresponds to heat
equation 0;f — vAf = 0 with periodic boundry which differs from main part (sections 1-4).
1 (x— )2
K(t,x) = ﬁexp(—i)
) Z VAarut 4vt

A€
Following integral equation is equivallent to the initial value boundry value problem here,
providing existence of derivatives of solution.

13



t t
(6.3) u, = Kt*a—/dT/dS’-aKt_Tb—/dTP(BKt_T*-uTuT) (1,2)€(0,00)xR"
0 a9 0

Therefore, it is understood that as for a with mean value ay, = ¢ and constant boundry
value b on boundry 0f2 and ¢ # b, problem in previous section (secsion 5) and problem in
this section (section 6) have solutions that converges different value, namely these solutions
are different.

This means that as for problem with regard to periodic equation without additive condition
like mean value condition or boundry value condition doesn’t have unique solution.

note (relation to CMI problem)

Relation between results of this paper and CMI (Clay Mathematical Institute) problem!®! is
as follows.

In the CMI problem, 4 candidate propositions (A)(B)(C)(D) are given, 2 of which (B)(D)
correspond to initial value problem over 3 dimensional periodic space R3. In these 2 propo-
sitions (B)(D), regard to initial value, conditions that are consisted from (1)nondivergence,
and (2) existence of arbitraly times derivatives on spatial variables and its spatial discreasing.

0% | < Cax(1+2)™"  Lcrsac(fojun), k>0
These 2 conditions are sufficient condition for initial value condition @ € PL? N L* in the
present paper, therefore, results of the present paper conclude for the CMI problem, viz.
proposition (B) is comfirmed and proposition (D) is denied.
Results of the present paper give not only existence of global in time solutions, but also
various characteristic regard to solutions like uniqueness, partial derivativability, equable
continuous on initial value, etc. Also results of the present paper weaken conditions of
propositions from these 2 propositions (A)(B), and give similar results for comprehensive
initial values.
Nevertheless, as mentioned in section 6, CMI problem has uncertainty, that is, uniqueness
of solution is not garanteed and this is based on lack of contitions. For problems that
have appropriate contitions like in main part (sections 1-4), in section 5 and in section 6,
uniqueness of solution is garanteed.

On the other hand, results related to 2 propositions (A)(C) are given in other paper!®!, which
are like as results related to 2 propositions (B)(D). Although, as for uniqueness, attention
should be required.
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